NO150763B - PROCEDURE FOR CATALYTIC POLYMERIZATION OF PROPYL - Google Patents

PROCEDURE FOR CATALYTIC POLYMERIZATION OF PROPYL Download PDF

Info

Publication number
NO150763B
NO150763B NO761597A NO761597A NO150763B NO 150763 B NO150763 B NO 150763B NO 761597 A NO761597 A NO 761597A NO 761597 A NO761597 A NO 761597A NO 150763 B NO150763 B NO 150763B
Authority
NO
Norway
Prior art keywords
aluminum
compound
compounds
magnesium
propylene
Prior art date
Application number
NO761597A
Other languages
Norwegian (no)
Other versions
NO150763C (en
NO761597L (en
Inventor
Umberto Scata
Luciano Luciani
Pier Camillo Barbe
Original Assignee
Montedison Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montedison Spa filed Critical Montedison Spa
Publication of NO761597L publication Critical patent/NO761597L/no
Publication of NO150763B publication Critical patent/NO150763B/en
Publication of NO150763C publication Critical patent/NO150763C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Foreliggende fremgangsmåte angår en fremgangsmåte The present method relates to a method

for polymerisasjon av propylen ved hjelp av katalysatorer som inneholder titan, magnesium, aluminium og halogen. for the polymerization of propylene using catalysts containing titanium, magnesium, aluminum and halogen.

Fra italiensk patent nr. 932 4 38 kjenner man katalysatorer for stereoselektiv polymerisasjon av a-olefiner, og propylen i særdeleshet, som har høy aktivitet og består av et reaksjonsprodukt mellom en aluminiumalkylforbindelse, delvis kompleksdannet med en Lewis-base med en forbindelse som inneholder en bestemt katalytisk komponent omfattende forbindelser og/eller sammensetninger som inneholder titan, magnesium og fortrinnsvis en Lewis-base, fremstilt ved å føre en halogenert titanforbindelse i kontakt med en bærer omfattende et magnesiumhalogenid tilstedeværende i særlig aktivert form. Kontakten mellom titanforbindelsen og magnesiumhalogenidet skjer for disse katalysatorers vedkommende vanligvis ved å oppmale dem sammen. From Italian patent no. 932 4 38, catalysts for the stereoselective polymerization of α-olefins, and propylene in particular, are known, which have high activity and consist of a reaction product between an aluminum alkyl compound, partially complexed with a Lewis base with a compound containing a certain catalytic component comprising compounds and/or compositions containing titanium, magnesium and preferably a Lewis base, prepared by bringing a halogenated titanium compound into contact with a support comprising a magnesium halide present in a particularly activated form. The contact between the titanium compound and the magnesium halide usually occurs in the case of these catalysts by grinding them together.

Hvis man ved de katalysatorer som er nevnt, forsøker å bruke et produkt som er fremstilt ved å omsette en titanforbindelse (f.eks. TiCl^) med et magnesiumalkoholat som magnesiumhalogenid-holdig bestanddel i aktivert form, erholdes katalysatorer som ikke oppviser tilstrekkelig aktivitet og stereospesifisitet. If, with the catalysts mentioned, an attempt is made to use a product produced by reacting a titanium compound (e.g. TiCl^) with a magnesium alcoholate as a magnesium halide-containing component in activated form, catalysts are obtained which do not exhibit sufficient activity and stereospecificity.

Når katalysatorkomponenten inneholdende magnesiumhalogenidet i aktivert form på analog måte fremstilles ved å omsette TiCl^ med en magnesiumforbindeIse med formel RMgX hvor R betegner en hydrocarbonrest og X kan være R eller halogen, When the catalyst component containing the magnesium halide in activated form is prepared in an analogous manner by reacting TiCl^ with a magnesium compound of formula RMgX where R denotes a hydrocarbon residue and X can be R or halogen,

blir aktiviteten og stereospesifisiteten for katalysatoren ikke helt tilfredsstillende. the activity and stereospecificity of the catalyst are not completely satisfactory.

Man har nå overraskende funnet at det er mulig å poly-merisere propylen ved hjelp av katalysatorer med forbedret aktivitet av stereospesifisitet til tross for at man går ut fra en katalysekomponent hvor magnesiumhalogenid i aktivert form fremstilles fra Mg-alkoholater eller Mg-dialkylforbindelser. It has now surprisingly been found that it is possible to polymerize propylene using catalysts with improved activity of stereospecificity despite starting from a catalytic component where magnesium halide in activated form is produced from Mg alcoholates or Mg dialkyl compounds.

Oppfinnelsen angår således en fremgangsmåte for katalytisk polymerisering av propylen i nærvær av katalysator som omfatter reaksjonsprodukter av The invention thus relates to a method for the catalytic polymerization of propylene in the presence of a catalyst which comprises reaction products of

A) addisjons- og/eller substitusjonsprodukter av elektrongivende forbindelser med aluminiumalkylforbindelser hvori alurainium-alkylforbindelsene som er kjemisk bundet til den elektrongivende forbindelse, utgjør fra 0,01 til 1 mol pr. mol A) addition and/or substitution products of electron-donating compounds with aluminum alkyl compounds in which the alurainium alkyl compounds which are chemically bound to the electron-donating compound amount from 0.01 to 1 mol per mol

aluminium-utgangsforbindelse, med aluminum output connection, with

B) produkter omfattende forbindelser og/eller sammensetninger inneholdende magnesium, titan, aluminium og halogen, og hvor B) products comprising compounds and/or compositions containing magnesium, titanium, aluminum and halogen, and where

atomforholdet halogen/Mg er > 1,0, the halogen/Mg atomic ratio is > 1.0,

hvilken fremgangsmåte er kjennetegnet ved at det anvendes en komponent B) som er valgt fra which method is characterized by the use of a component B) selected from

(I) produkter erholdt ved å kontakte (a^) en titanhalo- (I) products obtained by contacting (a^) a titanium halo-

genert forbindelse med reaksjonsproduktet mellom (a,,) magnesiumforbindelser valgt fra alkoholater av formel XMgOR hvori R er et alkyl-, aryl- eller cycloalkyl- generated compound with the reaction product between (a,,) magnesium compounds selected from alcoholates of formula XMgOR in which R is an alkyl-, aryl- or cycloalkyl-

radikal inneholdende fra 1 til 20 carbonatomer, X er et halogenatom eller er R eller RO; Mg-dialkyl- (eller radical containing from 1 to 20 carbon atoms, X is a halogen atom or is R or RO; Mg-dialkyl-(or

-aryl eller -cycloalkyl) forbindelser av formel RMgR -aryl or -cycloalkyl) compounds of formula RMgR

hvori R har den ovenfor angitte betydning; Mg-salter av mettede eller umettede carboxylsyrer; og enolater av magnesium, og (a^) aluminiumhalogehider med formel AlRnX'3_n, hvor R har den ovenfor angitte betydning, wherein R is as defined above; Mg salts of saturated or unsaturated carboxylic acids; and enolates of magnesium, and (a^) aluminum halides of the formula AlRnX'3_n, where R has the meaning indicated above,

X' er et halogenatom og n er et tall fra 0 og 3, men X' is a halogen atom and n is a number from 0 to 3, but

lavere enn 3, eller lower than 3, or

(II) reaksjonsprodukter av (b^) alkuminiumhalogenider med (II) reaction products of (b^) aluminum halides with

formel AIR X' , hvor R og X' har de ovenfor angitte formula AIR X' , where R and X' have those indicated above

m 3-m 3 3 betydninger, og m er 0 - 3, med reaksjonsproduktet av magnesiumforbindelser (a ?) eller magnesiumhalogenider eller oxyhalogenider (b2) og titanalkoholater (b3), eventuelt i blanding med (b4) aluminiumalkoholater. m 3-m 3 3 meanings, and m is 0 - 3, with the reaction product of magnesium compounds (a ?) or magnesium halides or oxyhalides (b2) and titanium alcoholates (b3), optionally in mixture with (b4) aluminum alcoholates.

Uttrykket "addisjons- og/eller substitusjons-produkter" av elektrondonorforbindelser med aluminiumalkylforbindelser betegner produkter som består av eller omfatter kom- The term "addition and/or substitution products" of electron-donor compounds with aluminum alkyl compounds denotes products that consist of or include com-

plekser av elektrondonorforbin&elsene med aluminiumalkylforbindelser og reaksjonsprodukter mellom aluminiumtrialkylforbindelser og elektrondonorforbindelser som inneholder mobile hydrogen-atomer som kan reagere med aluminiumtrialkylforbindelsene og medføre substitusjonsreaksjoner, som f.eks.: complexes of the electron donor compounds with aluminum alkyl compounds and reaction products between aluminum trialkyl compounds and electron donor compounds containing mobile hydrogen atoms that can react with the aluminum trialkyl compounds and lead to substitution reactions, such as, for example:

Enhver Lewis-base som kan danne addisjons- og/eller substitusjonsforbindelser med aluminiumalkylforbindelser er egnet som komponent A i katalysatorer i henhold til foreliggende oppfinnelse . Any Lewis base which can form addition and/or substitution compounds with aluminum alkyl compounds is suitable as component A in catalysts according to the present invention.

Egnede forbindelser for dette formål er aminer, amider, ethere, estere, ketoner, nitriler. fosfiner, stibiner, arsiner, fosforamider, thioethere, aldehyder, alkoholater, amider og salter av organiske syrer av metaller i de første fire grupper i periodesystemet. Suitable compounds for this purpose are amines, amides, ethers, esters, ketones, nitriles. phosphines, stibines, arsines, phosphoramides, thioethers, aldehydes, alcoholates, amides and salts of organic acids of metals in the first four groups of the periodic table.

De mest interessante resultater både med hensyn på aktivitet og stereospefisitet får man ved anvendelse av estere eller diaminer. The most interesting results, both with regard to activity and stereospecificity, are obtained by using esters or diamines.

Typiske eksempler på slike forbindelser er ethylbenzo-at, ethyl-p-methoxybenzoat, diethylcarbonat, ethylacetat, dimethylmaleat, triethylborat, ethyl-o-klorbenzoat, ethyl-nafthenat, ethyl-toluat, ethyl-p-butoxybenzoat, ethylcyclo-hexanoat, ethylpivalat, N,N,N',N'-tetramethylendiamin, 1,2,4-trimethylpiperazin, 2,5-dimethylpiperazin og lignende. Typical examples of such compounds are ethyl benzoate, ethyl p-methoxybenzoate, diethyl carbonate, ethyl acetate, dimethyl maleate, triethyl borate, ethyl o-chlorobenzoate, ethyl naphthenate, ethyl toluate, ethyl p-butoxybenzoate, ethyl cyclohexanoate, ethyl pivalate, N,N,N',N'-tetramethylenediamine, 1,2,4-trimethylpiperazine, 2,5-dimethylpiperazine and the like.

Forholdet Lewis-base/aluminium-trialkyl som foretrek-kes, er generelt lavere enn 0,8, og for estere eller diaminer varierer forholdet fra 0,1 til 0,6. The preferred Lewis base/aluminum trialkyl ratio is generally lower than 0.8, and for esters or diamines the ratio varies from 0.1 to 0.6.

Generelt påvirkes katalysatorens aktivitet og stereospesifisitet i motsatt retning av forholdet Lewis-base/ aluminium-trialkyl "regnet som molarforhold på den måten at jo høyere dette forhold er jo lavere er aktiviteten og omvendt med hensyn til stereospesifisiteten. In general, the catalyst's activity and stereospecificity are affected in the opposite direction by the ratio Lewis base/aluminium trialkyl "calculated as a molar ratio in such a way that the higher this ratio is, the lower the activity and vice versa with respect to stereospecificity.

De aluminium-trialkylforbindelser som kan brukes ifølge oppfinnelsen kan velges blandt en rekke stoffer. The aluminium-trialkyl compounds which can be used according to the invention can be chosen from a number of substances.

Særlig egnede forbindelser inneholder alkylgrupper med en lineær eller forgrenet kjede med opp til 20 carbonatomer eller reaksjonsprodukter av disse med vann, ammoniakk eller primære aminer og inneholder følgelig to eller flere aluminiumatomer bundet til hverandre via oxygen eller nitrogenatomer. Particularly suitable compounds contain alkyl groups with a linear or branched chain of up to 20 carbon atoms or reaction products thereof with water, ammonia or primary amines and consequently contain two or more aluminum atoms bound to each other via oxygen or nitrogen atoms.

Enkelte typiske eksempler på slike stoffer er alumi-niumtriethyl, aluminiumtrimethyl, aluminiumtri-n-butyl, aluminiumtri-n-propyl, aluminiumtriisohexyl, aluminiumtriisooctyl, Some typical examples of such substances are aluminum triethyl, aluminum trimethyl, aluminum tri-n-butyl, aluminum tri-n-propyl, aluminum triisohexyl, aluminum triisooctyl,

aluminiumisoprenyl og lignende. aluminum isoprenyl and the like.

Komponent A) i katalysatoren kan Component A) in the catalyst can

fremstilles på forskjellige måter. En foretrukket metode består i å omsette Lewis-basen med aluminiumalkyl i et egnet molforhold og derpå omsette den fremstilte komponent A med komponent B. produced in different ways. A preferred method consists in reacting the Lewis base with aluminum alkyl in a suitable molar ratio and then reacting the produced component A with component B.

En annen metode består i å omsette aluminiumtrialkyl med komponent B) og derpå tilsette Lewis-basen til det fremstilte reaksjonsprodukt. Another method consists in reacting aluminum trialkyl with component B) and then adding the Lewis base to the reaction product produced.

Aluminium-, magnesium- og titanforbindelsene som er egnet som komponent B) i katalysatorene kan The aluminium, magnesium and titanium compounds which are suitable as component B) in the catalysts can

også velges blandt et stort antall forbindelser. can also be chosen from a large number of compounds.

Enkelte typiske eksempler fra type (a-^) er halogenider, oxyhalogenider, alkoxyhalogenider av titan, og sælrig TiCl^. Some typical examples from type (a-^) are halides, oxyhalides, alkoxyhalides of titanium, and especially TiCl^.

Enkelte typiske eksempler på forbindelser av type (a2) er magnesiumalkoholater og særlig slike med lineær eller forgrenet alkoxy-grupperinneholdende 1 - 20, og forttinnsvis 1-10, carbonatomer, halogen-alkoholater og særlig klor-alkoholater av magnesium med alkoxygrupper av angitt type, acetylacetonoat, methylglyoximat av magnesium, MgfC^H^).,, ^ C^ q^ s^ °^ anc^re lignende forbindelser. Some typical examples of compounds of type (a2) are magnesium alcoholates and especially those with linear or branched alkoxy groups containing 1 - 20, and preferably 1-10, carbon atoms, halogen alcoholates and especially chlorine alcoholates of magnesium with alkoxy groups of the specified type, acetylacetonoate, methylglyoximate of magnesium, MgfC^H^).,, ^ C^ q^ s^ °^ anc^re similar compounds.

Enkelte typiske eksempler av forbindelser av type (a^) er aluminiumhalogenider av formel AlRnX'3_n, hvor X1 betegner klor og R betegmer en alkylgruppe med rett eller forgrenet kjede og med opp til 20 carbonotomer, fortrinnsvis 1-10 carbonatomer, Some typical examples of compounds of type (a^) are aluminum halides of the formula AlRnX'3_n, where X1 denotes chlorine and R denotes an alkyl group with a straight or branched chain and with up to 20 carbon atoms, preferably 1-10 carbon atoms,

og særlig, aluminiumethylseskviklorid og aluminiumethyldiklorid. and in particular, aluminum ethyl sesquichloride and aluminum ethyl dichloride.

Enkelte typiske eksempler på forbindelser av type (b-^,) er ved siden av de nevnte forbindelser av type (a3) , aluminium-trihalogenider og særlig AICI3. Some typical examples of compounds of type (b-^,) are, in addition to the aforementioned compounds of type (a3), aluminum trihalides and especially AICI3.

Som typiske eksempler på forbindelser av type (b2) er magnesiumhalogenider, enten vandige eller hydratiserte, og særlig magnesiumklorid og oxyklorid. Typical examples of compounds of type (b2) are magnesium halides, either aqueous or hydrated, and especially magnesium chloride and oxychloride.

Som typiske eksempler på forbindelser av type (b^) er Ti(0-iC3H7)4, Ti(0-nC3H7)4, Ti(0-iC4<H>9)4, Ti(0-nC4H9)4, Ti(OC&H5)4 og Ti20(0-iC3H7)g. As typical examples of compounds of type (b^) are Ti(0-iC3H7)4, Ti(0-nC3H7)4, Ti(0-iC4<H>9)4, Ti(0-nC4H9)4, Ti( OC&H5)4 and Ti2O(0-iC3H7)g.

Disse titanforbindelser kan eventuelt brukes i blanding med mindre mengder av vanadiumforbindelser som V0C13 og VC14-Noen typiske eksempler på forbindelser av type (b4) er aluminiumalkoholater, alkylalkoholater og halogenalkoholater hvor alkylgruppen inneholder opp til 10 carbonatomer og halogenet er klor og særlig aluminiumtriisobutylat. These titanium compounds can optionally be used in admixture with smaller quantities of vanadium compounds such as V0C13 and VC14- Some typical examples of compounds of type (b4) are aluminum alcoholates, alkyl alcoholates and halogen alcoholates where the alkyl group contains up to 10 carbon atoms and the halogen is chlorine and especially aluminum triisobutylate.

De endelige forhold mellom Ti, Mg og Al komponent B i katalysatoren kan variere innen et stort om- The final ratios between Ti, Mg and Al component B in the catalyst can vary within a large

råde. advise.

For variant I) (reaksjonsproduktet mellom a^ og For variant I) (the reaction product between a^ and

(a2 + a3)), oppnås særlige gunstige resultater Når Mg/Ti-forholdet er mellom 0,5 og 30, fortrinsvis 1 - 20 og Mg/Al-forholdefc er mellom 0,5 og 5, fortrinnsvis 0,8 til 3. (a2 + a3)), particularly favorable results are obtained When the Mg/Ti ratio is between 0.5 and 30, preferably 1 - 20 and the Mg/Al ratio efc is between 0.5 and 5, preferably 0.8 to 3.

For variant II) (reaksjonsprodukt mellom b^ og For variant II) (reaction product between b^ and

(b2 + b3 eventuelt b4)) oppnås særlig gode resultater med Mg/Ti-forhold mellom 0,5 og 30, fortrinnsvis mellom 0,5 og 20, med Mg/Al-forhold mellom 0,5 og 15, fortrinnsvis mellom 0,8 og 10, (b2 + b3 or b4)) particularly good results are obtained with Mg/Ti ratios between 0.5 and 30, preferably between 0.5 and 20, with Mg/Al ratios between 0.5 and 15, preferably between 0, 8 and 10,

og med Ti/Al (som b4) mellom 0,01 og 2, fortrinnsvis mellom 0,01 og 0,5. and with Ti/Al (as b4) between 0.01 and 2, preferably between 0.01 and 0.5.

I variant II) (reaksjon mellom b, og (a2 + b2) ) oppnås særlig fordelaktige resultater med Mg/Ti-forhold mellom 0,5 og 80, fortrinnsvis mellom 1 og 30, og med Mg/Al-forhold mellom 0,5 og 15, fortrinnsvis mellom 1 og 10. In variant II) (reaction between b, and (a2 + b2) ) particularly advantageous results are obtained with Mg/Ti ratios between 0.5 and 80, preferably between 1 and 30, and with Mg/Al ratios between 0.5 and 15, preferably between 1 and 10.

I katalysatoren er forholdet Al/Ti høyere enn 1, særlig gode resultater får man med Al/Ti-forhold mellom 10 og 10.000. In the catalyst, the Al/Ti ratio is higher than 1, particularly good results are obtained with Al/Ti ratios between 10 and 10,000.

Polymerisasjonsbetingelsene er velkjent for fagfolk og består av temperaturer mellom -80 og +150° C, fortrinnsvis mellom 0 og 100° C, idet partialtrykket av propylen er høyere enn atmosfæretrykket. Polymerisasjonen kan skje enten i en væske-fase, med eller uten inert hydrocarbon som fortynningsmiddel eller i gassfase. The polymerization conditions are well known to those skilled in the art and consist of temperatures between -80 and +150° C, preferably between 0 and 100° C, the partial pressure of propylene being higher than atmospheric pressure. The polymerization can take place either in a liquid phase, with or without an inert hydrocarbon as a diluent, or in a gas phase.

Ved polymerisasjonen av propylen oppnås særlig gode resultater ved å bruke et inert alifatisk eller aromatisk hydrocarbon-fortynningsmiddel som er væskeformet under polymerisasjonsbetingelsene, eller ved å arbeide i flytende propylen som reaksjonsmedium. In the polymerization of propylene, particularly good results are achieved by using an inert aliphatic or aromatic hydrocarbon diluent which is liquid under the polymerization conditions, or by working in liquid propylene as reaction medium.

De følgende eksempler illustrerer hovedtrekkene ved foreliggende oppfinnelse. The following examples illustrate the main features of the present invention.

I de angitte eksempler er smelteindeksen (MIL) bestemt ifølge ASTM D-1238/73, bøyningsstivhet i henhold til ASTM D-747/70, på prøver fremstilt ved utstøping i platepresse ved 200°C og nedspenning ved 140° C i 2 timer. In the given examples, the melt index (MIL) is determined according to ASTM D-1238/73, bending stiffness according to ASTM D-747/70, on samples produced by casting in a plate press at 200°C and lowering at 140°C for 2 hours.

Volumvekt bestemmes alltid for polymeren i pulverform, egenviskositeten og overflateareal måles derimot ved ikke-standard-metoder. Volumetric weight is always determined for the polymer in powder form, the intrinsic viscosity and surface area, on the other hand, are measured by non-standard methods.

Eksempel 1 Example 1

a) Fremstilling av katalysatorens komponent B a) Preparation of the catalyst's component B

25,4 g Mg(OC2H5)2 ble behandlet med 140 ml oppløsning 25.4 g of Mg(OC 2 H 5 ) 2 were treated with 140 ml of solution

inneholdende 60 g Al(C2H^)Cl i 91 ml n-hexan (atomforhold containing 60 g of Al(C2H^)Cl in 91 ml of n-hexane (atomic ratio

Cl/Mg = 1,6) ved en temperatur på 25° C i 2 timer. Cl/Mg = 1.6) at a temperature of 25° C for 2 hours.

Reaksjonen var eksoterm og ble derfor fortrinnsvis nedkjølt. Etter avsluttet reaksjon ble produktet vasket flere ganger med dekantering med n-hexan og tørket i vakuum ved 45° C. Det opp-samlede faste stoff (23,9 g) gjennomgikk elementæranalyse som ga følgende resultater: Mg = 20,9 g/100 g The reaction was exothermic and was therefore preferably cooled. After completion of the reaction, the product was washed several times by decanting with n-hexane and dried in a vacuum at 45° C. The collected solid (23.9 g) underwent elemental analysis which gave the following results: Mg = 20.9 g/100 g

Al = 5 g/100 g Al = 5 g/100 g

Cl = 44,95 g/100 g Cl = 44.95 g/100 g

Produktet ble derpå behandlet med TiCl^ i overskudd i The product was then treated with excess TiCl 3 i

1 time ved 136° C og derpå vasket med n-hexan som fjernet ethvert spor av fri TiCl4 og tilslutt tørket i vakuum ved 50° C. Det fremstilte produkt ga med elementæranalyse følgende resultater: Mg =.16,95 g/100 g 1 hour at 136° C and then washed with n-hexane which removed any trace of free TiCl4 and finally dried in vacuum at 50° C. The product produced gave the following results with elemental analysis: Mg =.16.95 g/100 g

Al = 3,5 g/100 g Al = 3.5 g/100 g

Ti = 7,75 g/100 g Ten = 7.75 g/100 g

Cl = 65,5 g/100 g Cl = 65.5 g/100 g

Overflatearealet var 160 m<2>/g. The surface area was 160 m<2>/g.

b) Polymerisasjon av propylen i et oppløsningsmiddel b) Polymerization of propylene in a solvent

310 mg fast produkt (eksempel la) ble fyllt på en beholder av rustfritt stål, 2,5-liters autoklav, inneholdende 1 liter heptan og 1,135 g A1(<C>2H5)3 forblandet med 572 mg ethylanisat. Man utførte polymerisasjonen ved 60° C ved et trykk på 5 kg/cm (overtrykk), med propylen og hydrogen (1,5 vol% av gassfasen) i 5 timer. Trykket ble holdt konstant ved kontinuerlig innmating av propylen. Etter reaksjonen ble oppløsningsmid-let avdrevet med damp, 263 g tørr polymer var resultatet og utbyttet var 10 950 g polypropylen/g Ti i løpet av 5 timer. Polymeren hadde en ekstraksjonsrest i kokende heptan lik 81 % og volumvekt lik 0,33 kg/l. 310 mg of solid product (Example 1a) was charged to a stainless steel container, 2.5-liter autoclave, containing 1 liter of heptane and 1.135 g of A1(<C>2H5)3 premixed with 572 mg of ethyl anisate. The polymerization was carried out at 60° C. at a pressure of 5 kg/cm (overpressure), with propylene and hydrogen (1.5 vol% of the gas phase) for 5 hours. The pressure was kept constant by continuous feeding of propylene. After the reaction, the solvent was driven off with steam, 263 g of dry polymer was the result and the yield was 10,950 g polypropylene/g Ti within 5 hours. The polymer had an extraction residue in boiling heptane equal to 81% and volume weight equal to 0.33 kg/l.

cl Polymerisasjon av propylen i flytende monomer cl Polymerization of propylene in liquid monomer

En 30-liters autoklav av rustfritt stål ble fyllt med 10 kg propylen samt 12,5 g Al^f^^ i 90 ml n-heptan, 7,29 g ethylanisat i 120 ml n-heptan, 900 mg fast produkt (eksempel la) i. 130 ml n-heptan og 15 NI hydrogen. Polymerisasjonstemperaturen ble øket til 65° C og trykket innstilt på 26,5 kg/cm<2>. A 30-liter stainless steel autoclave was filled with 10 kg of propylene as well as 12.5 g Al^f^^ in 90 ml n-heptane, 7.29 g ethylanisate in 120 ml n-heptane, 900 mg solid product (Example la ) in. 130 ml n-heptane and 15 NI hydrogen. The polymerization temperature was increased to 65° C. and the pressure set at 26.5 kg/cm<2>.

Etter 5 timer og etter å ha fjernet propylenoverskuddet fikk man 2,95 kg polypropylen med utbytte 42,300 g polymer/g Ti, en ekstraksjonsrest i kokende heptan lik 78,5 % og volumvekt lik 0,32 kg/l. After 5 hours and after removing the excess propylene, 2.95 kg of polypropylene was obtained with a yield of 42.300 g polymer/g Ti, an extraction residue in boiling heptane equal to 78.5% and volume weight equal to 0.32 kg/l.

Eksempel 2 Example 2

a) Fremstilling av katalysatorkomponent B a) Preparation of catalyst component B

20,4 g Ti(OnBu)4 (titantetra-n-butylat) ble blandet 20.4 g of Ti(OnBu) 4 (titanium tetra-n-butylate) was mixed

med 11,4 g vannfri MgCl2 i pulverform og temperaturen holdt på 165° C i 3 timer. Man fikk et halvflytende produkt hvor en del av magnesiumkloridet forelå i oppløst form. I kald tilstand ble nevnte omsetningsprodukt tilsatt 24 0 ml n-hexan og innrørt grun-dig. Suspensjonen ble blandet med 38,2 g A1C2H5C12 (aluminiumethyldiklorid) i en n-heptanoppløsning med konsentrasjon på 478 g/l. Temperaturen ble øket til 70° C og holdt der i 1 time. with 11.4 g anhydrous MgCl2 in powder form and the temperature maintained at 165° C. for 3 hours. A semi-liquid product was obtained in which part of the magnesium chloride was present in dissolved form. In the cold state, said reaction product was added to 240 ml of n-hexane and stirred in thoroughly. The suspension was mixed with 38.2 g of AlC2H5C12 (aluminum ethyl dichloride) in an n-heptane solution with a concentration of 478 g/l. The temperature was increased to 70° C. and held there for 1 hour.

Etter avkjøling ble den faste felling dekantert fra inntil over-skuddet av aluminiumalkyl var forsvunnet. Det faste produkt ble tørket i vakuum ved 50° C. Elementæranalysen ga følgende resultater : Mg = 11,45 g/100 g After cooling, the solid precipitate was decanted from until the excess of aluminum alkyl had disappeared. The solid product was dried in a vacuum at 50° C. The elemental analysis gave the following results: Mg = 11.45 g/100 g

Al = 3,45 g/100 g Al = 3.45 g/100 g

Ti = 12,1 g/100 g Ti = 12.1 g/100 g

Cl = 63,75 g/100 g Cl = 63.75 g/100 g

b) Polymerisasjon av propylen i flytende monomer b) Polymerization of propylene in liquid monomer

10 kg propylen med 12,5 g Al (02^)3 i 90 ml n-heptan, 10 kg propylene with 12.5 g Al (O2^)3 in 90 ml n-heptane,

6,36 g ethylanisat i 120 ml n-heptan, 860 mg fast produkt (eksempel 2a) i 130 ml n-heptan og 15 NI hydrogen ble fyllt på en beholder av rustfritt sbål, en 30-liters autoklav. Man oppvarmet til 65° C og trykket ble innstilt på 26,5 kg/cm<2>. Etter 5 6.36 g of ethyl anisate in 120 ml of n-heptane, 860 mg of solid product (Example 2a) in 130 ml of n-heptane and 15 NI of hydrogen were charged to a container of stainless steel, a 30-liter autoclave. It was heated to 65° C and the pressure was set at 26.5 kg/cm<2>. After 5

timers polymerisering og etter å ha fjernet propylenoverskuddet fikk man 0,6 kg polypropylen (utbytte = 5770 g polymer/g Ti) hours of polymerization and after removing the excess propylene, 0.6 kg of polypropylene was obtained (yield = 5770 g polymer/g Ti)

med en ekstraksjonsrest i kokende heptan på 68,6 % og volumvekt 0,20 kg/l. with an extraction residue in boiling heptane of 68.6% and volume weight 0.20 kg/l.

Eksempel 3 Example 3

a) Fremstilling av katalysatorkomponent B a) Preparation of catalyst component B

11,65 g vannfri MgCl2 i pulverform ble blandet med 11.65 g of anhydrous MgCl2 in powder form was mixed with

29,55 g Al(Osec.Bu)3 (aluminium sek.-tributylat) og 4,08 g 29.55 g Al(Osec.Bu)3 (aluminum sec.-tributylate) and 4.08 g

Ti(On.Bu)4 (titan-n-tetrabutylat), ved 165° C i 6. timer. Man fikk en halvfast pasta i varm tilstand som stivnet i kald tilstand. Ti(On.Bu)4 (titanium-n-tetrabutylate), at 165° C for 6 hours. A semi-solid paste was obtained in the hot state which solidified in the cold state.

Det faste produkt ble rørt opp i et oppløsningsmiddel (n-hexan: The solid product was stirred in a solvent (n-hexane:

240 ml) i kulden. Ved 20° C ble denne suspensjon tilsatt _ 240 ml) in the cold. At 20° C, this suspension was added _

38,15 g AIC2H5CI2 (aluminiumethyldiklorid) i en n-heptanoppløs-ning ved en konsentrasjon av 478 g/l. Blandingens temperatur ble øket til 7 0° C og holdt på dette nivå i 1 time, etter avkjøling ble det faste stoff dekantert fra, vasket flere ganger med n-hexan for å fjerne aluminiumalkyloverskuddet. Det faste stoff ble tørket i vakuum ved 50° C og elementæranalysen ga følgende resultater: Mg = 16,15 g/100 g 38.15 g of AIC2H5CI2 (aluminum ethyl dichloride) in an n-heptane solution at a concentration of 478 g/l. The temperature of the mixture was increased to 70°C and held at this level for 1 hour, after cooling the solid was decanted from, washed several times with n-hexane to remove the excess aluminum alkyl. The solid was dried in vacuum at 50°C and the elemental analysis gave the following results: Mg = 16.15 g/100 g

Al = 7,05 g/100 g Al = 7.05 g/100 g

Ti = 3 g/100 g Ten = 3 g/100 g

Cl = 57,45 g/100 g Cl = 57.45 g/100 g

Overflatearealet var 46 m /g. The surface area was 46 m /g.

b) Polymerisasjon av propylen i oppløsningsmiddel. b) Polymerization of propylene in solvent.

119 mg fast produkt (eksempel 3a) ble fylt på en 2,5 119 mg of solid product (Example 3a) was charged into a 2.5

liters auoklav av rustfritt stål med 1 liter n-heptan og 1,135 g Al(c2H5)3 forblandet med 447 mg ethylanisat. Polymerisasjonen liter stainless steel autoclave with 1 liter n-heptane and 1.135 g Al(c2H5)3 premixed with 447 mg ethylanisate. The polymerization

ble utført ved 60° C og et trykk på 5 kg/cm<2> med propylen og hydrogen (1,5 vol% av gassfasen) i 5 timer. Trykket ble holdt konstant ved stadig innmating av propylen. was carried out at 60° C and a pressure of 5 kg/cm<2> with propylene and hydrogen (1.5 vol% of the gas phase) for 5 hours. The pressure was kept constant by constant feeding of propylene.

Ved avsluttet omsetning og etter å ha fjernet oppløs-' ningsmidlet ved avdriving med damp fikk man 74 g tørr polypropylen som hadde en ekstraksjonsrest med kokende heptan lik 77,6 %, utbytte 20,700 g polymer/g Ti i 5 timer. At the end of the reaction and after removing the solvent by stripping with steam, 74 g of dry polypropylene was obtained which had an extraction residue with boiling heptane equal to 77.6%, yield 20.700 g polymer/g Ti for 5 hours.

c) Polymerisasjon av propylen i flytende monomer c) Polymerization of propylene in liquid monomer

En rustfri stålautoklav med volum 30 liter ble fylt A stainless steel autoclave with a volume of 30 liters was filled

med 10 kg propylen, 12,5 g Al^Hg^ i 90 ml n-heptan, 6,36 g ethylanisat i 120 ml n-heptan, 856 mg fast produkt (eksempel 3a) with 10 kg propylene, 12.5 g Al^Hg^ in 90 ml n-heptane, 6.36 g ethylanisate in 120 ml n-heptane, 856 mg solid product (Example 3a)

i 130 ml n-heptan og 15 Ni hydrogen. Man foretok polymerisasjonen ved 65° C og trykket var 26,5 kg/cm<2>. in 130 ml n-heptane and 15 Ni hydrogen. The polymerization was carried out at 65° C and the pressure was 26.5 kg/cm<2>.

Etter 5 timer fikk man etter fjerning av propylenoverskuddet 1,61 g polypropylen (utbytte: 62,600 g polymer/g Ti) med ekstraksjonsrest i kokende heptan på 78,5 %, volumvekt på 0,29 kg/l, egenviskositet 2 dl/g, smelteindeks lik 3,7 g/10 min og en bøyningsstivhet på 10 310 kg/cm<2>. After 5 hours, after removing the excess propylene, 1.61 g of polypropylene was obtained (yield: 62.600 g polymer/g Ti) with an extraction residue in boiling heptane of 78.5%, volume weight of 0.29 kg/l, intrinsic viscosity 2 dl/g, melt index equal to 3.7 g/10 min and a bending stiffness of 10,310 kg/cm<2>.

Eksempel 4 Example 4

a) Fremstilling av kat alysatorkomponent B a) Manufacture of catalyst component B

23 g vannfri MgCl2 i pulverform ble blandet med 59 g 23 g of anhydrous MgCl2 in powder form was mixed with 59 g

Al(Osek.Bu)3 (aluminium-sek.-tributylat) og med 4,08 g Ti(OnBu)4 (titan-n-tetrabutylat), ved 165° C i 6 timer. Man fikk en halvfast pasta som ble kalddispergert ved kjøling i 180 ml n-hexan. Ved 20° C tilsatte man 76,2 g A1C2H5C12 (aluminiumethyldiklorid) i n-heptan i konsentrasjon på 478 g/l til suspensjonen. Temperaturen ble øket til 70° C under kraftig røring i 1 time. Al(Osek.Bu)3 (aluminum sec.-tributylate) and with 4.08 g of Ti(OnBu)4 (titanium-n-tetrabutylate), at 165° C for 6 hours. A semi-solid paste was obtained which was cold dispersed by cooling in 180 ml of n-hexane. At 20° C, 76.2 g of A1C2H5C12 (aluminum ethyl dichloride) in n-heptane in a concentration of 478 g/l was added to the suspension. The temperature was increased to 70° C. with vigorous stirring for 1 hour.

Etter avkjøling ble det faste produkt dekantert og vasket flere ganger med n-hexan for å fjerne aluminiumalkyloverskuddet. Det faste produkt ble tørket i vakuum ved 50°C . After cooling, the solid product was decanted and washed several times with n-hexane to remove the excess aluminum alkyl. The solid product was dried in vacuum at 50°C.

Elementæranalysen ga følgende resultater: The elemental analysis gave the following results:

Mg = 19,5 g/100 g Mg = 19.5g/100g

Al = 4,2 g/100 g Al = 4.2 g/100 g

Ti = 1,95 g/100 g Ten = 1.95 g/100 g

Cl = 65,10 g/100 g Cl = 65.10 g/100 g

Overflatearealet var 70 m /g. The surface area was 70 m /g.

b) Polymerisasjon av propylen i et oppløsningsmiddel b) Polymerization of propylene in a solvent

234 mg fast produkt (eksempel 4a) ble fyllt på en' 234 mg of solid product (Example 4a) was added to a

rustfri stålautoklav, 2,5 liter inneholdende 1 liter nsheptan og 1,135 g Al ^2*^)3 forblandet med 571 mg ethylanisat. ;Polymerisasjonen ble utført ved 60° C ved et trykk ;på 5 kg/cm<2> med propylen og hydrogen (1,5 vol% i gassfasen) i 5 timer. Trykket ble holdt konstant ved kontinuerlig innmating av propylen. ;Etter å ha fjernet oppløsningsmidlet ved fortrengning med damp fikk man 95 g polymer som ga et utbytte på 20,800 g polypropylen/g Ti i 5 timer, ekstraksjonsrest i kokende heptan lik 80,5 % og volumvekt lik 0,355 kg/l. ;c). Polymerisas jon av propylen i flytende monomer ;10 kg propylen samt 12,5 g Al(C2H5)3 i 90 ml n-heptan, ;7,75 g ethylanisat i 120 ml n-heptan, 1,1 g fast produkt (eksempel 4a) i 130 ml n-heptan og 15 Ni hydrogen ble innført i en rustfri stålautoklav med volum på 30 liter. Polymerisasjonstemperaturen var 65° C og trykket ble innstilt på 26,5 kg/cm . ;Etter 5 timer fikk man etter fjerning av propylenoverskuddet 1,5 kg polypropylen med en ekstraksjonsrest med kokende heptan på 81,5 %, utbytte 70,000 g polymer/g Ti. ;Denne polymer hadde følgende data: ;volumvekt 0,21 kg/l ;viskositet 1,5 dl/g ;smelteindekt 1,34 g/10 min ;o ;bøyningsstivhet 11 830 kg/cm ;Eksempel 5 ;a) . Fremstilling av katalysatorkomponent B ;18,12 g Mg(O<C>2H5)2 ble blandet med 5,4 g Ti(0-n.C4<H>9)4 ;(titan-tetrabutylat) i 240 ml n-hexan ved ca. 70° C, i løpet av 45 min. Blandingen ble satt til 90 g A1(<C>2H5)C<1>2 (aluminium-ethylriklorid) i en n-heptanoppløsning i konsentrasjon 478 g/l. Man oppvarmet til 75° C og holdt denne temperatur i 1 time. Etter avkjøling ble den faste felling dekantert fra og vasket flere ganger med n-hexan ved dekantering for å fjerne aluminium-alkyloverskudd. Det faste produkt ble tørket i vakuum ved 45° C. ;Elementæranalysen ga følgende data: ;Mg = 12,25 g/100 g ;Al = 8,0 g/100 g ;Ti = 3,6 g/100 g ;Cl = 68,8 g/100 g ;overflatearealet var 179 m<2>/g. ;b) Polymerisasjon av propylen i et oppløsningsmiddel ;189 mg fast produkt (eksempel 5a) ble innført i en ;autoklav av rustfritt stål med volum 2,5 liter inneholdende 1 liter n-heptan og 1,135 g A1(C2H5)3 forblandet med 447 mg ethyl- ;anisat. Man utførte polymerisasjonen ved 60° C ved et trykk på ;5 kg/cm<2> med propylen og hydrogen (1,5 vol% i gassfase), i 5 timer. Trykket ble holdt konstant ved innføring av propylen. ;Etter reaksjonen fjernet man oppløsningsmidlet ved fortrengning med damp, og resulatet ble 290 g polypropylen med en ekstraksjonsrest i kokende heptan lik 71 %, utbytte lik 42,600 g polymer/g Ti i 5 timer. ;c) Polymerisasjon av propylen i flytende monomer ;<1>0 kg propylen samt 12,5 g A1(C2H5)3 i 90 ml n-heptan, ;6,36 g ethylanisat i 120 ml n-heptan, 790 mg fast produkt (eksempel 5a) i 130 ml n-heptan og 15 NI hydrogen ble fyllt på en autoklav av rustfritt stål med volum 30 liter. Polymerisasjonstemperaturen var'65° C og trykket 26,5 kg/cm<2>. ;Etter 5 timer fikk man etter avdrivning av propylenet 3,05 kg polypropylen (utbytte 107 000 g polymer pr. g Ti), som hadde en ekstraksjonsrest i kokende heptan lik 74 %, volumvekt lik 0,28 kg/l, smelteindeks lik 2,5 g (10 min og en bøynings-stivhet på 87 30 kg/cm<2.>;Eksempel 6 ;a) Fremstilling av katalysatorkomponent B ;39,6 g Mg(O<C>2H5)2 ble blandet med 5,62 g Ti(onC4Hg)4;(titan-n-tetrabutylat) i 250 ml n-hexan, ved 70° Ci 45 minutter. ;183 g A1(<C>2<H>^)C12 (aluminiumethyldiklorid) i n-heptan-oppløsning ved konsentrasjon 478 g/l ble tilsatt blandingen. ;Man oppvarmet til 75° C som ble holdt i 1 time. Etter avkjøling ble den faste felling dekantert fra og vasket flere ganger med n-hexan for å fjerne aluminiumalkyloverskuddet. Det faste produkt ble tørket i vakuum ved 4 5° C. ;Elementæranalyse ga følgende resultater : ;-Mg = 19,55 g/100 g ;Al = 6,30 g/100 g ;Ti = 2 g/100 g ;Cl = 68,35 g/100 g ;Overflateareal var 79 m<2>/g. ;b) Polymerisasjon av propylen i oppløsningsmiddel ;173 mg fast produkt (eksempel 6a) ble fyllt på en autoklav av rustfritt stål med volum 2,5 liter inneholdende 1 liter n-heptan og 1,135 g Al ( £2^* 5^ 3 f°rblandet med 571 mg ethylanisat. -Man utførte polymerisasjonen ved 60° C ved et trykk på 5 kg/cm 2, med propylen og hydrogen (1,5 vol% i gassfase) i 5 timer. Trykket ble holdt konstant ved kontinuerlig innføring av propylen. stainless steel autoclave, 2.5 liters containing 1 liter n-heptane and 1.135 g Al ^2*^)3 premixed with 571 mg ethylanisate. The polymerization was carried out at 60° C. at a pressure of 5 kg/cm<2> with propylene and hydrogen (1.5 vol% in the gas phase) for 5 hours. The pressure was kept constant by continuous feeding of propylene. After removing the solvent by displacement with steam, 95 g of polymer were obtained which gave a yield of 20.800 g polypropylene/g Ti for 5 hours, extraction residue in boiling heptane equal to 80.5% and volume weight equal to 0.355 kg/l. ;c). Polymerisation of propylene in liquid monomer ; 10 kg propylene and 12.5 g Al(C2H5)3 in 90 ml n-heptane, ; 7.75 g ethylanisate in 120 ml n-heptane, 1.1 g solid product (example 4a ) in 130 ml n-heptane and 15 Ni hydrogen was introduced into a stainless steel autoclave with a volume of 30 litres. The polymerization temperature was 65° C. and the pressure was set at 26.5 kg/cm . After 5 hours, after removal of the excess propylene, 1.5 kg of polypropylene was obtained with an extraction residue with boiling heptane of 81.5%, yield 70,000 g polymer/g Ti. ;This polymer had the following data: ;volumetric weight 0.21 kg/l ;viscosity 1.5 dl/g ;melt index 1.34 g/10 min ;o ;flexural stiffness 11,830 kg/cm ;Example 5 ;a) . Preparation of catalyst component B ; 18.12 g of Mg(O<C>2H5)2 was mixed with 5.4 g of Ti(0-n.C4<H>9)4 ;(titanium tetrabutylate) in 240 ml of n-hexane at approx. 70° C, within 45 min. The mixture was added to 90 g of A1(<C>2H5)C<1>2 (aluminum ethyl trichloride) in an n-heptane solution at a concentration of 478 g/l. It was heated to 75° C and maintained at this temperature for 1 hour. After cooling, the solid precipitate was decanted from and washed several times with n-hexane by decantation to remove aluminum alkyl excess. The solid product was dried in vacuum at 45° C. The elemental analysis gave the following data: Mg = 12.25 g/100 g Al = 8.0 g/100 g Ti = 3.6 g/100 g Cl = 68.8 g/100 g; the surface area was 179 m<2>/g. ;b) Polymerization of propylene in a solvent ;189 mg of solid product (Example 5a) was introduced into a stainless steel autoclave with a volume of 2.5 liters containing 1 liter of n-heptane and 1.135 g of A1(C2H5)3 premixed with 447 mg ethyl anisate. The polymerization was carried out at 60° C. at a pressure of ;5 kg/cm<2> with propylene and hydrogen (1.5 vol% in gas phase), for 5 hours. The pressure was kept constant by introducing propylene. After the reaction, the solvent was removed by displacement with steam, and the result was 290 g polypropylene with an extraction residue in boiling heptane equal to 71%, yield equal to 42,600 g polymer/g Ti for 5 hours. ;c) Polymerization of propylene in liquid monomer ;<1>0 kg propylene and 12.5 g A1(C2H5)3 in 90 ml n-heptane, ;6.36 g ethylanisate in 120 ml n-heptane, 790 mg solid product (Example 5a) in 130 ml n-heptane and 15 NI hydrogen was filled into a stainless steel autoclave with a volume of 30 litres. The polymerization temperature was 65° C. and the pressure 26.5 kg/cm<2>. After 5 hours, after stripping off the propylene, 3.05 kg of polypropylene was obtained (yield 107,000 g polymer per g Ti), which had an extraction residue in boiling heptane equal to 74%, volume weight equal to 0.28 kg/l, melting index equal to 2 .5 g (10 min and a bending stiffness of 87 30 kg/cm<2.>; Example 6 ;a) Preparation of catalyst component B ; 39.6 g of Mg(O<C>2H5)2 was mixed with 5, 62 g of Ti(onC4Hg)4;(titanium-n-tetrabutylate) in 250 ml of n-hexane, at 70°Ci 45 minutes. 183 g of A1(<C>2<H>^)C12 (aluminum ethyl dichloride) in n-heptane solution at a concentration of 478 g/l was added to the mixture. It was heated to 75° C., which was held for 1 hour. After cooling, the solid precipitate was decanted from and washed several times with n-hexane to remove the excess aluminum alkyl. The solid product was dried in vacuum at 45° C. Elemental analysis gave the following results: Mg = 19.55 g/100 g Al = 6.30 g/100 g Ti = 2 g/100 g Cl = 68.35 g/100 g; Surface area was 79 m<2>/g. ;b) Polymerization of propylene in solvent ;173 mg of solid product (Example 6a) was charged to a stainless steel autoclave with a volume of 2.5 liters containing 1 liter of n-heptane and 1.135 g Al ( £2^* 5^ 3 f °rmixed with 571 mg of ethyl anisate. -The polymerization was carried out at 60° C at a pressure of 5 kg/cm 2, with propylene and hydrogen (1.5 vol% in gas phase) for 5 hours. The pressure was kept constant by continuous introduction of propylene.

Etter avsluttet reaksjon ble oppløsningsmidlet avdrevet med damp, det ble erholdt 150 g polypropylen med ekstraksjonsrest med kokende heptan på 72,6 % og volumvekt lik 0,353 kg/l, og utbyttet var 43 300 g polymer/g Ti i 5 timer. After completion of the reaction, the solvent was removed with steam, 150 g of polypropylene was obtained with an extraction residue with boiling heptane of 72.6% and volume weight equal to 0.353 kg/l, and the yield was 43,300 g polymer/g Ti for 5 hours.

c) Polymerisasjon av propylen i en flytende monomer c) Polymerization of propylene in a liquid monomer

10 kg propylen samt 12,5 g AltC^H^).} i 90 ml n-heptan, 10 kg propylene and 12.5 g AltC^H^).} in 90 ml n-heptane,

8,75 g ethylanisat i 120 ml n-heptan, 1,05 g fast produkt (eksempel 6a) i 130 ml n-heptan og 15 NI hydrogen ble fyllt på 8.75 g of ethyl anisate in 120 ml of n-heptane, 1.05 g of solid product (Example 6a) in 130 ml of n-heptane and 15 NI of hydrogen were added

en autoklav av rust-fritt stål med volum 30 liter. Polymerisasjonstemperaturen var 65° C og trykket 26,5 kg/cm<2>. Etter 5 timer fjernet man propylenoverskuddet og fikk 1,13 kg polypropylen med ekstraksjonsrest i kokende heptan lik 80,5 %, utbyttet var 53 800 g polymer/g Ti. a stainless steel autoclave with a volume of 30 litres. The polymerization temperature was 65° C and the pressure 26.5 kg/cm<2>. After 5 hours, the excess propylene was removed and 1.13 kg of polypropylene was obtained with an extraction residue in boiling heptane equal to 80.5%, the yield was 53,800 g polymer/g Ti.

Forøvrig hadde den polymere følgende egenskaper: Incidentally, the polymer had the following properties:

volumvekt 0,33 kg/l volumetric weight 0.33 kg/l

smelteindeks 5,1 g/10 min melting index 5.1 g/10 min

bøyningsstivhet 11 500 g/cm<2>bending stiffness 11,500 g/cm<2>

Eksempel 7 Example 7

Polymerisasjon av propylen i et oppløsningsmiddel Polymerization of propylene in a solvent

328 mg fast produkt fremstilt ifølge eksempel 4a) ble fyllt på en 2,5 liters autoklav av rustfritt stål inneholdende 1 liter n-heptan og 1,135 g A1(C2<H>5)3 f omlandet med 450 mg ethylparatoluat. 328 mg of solid product prepared according to example 4a) was filled into a 2.5 liter stainless steel autoclave containing 1 liter of n-heptane and 1.135 g of A1(C2<H>5)3 f mixed with 450 mg of ethyl paratoluate.

Polymerisasjonen ble utført ved 60° C ved et trykk på The polymerization was carried out at 60° C. at a pressure of

5 kg/cm 2, med propylen og hydrogen (1,5 vol% i gassfase) i 5 timer. 5 kg/cm 2 , with propylene and hydrogen (1.5 vol% in gas phase) for 5 hours.

Trykket ble holdt konstant ved kontinuerlig innføring av propylen. The pressure was kept constant by continuous introduction of propylene.

Etter reaksjonen fjernet man oppløsningsmidlet ved avdriving med damp, og fikk 296 g polymer med en ekstraksjonsrest i kokende heptan lik 78,6 %, volumvekt lik 0,38 kg/l og egenviskositet lik 2 dl/g, utbyttet var 46 300 g polypropylen/g Ti i 5 timer. After the reaction, the solvent was removed by stripping with steam, and 296 g of polymer were obtained with an extraction residue in boiling heptane equal to 78.6%, volume weight equal to 0.38 kg/l and intrinsic viscosity equal to 2 dl/g, the yield was 46,300 g polypropylene/ g Ten for 5 hours.

Po lymerisasjon av propylen i flytende monomer Polymerization of propylene in liquid monomer

10 kg propylen samt 12,5 g ADc^HgJ^ i 90 ml n-heptan, g ethylparatoluat i 120 ml n-heptan, 1,05 g fast produkt fremstilt i henhold til eksempel 4a), i 130 ml n-heptan og 15 NI hydrogen ble fyllt på en autoklav av rustfritt stål med volum 30 liter. Polymerisasjonen ble foretatt ved 65° C og trykket justert til 26,5 kg/cm . Etter 5 timer avdrev man propylenoverskuddet, 1,9 kg polypropylen ble resultatet i utbytte 9 7 500 g polymer/g Ti, med ekstraksjonsrest med kokende heptan lik 80,5 %. 10 kg propylene as well as 12.5 g ADc^HgJ^ in 90 ml n-heptane, g ethyl paratoluate in 120 ml n-heptane, 1.05 g solid product prepared according to example 4a), in 130 ml n-heptane and 15 NI hydrogen was filled into a stainless steel autoclave with a volume of 30 litres. The polymerization was carried out at 65° C and the pressure adjusted to 26.5 kg/cm . After 5 hours, the excess propylene was evaporated, 1.9 kg of polypropylene was the result in a yield of 97,500 g polymer/g Ti, with an extraction residue with boiling heptane equal to 80.5%.

Den polymere hadde også følgende egenskaper: The polymer also had the following properties:

volumvekt 0,21 kg/l volumetric weight 0.21 kg/l

egenviskositet 2 dl/g intrinsic viscosity 2 dl/g

smelteindeks 3,1 g/10 min melt index 3.1 g/10 min

bøyiningsstivhet 10 750 g/cm<2>bending stiffness 10,750 g/cm<2>

Eksempel 8 Example 8

Polymerisasjon av propylen i oppløsningsmiddel Polymerization of propylene in solvent

240 mg fast produkt (eksempel 4a) ble fyllt på en autoklav av rustfritt stål med volum 2,5 liter og inneholdende 1 liter n-heptan og 1,135 g Al(iC4H9)3 forblandet med 329 mg ethylanisat. Polymerisasjonen ble utført ved 60° C ved et trykk på 5 kg/cm , med propylen og hydrogen (1,5 vol% i gassfase) i 5 240 mg of solid product (Example 4a) was filled into a stainless steel autoclave with a volume of 2.5 liters and containing 1 liter of n-heptane and 1.135 g of Al(iC4H9)3 premixed with 329 mg of ethyl anisate. The polymerization was carried out at 60° C at a pressure of 5 kg/cm, with propylene and hydrogen (1.5 vol% in gas phase) for 5

timer. Trykket ble holdt konstant ved kontinuerlig innføring av propylen. Etter avsluttet omsetning fjernet man oppløsningsmid-let ved avdriving med damp, og fikk 137 g polymer med et utbytte på 29 400 g polypropylen/g Ti i 5 timer, og produktet hadde en ekstraksjonsrest i kokende heptan lik 72,5 %. hours. The pressure was kept constant by continuous introduction of propylene. After completion of the reaction, the solvent was removed by stripping with steam, and 137 g of polymer was obtained with a yield of 29,400 g polypropylene/g Ti for 5 hours, and the product had an extraction residue in boiling heptane equal to 72.5%.

Polymerisasjon av propylen i flytende monomer Polymerization of propylene in liquid monomer

10 kg proyplen samt 12,5 g Al(iC4Hg)3 i 90 ml n-heptan, 4,15 g ethylanisat i 120 ml n-heptan, 1 g fast produkt (fremstilt ifølge eksempel 4a) i 130 ml n-heptan og 15 NI hydrogen ble fyllt på en beholder av rustfritt stål med volum 30 liter. Polymerisasjonstemperaturen ble bragt til 65° C og trykket justert til 26,5 kg/cm<2>. Etter 5 timer ble propylenoverskuddet avdrevet, utbyttet var 1,55 kg polypropylen svarende til 79 500 g polymer/g Ti, med en ekstraksjonsrest i kokende heptan lik 76 %, volumvekt lik 0,3 kg/l, egenviskositet lik 2 dl/g og bøynings-stivhet lik 8850 kg/cm<2>. 10 kg propylene and 12.5 g Al(iC4Hg)3 in 90 ml n-heptane, 4.15 g ethylanisate in 120 ml n-heptane, 1 g solid product (prepared according to example 4a) in 130 ml n-heptane and 15 NI hydrogen was filled into a stainless steel container with a volume of 30 litres. The polymerization temperature was brought to 65° C. and the pressure adjusted to 26.5 kg/cm<2>. After 5 hours the excess propylene was driven off, the yield was 1.55 kg polypropylene corresponding to 79,500 g polymer/g Ti, with an extraction residue in boiling heptane equal to 76%, volume weight equal to 0.3 kg/l, intrinsic viscosity equal to 2 dl/g and bending stiffness equal to 8850 kg/cm<2>.

Eksempel 9 Example 9

Polymerisasjon av propylen i flytende monomer Polymerization of propylene in liquid monomer

10 kg propylen samt 12,5 g Al(iC4H9)3 i 90 ml n-heptan, 3,4 5 g ethylparatoluat i 120 ml n-heptan, 1,06 g fast produkt (fremstilt som angitt i eksempel 4a) i 130 ml n-heptan og 15 NI hydrogen ble fyllt på en autoklav av rustfritt stål med volum 30 liter. 10 kg propylene and 12.5 g Al(iC4H9)3 in 90 ml n-heptane, 3.45 g ethyl paratoluate in 120 ml n-heptane, 1.06 g solid product (prepared as indicated in example 4a) in 130 ml n-heptane and 15 NI hydrogen were filled into a stainless steel autoclave with a volume of 30 litres.

Polymerisasjonstemperaturen var 65° C og trykket The polymerization temperature was 65° C. and the pressure

26,5 kg/cm<2>. Etter 5 timer fjernet man propylenoverskuddet, og fikk 1,4 kg polypropylen svarende til et utbytte på 67 600 g polymer/g Ti, med ekstraksjonsrest i kokende heptan lik 80,5 %, volumvekt lik 0,32 kg/l, egenviskositet 2 dl/g og bøyningsstiv-het på 10 200 kg/cm<2>. 26.5 kg/cm<2>. After 5 hours, the excess propylene was removed, and 1.4 kg of polypropylene was obtained, corresponding to a yield of 67,600 g polymer/g Ti, with an extraction residue in boiling heptane equal to 80.5%, volume weight equal to 0.32 kg/l, intrinsic viscosity 2 dl /g and bending stiffness of 10,200 kg/cm<2>.

Eksempel 10 Example 10

Polymerisasjon av propylen i løsningsmiddel Polymerization of propylene in solvent

287 mg fast produkt fremstilt som i eksempel 6a ble fyllt på en autoklav av rustfritt stål med volum 2,5 liter inneholdende 1 liter n-heptan og 1,135 g A1(C2H5)3 forblandet med 533 mg ethylparatoluat. Man utførte polymerisasjonen ved 60° C og et trykk på 5 kg/cm<2> med propylen og hydrogen (1,5 287 mg of solid product prepared as in example 6a was filled into a stainless steel autoclave with a volume of 2.5 liters containing 1 liter of n-heptane and 1.135 g of A1(C2H5)3 premixed with 533 mg of ethyl paratoluate. The polymerization was carried out at 60° C and a pressure of 5 kg/cm<2> with propylene and hydrogen (1.5

vol% i gassfase) i 5 timer. vol% in gas phase) for 5 hours.

Trykket ble holdt konstant ved kontinuerlig innføring av propylen, og etter omsetningen fjernet man oppløsningsmidlet ved avdriving ved damp og fikk 180 g polymer svarende til et utbytte på 31 400 g polypropylen/g Ti. i 5 timer, som hadde en ekstraks jonsrest i. kokende heptan lik 80 % og ien volumvekt lik 0,253 kg/l. The pressure was kept constant by continuous introduction of propylene, and after the reaction the solvent was removed by steam stripping and 180 g of polymer was obtained, corresponding to a yield of 31,400 g polypropylene/g Ti. for 5 hours, which had an extract ion residue in boiling heptane equal to 80% and a volume weight equal to 0.253 kg/l.

Polymerisasjon av propylen i flytende monomer Polymerization of propylene in liquid monomer

10 kg propylen samt 12,5 g Al(C2H^)2 i 90 ml n-heptan, 6,45 g ethylparatoluat i 120 ml n-heptan, 1 g fast produkt fra eksempel 6a, i 130 ml n-heptan og 15 NI hydrogen ble innført på en autoklav av rustfritt stål med volum 30 liter. Polymerisa-sjonstemperature< ,var 65 C og trykket 26,5 kg/cm . Etter 5 timer ble propylenoverskuddet avdrevet, og fikk 1,3 g polypropylen svarende til et utbytte på 65 000 g polymer/g Ti, med ekstraks jonsrest med kokende heptan lik 84 %, volumvekt på 0,27 kg/ liter, egenviskositet lik 2,4 dl/g, smelteindeks lik 3,2 g/10 min og bøyningsstivhet lik 13520 kg/cm . 10 kg propylene and 12.5 g Al(C2H^)2 in 90 ml n-heptane, 6.45 g ethyl paratoluate in 120 ml n-heptane, 1 g solid product from example 6a, in 130 ml n-heptane and 15 NI hydrogen was introduced on a stainless steel autoclave with a volume of 30 litres. The polymerization temperature was 65 C and the pressure 26.5 kg/cm. After 5 hours, the excess propylene was driven off, and 1.3 g of polypropylene was obtained, corresponding to a yield of 65,000 g polymer/g Ti, with an extraction residue with boiling heptane equal to 84%, volume weight of 0.27 kg/liter, intrinsic viscosity equal to 2, 4 dl/g, melting index equal to 3.2 g/10 min and bending stiffness equal to 13520 kg/cm.

Eksempel 11 Example 11

Polymerisasjon av propyle n i løsningsmiddel Polymerization of propylene in solvent

204 mg fast produkt fra eksempel 6a ble fremstilt på en rustfri 2,5-liters autoklav inneholdende 1 liter n-heptan og 1,135 g AlCiC^Hg)^ forblandet med 215 mg ethylparatoluat. Polymerisasjonen ble utført ved 60° C ved et trykk på 5 kg/cm<2>, med propylen og hyrogen (1,5 vol% i gassfase) i 5 timer. Trykket ble holdt konstant ved kontinuerlig innmating av propylen. 204 mg of solid product from Example 6a was prepared in a stainless 2.5-liter autoclave containing 1 liter of n-heptane and 1.135 g of AlCiC^Hg)^ premixed with 215 mg of ethyl paratoluate. The polymerization was carried out at 60° C. at a pressure of 5 kg/cm<2>, with propylene and hydrogen (1.5 vol% in gas phase) for 5 hours. The pressure was kept constant by continuous feeding of propylene.

Etter å ha fjernet oppløsningsmidlet med avdriving med damp fikk man 196 g polymer i et utbytte på 19 400 g polypropylen/g Ti i 5 timer, med ekstraksjonsrest i kokende heptan lik 69,5 %. After removing the solvent by stripping with steam, 196 g of polymer were obtained in a yield of 19,400 g polypropylene/g Ti for 5 hours, with an extraction residue in boiling heptane equal to 69.5%.

Polymerisasjon av propylen i flytende monomer Polymerization of propylene in liquid monomer

10 kg propylen samt 12,5 g AldC^Hg)^ i 90 ml n-heptan, 3,45 g ethylparatoluat i 120 ml n-heptan, 1,04 g fast produkt fremstilt som i eksempel 6a i 90 ml n-heptan og 15 NI hydrogen ble fyllt på en autoklav av rustfritt stål med volum 30 liter. Polymerisasjonstemperaturen var 65° C og trykket 26,5 kg/cm<2>. 10 kg of propylene and 12.5 g of AldC^Hg)^ in 90 ml of n-heptane, 3.45 g of ethyl paratoluate in 120 ml of n-heptane, 1.04 g of solid product prepared as in example 6a in 90 ml of n-heptane and 15 NI hydrogen was filled into a stainless steel autoclave with a volume of 30 litres. The polymerization temperature was 65° C and the pressure 26.5 kg/cm<2>.

Etter 5 timer ble propylenoverskuddet fjernet, man fikk 1,15 kg polypropylen som svarte til et utbytte på 55 300 g polymer/g Ti, med ekstraksjonsrest i kokende heptan lik 76,5 %, volumvekt på 0,30 kg/l, egenviskositet 1,8 dl/g, smelteindeks lik 4 g/10 min og bøyningsstivhet lik 10 460 kg/cm<2>. After 5 hours, the excess propylene was removed, 1.15 kg of polypropylene was obtained, corresponding to a yield of 55,300 g polymer/g Ti, with extraction residue in boiling heptane equal to 76.5%, volume weight of 0.30 kg/l, intrinsic viscosity 1 .8 dl/g, melting index equal to 4 g/10 min and bending stiffness equal to 10 460 kg/cm<2>.

Eksempel 12 Example 12

Polymerisasjon av propylen i oppløsningsmiddel Polymerization of propylene in solvent

246 mg fast produkt fra eksempel 6a ble fyllt på en 2,5 liters autoklav av rustfritt stål inneholdende 1 liter n-heptan og 1,135 g A1(C2H5)3 forblandet med 329 mg ethylanisat. Polymerisasjonen ble utført ved 60° C og ved et trykk på 5 kg/ cm o med propylen og hydrogen (1,5 vol% i gassfase) i 5 timer. 246 mg of solid product from example 6a was filled into a 2.5 liter stainless steel autoclave containing 1 liter of n-heptane and 1.135 g of A1(C2H5)3 premixed with 329 mg of ethyl anisate. The polymerization was carried out at 60° C. and at a pressure of 5 kg/cm o with propylene and hydrogen (1.5 vol% in gas phase) for 5 hours.

Etter avsluttet forsøk ble oppløsningsmidlet fjernet ved avdriving med damp, man fikk 200 g polymer svarende til et utbytte på 41 700 g polypropylen/g Ti i 5 timer, ekstraksjonsrest i kokende heptan lik 71,5 %. After the end of the experiment, the solvent was removed by stripping with steam, 200 g of polymer was obtained corresponding to a yield of 41,700 g polypropylene/g Ti for 5 hours, extraction residue in boiling heptane equal to 71.5%.

Claims (9)

1. Fremgangsmåte for katalytisk polymerisering av propylen i nærvær av katalysator som omfatter reaksjonsprodukter av1. Process for catalytic polymerization of propylene in the presence of catalyst comprising reaction products of A) addisjons- og/eller substitusjonsprodukter av elektrongivende forbindelser med aluminiumalkylforbindelser hvori aluminium-alkylforbindelsene som er kjemisk bundet til den elektrongivende forbindelse, utgjør fra 0,01 til 1 mol pr. mol aluminium-utgangsforbindeIse, med B) produkter omfattende forbindelser og/eller sammensetninger inneholdende magnesium, titan, aluminium og halogen, og hvor atomforholdet halogen/Mg er > 1,0, karakterisert ved at det anvendes en komponent B) som er valgt fra (I) produkter erholdt ved å kontakte ( a^ en titanhalo-genert forbindelse med reaksjonsproduktet mellom (a2) magnesiumforbindelser valgt fra alkoholater av formel XMgOR hvori R er et alkyl-, aryl- eller cycloalkyl-radikal inneholdende fra 1 til 20 carbonatomer, X er et halogenatom eller er R eller RO; Mg-dialkyl- (eller -aryl eller -cycloalkyl) forbindelser av formel RMgR hvori R har den ovenfor angitte betydning; Mg-salter av mettede eller umettede carboxylsyrer; og enolater av magnesium, og (a^) aluminiumhalogenider med formel AlRnX'3_n, hvor R har den ovenfor angitte betydning, X' er et halogenatom og n er et tall fra 0 og 3, men lavere enn 3, eller (II) reaksjonsprodukter av (b^) alkuminiumhalogenider med formel AlR X' , hvor R og X' har de ovenfor angitte m 3-m J 3 betydninger, og m er 0 - 3, med reaksjonsproduktet av magnesiumforbindelser (a2) eller magnesiumhalogenider eller oxyhalogenider (b2) og titanalkoholater (b3), eventuelt i blanding med (b^) aluminiumalkoholater. A) addition and/or substitution products of electron donating compounds with aluminum alkyl compounds in which the aluminum alkyl compounds which are chemically bound to the electron donating compound amount from 0.01 to 1 mol per mol aluminum starting compound, with B) products comprising compounds and/or compositions containing magnesium, titanium, aluminum and halogen, and where the atomic ratio halogen/Mg is > 1.0, characterized in that a component B) is used which is selected from (I) products obtained by contacting (a^ a titanium halogenated compound with the reaction product between (a2) magnesium compounds selected from alcoholates of formula XMgOR in which R is an alkyl, aryl - or cycloalkyl radical containing from 1 to 20 carbon atoms, X is a halogen atom or is R or RO; Mg dialkyl (or -aryl or -cycloalkyl) compounds of the formula RMgR in which R has the above meaning; Mg salts of saturated or unsaturated carboxylic acids; and enolates of magnesium, and (a^) aluminum halides of the formula AlRnX'3_n, where R has the meaning given above, X' is a halogen atom and n is a number between 0 and 3, but less than 3, or (II) reaction products of (b^) aluminum halides with formula AlR X' , where R and X' have those indicated above m 3-m J 3 meanings, and m is 0 - 3, with the reaction product of magnesium compounds (a2) or magnesium halides or oxyhalides (b2) and titanium alcoholates (b3), possibly in mixture with (b^) aluminum alcoholates. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som katalysator A anvendes et addisjonsprodukt av aluminiumtrialkylforbindelser og elektrondonorforbindelser valgt blant estere og diaminer. 2. Process according to claim 1, characterized in that an addition product of aluminum trialkyl compounds and electron donor compounds selected from esters and diamines is used as catalyst A. 3. Fremgangsmåte ifølge krav 1, karakterisert, ved at det som forbindelse (a^) anvendes TiCl^, at det som forbindelse (a2) anvendes et mag-nesiumdialkoholat hvor alkoxygruppene, lineære eller forgrenede, inneholder fra 1 til 10 carbonatomer, og at det som forbindelse (a3) anvendes et aluminiumdialkyldiklorid hvor alkylgruppen har 1-10 carbonatomer. 3. Process according to claim 1, characterized in that as compound (a^) TiCl^ is used, that as compound (a2) a magnesium dialcoholate is used in which the alkoxy groups, linear or branched, contain from 1 to 10 carbon atoms, and that an aluminum dialkyl dichloride is used as compound (a3) where the alkyl group has 1-10 carbon atoms. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at i reaksjonsproduktet BI) ligger Mg/Ti-forholdet mellom 0,5 og 30, fortrinnsvis mellom 1 og 20, og Mg/Al-forholdet mellom 0,5 og 10, fortrinnsvis mellom 0,8 og 3. 4. Method according to claim 3, characterized in that in the reaction product BI) the Mg/Ti ratio is between 0.5 and 30, preferably between 1 and 20, and the Mg/Al ratio is between 0.5 and 10, preferably between 0, 8 and 3. 5. Fremgangsmåte ifølge krav 1, karakterisert ved at det som forbindelse (b^) anvendes et aluminiumalkyldiklorid hvor alkylgruppen inneholder 1-10 carbonatomer og at forbindelsen (a2) er valgt blant magnesiumdialkoholater hvor den lineære eller forgrenede alkoxy-gruppe inneholder 1 - 10 carbonatomer, og blant magnesiumhalogenider og fortrinnsvis magnesiumklorid, og at forbindelsen (b^) er et titantetraalkoholat og forbindelsen (b^) er et aluminium-trialkoholat. 5. Process according to claim 1, characterized in that an aluminum alkyl dichloride is used as compound (b^) where the alkyl group contains 1-10 carbon atoms and that the compound (a2) is selected from among magnesium dialcoholates where the linear or branched alkoxy group contains 1-10 carbon atoms , and among magnesium halides and preferably magnesium chloride, and that the compound (b^) is a titanium tetraalcoholate and the compound (b^) is an aluminum trialcoholate. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at forbindelsen (b^) er valgt blant Ti(0-iC3H7)4, Ti(0-nC3H7)4, Ti (0-iC4Hg)4, Ti(0-nC4H9)4, Ti(0CgH5)4 og Ti20(0-iC3H7)g og forbindelsen (b4) er Al(0-iC4Hg)3. 6. Method according to claim 5, characterized in that the compound (b^) is selected from Ti(0-iC3H7)4, Ti(0-nC3H7)4, Ti (0-iC4Hg)4, Ti(0-nC4H9)4, Ti(0CgH5)4 and Ti2O(0-iC3H7)g and the compound (b4) is Al(0-iC4Hg)3. 7. Fremgangsmåte ifølge krav 5, karakterisert ved at i produkt BII) er Mg/Ti-forholdet mellom 0,5 og 30, fortrinnsvis mellom 0,5 og 20, Mg/Al-forholdet mellom 0,5 og 15, fortrinnsvis mellom 0,8 og 10 og Ti/Al-forholdet (som b4) mellom 0,01 og 2, fortrinnsvis mellom 0,01 og 0,5. 7. Method according to claim 5, characterized in that in product BII) the Mg/Ti ratio is between 0.5 and 30, preferably between 0.5 and 20, the Mg/Al ratio between 0.5 and 15, preferably between 0.8 and 10 and Ti/ The Al ratio (as b4) between 0.01 and 2, preferably between 0.01 and 0.5. 8. Fremgangsmåte ifølge krav 1-7, karakterisert ved at det som Ti-forbindelse i komponent BI) anvendes et kompleks med en Lewis-base. 8. Method according to claims 1-7, characterized in that a complex with a Lewis base is used as the Ti compound in component BI). 9. Fremgangsmåte ifølge krav 1-8, karakterisert ved at A/B-forholdet, nærmere bestemt Al/Ti-forholdet, er fra 10 til 1000.9. Method according to claims 1-8, characterized in that the A/B ratio, more specifically the Al/Ti ratio, is from 10 to 1000.
NO761597A 1975-05-16 1976-05-10 PROCEDURE FOR CATALYTIC POLYMERIZATION OF PROPYL NO150763C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT23396/75A IT1038179B (en) 1975-05-16 1975-05-16 PROCEDURE FOR POLYMERIZATION OF ALPHA OLEFINS WITH AT LEAST THREEATONS OF CARBON

Publications (3)

Publication Number Publication Date
NO761597L NO761597L (en) 1976-11-17
NO150763B true NO150763B (en) 1984-09-03
NO150763C NO150763C (en) 1984-12-12

Family

ID=11206709

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761597A NO150763C (en) 1975-05-16 1976-05-10 PROCEDURE FOR CATALYTIC POLYMERIZATION OF PROPYL

Country Status (19)

Country Link
JP (1) JPS51139887A (en)
AT (1) AT348252B (en)
BE (1) BE841823A (en)
BR (1) BR7603044A (en)
CA (1) CA1068446A (en)
DE (1) DE2620886A1 (en)
DK (1) DK151892C (en)
FR (1) FR2311032A1 (en)
GB (2) GB1538472A (en)
HU (1) HU174358B (en)
IN (1) IN146040B (en)
IT (1) IT1038179B (en)
NL (1) NL7604972A (en)
NO (1) NO150763C (en)
PL (1) PL105364B1 (en)
RO (1) RO85498B (en)
SE (2) SE7605272L (en)
TR (1) TR19114A (en)
ZA (1) ZA762881B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1078995B (en) * 1977-05-24 1985-05-08 Montedison Spa CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
JPS54135886A (en) * 1978-04-14 1979-10-22 Sumitomo Chem Co Ltd Preparation of ethylenic copolymer
NO155245C (en) * 1978-07-24 1987-03-04 Phillips Petroleum Co PROCEDURE FOR THE PREPARATION OF A POLYMERIZATION CATALYST AND APPLICATION OF THE ALKENE POLYMERIZATION CATALYST.
US4324690A (en) 1979-02-15 1982-04-13 Standard Oil Company (Indiana) Alpha-olefin polymerization catalyst
US4277370A (en) 1979-02-15 1981-07-07 Standard Oil Company (Indiana) Alpha-olefin polymerization catalyst
US4347157A (en) 1979-04-25 1982-08-31 Sumitomo Chemical Company, Limited Catalysts for the polymerization of olefins
US4363746A (en) 1979-05-29 1982-12-14 Phillips Petroleum Company Composition of matter and method of preparing same, catalyst, method of producing the catalyst and polymerization process employing the catalyst
US4394291A (en) 1981-03-04 1983-07-19 Phillips Petroleum Company Polyolefin polymerization process and catalyst
AT377625B (en) * 1981-06-29 1985-04-10 Georges A Cournoyer DEVICE FOR TEACHING MUSIC SCREENS AND INTERVALS
JPS58189206A (en) * 1982-04-30 1983-11-04 Chisso Corp Catalytic component for alpha-olefin polymerization
US4529715A (en) * 1983-10-17 1985-07-16 The Dow Chemical Company Catalyst prepared from organomagnesium compound, carbon dioxide, reducing aluminum source, transition metal compound and zinc compound
US4544647A (en) * 1982-07-29 1985-10-01 The Dow Chemical Company Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and transition metal compound
US4426316A (en) 1982-09-10 1984-01-17 The Dow Chemical Company Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and transition metal compound
US4604374A (en) * 1982-09-20 1986-08-05 The Dow Chemical Company Catalyst prepared from organomagnesium compound, epihalohydrin reducing halide source and transition metal compound
US4605715A (en) * 1982-09-20 1986-08-12 The Dow Chemical Company Process for polymerizing olefins in the presence of a catalyst prepared from organomagnesium compound, epihalohydrin reducing halide source and transition metal compound
US4456547A (en) * 1982-10-21 1984-06-26 Fuentes Jr Ricardo Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and complex formed from admixture of a transition metal compound and an organozinc compound
US4661465A (en) * 1985-10-31 1987-04-28 The Dow Chemical Company Method for preparing transition metal component of Ziegler-Natta catalysts
US5114897A (en) * 1990-04-18 1992-05-19 The Dow Chemical Company Catalyst and process for polymerizing olefins
US5045612A (en) * 1990-04-18 1991-09-03 The Dow Chemical Company Catalyst and process for polymerizing olefins
BE1008702A3 (en) * 1994-09-22 1996-07-02 Solvay Process for olefin polymerization.
US6001939A (en) * 1994-09-22 1999-12-14 Solvay Polyolefins Europe-Belgium Process for the polymerization of olefins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136668C (en) * 1969-01-24
FR2093306A6 (en) * 1970-06-09 1972-01-28 Solvay ADVANCED CATALYSTS AND PROCESS FOR THE POLYMERIZATION AND COPOLYMERIZATION OF OLEFINS
NL164867C (en) * 1971-03-11 1981-02-16 Stamicarbon METHOD FOR POLYMERIZING ALFA OLEGINS.
NL160286C (en) * 1971-06-25
BE791676A (en) * 1971-12-08 1973-05-21 Solvay Process for the polymerization of olefins
LU65587A1 (en) * 1972-06-22 1973-12-27
IT969340B (en) * 1972-09-13 1974-03-30 Montedison Spa CATALYSTS FOR POLYMERIZATION OF POLYMER OLEFINS IN SPHERICAL FORM

Also Published As

Publication number Publication date
DK206276A (en) 1976-11-17
CA1068446A (en) 1979-12-18
DK151892C (en) 1988-07-18
SE434515B (en) 1984-07-30
DE2620886A1 (en) 1976-11-25
IT1038179B (en) 1979-11-20
NO150763C (en) 1984-12-12
AU1392176A (en) 1977-11-17
GB1538472A (en) 1979-01-17
AT348252B (en) 1979-02-12
SE7605272L (en) 1976-11-17
SE8001655L (en) 1980-03-04
FR2311032B1 (en) 1980-07-18
TR19114A (en) 1978-05-25
JPS51139887A (en) 1976-12-02
GB1539175A (en) 1979-01-31
NL7604972A (en) 1976-11-18
ATA350576A (en) 1978-06-15
RO85498A (en) 1984-11-25
IN146040B (en) 1978-02-10
BE841823A (en) 1976-11-16
HU174358B (en) 1979-12-28
FR2311032A1 (en) 1976-12-10
PL105364B1 (en) 1979-10-31
BR7603044A (en) 1977-05-31
RO85498B (en) 1984-11-30
JPS5614682B2 (en) 1981-04-06
DK151892B (en) 1988-01-11
NO761597L (en) 1976-11-17
ZA762881B (en) 1977-04-27

Similar Documents

Publication Publication Date Title
NO150763B (en) PROCEDURE FOR CATALYTIC POLYMERIZATION OF PROPYL
EP0206817B1 (en) Catalyst for producing olefin polymers and polymerization process using the catalyst
US4172050A (en) High efficiency titanate catalyst for polymerizing olefins
US4347158A (en) Supported high efficiency polyolefin catalyst component and methods of making and using the same
DK163248B (en) CATALYST FOR POLYMERIZATION OF ALFA OLEFINES AND CATALYST COMPONENT FOR USING A SOLID COMPONENT IN THE PREPARATION OF THIS
NO163332B (en) PROCEDURE FOR THE PREPARATION OF SOLID, FREE-FLOWING HIGH-ACTIVITY POLYMERIZING CATALYST COMPONENTS.
NO810984L (en) PROCEDURE FOR THE PREPARATION OF AN ALKENE POLYMERIZATION CATALYST
NO163779B (en) ETHYLEN COPOLYMES, AND PROCEDURES OF PRODUCING THEREOF.
NO153609B (en) Polymerization catalyst.
US4243552A (en) Polymerization catalyst and process
NO159934B (en) PROCEDURE FOR THE PREPARATION OF A POLYOLEFINE CATALYST AND PROCEDURE FOR THE PREPARATION OF POLYOLEFINES USING THE CATALYST.
CA1113444A (en) Manufacture of catalysts for polymerisation of olefins
US4189553A (en) High efficiency catalyst for polymerizing olefins
EP0115833B1 (en) Polyolefin polymerization process and catalyst
US4209602A (en) Process for the production of polyolefins
US4503159A (en) Polyolefin polymerization process and catalyst
US4422957A (en) Methods of producing polyolefins using supported high efficiency polyolefin catalyst components
EP0007425B1 (en) A process for producing a polymerisation catalyst and use of same for olefin polymerisation
US4208304A (en) Catalyst system for producing ethylene polymers
US4542197A (en) Polymerization catalyst
NO762686L (en)
NO782258L (en) PROCEDURE FOR PREPARING A TICL3 POLYMERIZATION CATALYST
NO166718B (en) PROCEDURE FOR PREPARING A CATALYST FOR USED POLYMERIZATION OF ALKENES.
JPH0655785B2 (en) Method for producing catalyst component for olefin polymerization
JPS634847B2 (en)