NO142582B - MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES - Google Patents

MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES Download PDF

Info

Publication number
NO142582B
NO142582B NO754367A NO754367A NO142582B NO 142582 B NO142582 B NO 142582B NO 754367 A NO754367 A NO 754367A NO 754367 A NO754367 A NO 754367A NO 142582 B NO142582 B NO 142582B
Authority
NO
Norway
Prior art keywords
weight
magnesium alloy
alloys
mechanical properties
yttrium
Prior art date
Application number
NO754367A
Other languages
Norwegian (no)
Other versions
NO142582C (en
NO754367L (en
Inventor
William Unsworth
John Frederick King
Stehpen Lee Bradshaw
Original Assignee
Magnesium Elektron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnesium Elektron Ltd filed Critical Magnesium Elektron Ltd
Publication of NO754367L publication Critical patent/NO754367L/no
Publication of NO142582B publication Critical patent/NO142582B/en
Publication of NO142582C publication Critical patent/NO142582C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Dental Preparations (AREA)
  • Conductive Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Adornments (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Nærværende oppfinnelse vedrører magnesiumlegeringer. The present invention relates to magnesium alloys.

Magnesiumlegeringer har en meget lav vekt sammenlignet med legeringer av andre metaller, og følgelig har magnesiumlegeringer funnet anvendelse spesielt i luftfartsindustrien, hvor legeringer med lav vekt er meget viktig. Magnesium alloys have a very low weight compared to alloys of other metals, and consequently magnesium alloys have found application especially in the aviation industry, where light weight alloys are very important.

Britisk patent nr. 875.929 omhandler magnesiumlegeringer som inneholder sølv og blandinger av sjeldne jordmetaller. Disse legeringer oppviser fordelaktige mekaniske egenskaper, og da spesielt en høy flytegrense. I det nevnte patent er yttrium nevnt som en mulig bestanddel av den sjeldne jordmetall-blandingen, men det er i nevnte patent overhodet ikke sagt noe om at innhold av yttrium har noen spesiell effekt på legeringen. British Patent No. 875,929 deals with magnesium alloys containing silver and mixtures of rare earth metals. These alloys exhibit advantageous mechanical properties, and in particular a high yield strength. In the aforementioned patent, yttrium is mentioned as a possible component of the rare earth metal mixture, but nothing is said in the aforementioned patent at all that the content of yttrium has any special effect on the alloy.

Legeringer i henhold til det ovenfor nevnte patent har blitt anvendt i flyindustri-komponenter, som er gjenstand for relativ høy påkjenning, såsom flykompressor-hus, helikopter-hoveddrevkasser og understell-komponenter. For å erholde ade-kvate mekaniske egenskaper er det nødvendig å gjøre disse legeringer til gjenstand for en to-trinns varmebehandling, som medfører oppløsningsbehandling ved en høy temperatur etterfulgt av bråavkjøling samt utherding ved en lav temperatur for å forbedre de mekaniske egenskapene ved utskillings-herding. Alloys according to the above-mentioned patent have been used in aircraft industry components, which are subject to relatively high stress, such as aircraft compressor housings, helicopter main drive cases and undercarriage components. In order to obtain adequate mechanical properties, it is necessary to subject these alloys to a two-stage heat treatment, which entails solution treatment at a high temperature followed by rapid cooling and quenching at a low temperature to improve the mechanical properties by precipitation hardening .

På denne måte erholdte mekaniske egenskaper holder seg godt for eksponering ved høyere temperaturer opptil 200°C. Ved eksponering for temperaturer over 200°C blir imidlertid de mekaniske egenskapene markant dårligere, og dette faktum be-grenser anvendelsen av slike legeringer i fly og andre maskiner, og da spesielt motorer og drevkasser som arbeider i dette tem-pera turområde . Mechanical properties obtained in this way hold up well for exposure at higher temperatures up to 200°C. When exposed to temperatures above 200°C, however, the mechanical properties become markedly worse, and this fact limits the use of such alloys in aircraft and other machines, and especially engines and gearboxes that work in this temperature range.

Ifølge nærværende oppfinnelse har det blitt funnet at magnesiumlegeringer med er innhold på 2,5 - 7,0 vekt-% yttrium i til-legg til 0,5 - 3,0 vekt-% sjeldne jordmetaller, hvorav neodym utgjør minst 60 vekt-%, samt et innhold på 1,25 - 3,0 vekt-% sølv, i forhold til hittil kjente magnesiumlegeringer, såsom beskrevet i britisk patent nr. 875.929, oppviser følgende for-deler: According to the present invention, it has been found that magnesium alloys with a content of 2.5 - 7.0% by weight yttrium in addition to 0.5 - 3.0% by weight rare earth metals, of which neodymium makes up at least 60% by weight , as well as a content of 1.25 - 3.0 weight-% silver, in relation to previously known magnesium alloys, as described in British patent no. 875,929, show the following advantages:

a) bedre strekkfasthetsegenskaper ved romtemperatur, a) better tensile properties at room temperature,

b) bedre styrkeegenskaper og sigefasthet ved høyere temperaturer såsom 250°C <p>g b) better strength properties and creep resistance at higher temperatures such as 250°C <p>g

c) forbedrede støpeegenskaper. c) improved casting properties.

Man har således kommet frem til magnesiumlegeringer med Magnesium alloys have thus been arrived at

tilfredsstillende egenskaper ved romtemperatur, og som beholder sine fordelaktige egenskaper, i det minste til en viss grad, ved temperaturer i størrelsesorden 250°C. satisfactory properties at room temperature, and which retain their beneficial properties, at least to some extent, at temperatures of the order of 250°C.

Ifølge et aspekt ved nærværende oppfinnelse er det frem-skaffet en magnesiumlegering, som inneholder følgende bestand-deler regne-t i vekt-% med unntakelse for jern og andre forurensninger: According to one aspect of the present invention, a magnesium alloy has been obtained, which contains the following constituents calculated in % by weight with the exception of iron and other impurities:

Ifølge en foretrukket utførelsesform inneholder legeringen fra 3 til 5 vekt-% yttrium og fra 1 til 2,5 vekt-% sjeldne jordmetaller. According to a preferred embodiment, the alloy contains from 3 to 5% by weight of yttrium and from 1 to 2.5% by weight of rare earth metals.

De sjeldne jordmetallene kan til 100% utgjøres av neodym, men da dette materiale er dyrt i ren tilstand foretrekkes det å anvende en blanding av metaller, som iblant er kjent under navnet "didym", som inneholder minst 60 vekt-% neodym og resten bestående av i alt vesentlig andre tunge sjeldne jordmetaller såsom gadolinium. The rare earth metals can be 100% neodymium, but as this material is expensive in its pure state, it is preferred to use a mixture of metals, which is sometimes known under the name "didymium", containing at least 60% by weight neodymium and the rest consisting of essentially other heavy rare earth metals such as gadolinium.

Når det gjelder cerium og lanthan så er det ønskelig at disse er fraværende eller i det minst nærværende i meget små mengder, og følgelig bør innholdet av lanthan og cerium tilsammen i blandingen av sjeldne jordmetaller ikke overstige 25 vekt-%. Man har funnet at nærvær av cerium resulterer i dårlige flyte-grenser og bruddgrenser ved både lave og høye temperaturer. As regards cerium and lanthanum, it is desirable that these are absent or at least present in very small amounts, and consequently the content of lanthanum and cerium together in the mixture of rare earth metals should not exceed 25% by weight. It has been found that the presence of cerium results in poor yield strength and fracture strength at both low and high temperatures.

Et økende sølvinnhold øker omkostningen ved legeringen, men hvis man på den annen side reduserer sølvinnholdet til under 2%, så får man en reduksjon av flytegrensen. Det foretrekkes derfor legeringer som inneholder 2-3% sølv. An increasing silver content increases the cost of the alloy, but if, on the other hand, you reduce the silver content to below 2%, you get a reduction in the yield strength. Alloys containing 2-3% silver are therefore preferred.

Yttrium kan tilsettes til legeringer som ren yttrium, men det foretrekkes å tilsette yttrium som en yttrium- /sjeldne jordmetall-blanding som inneholder minst 60%, fortrinnsvis minst 65 vekt-% yttrium. Yttrium can be added to alloys as pure yttrium, but it is preferred to add yttrium as a yttrium/rare earth mixture containing at least 60%, preferably at least 65% by weight yttrium.

I søkerens norske patentansøkning nr. 754344 har man beskrevet forbedrede magnesiumlegeringer som inneholder 0,5 - 2,1% neodym og 0,3 - 1,9% thorium, hvorved den totale mengden av disse to elementer er fra 1,5 til 2,4%. Man har funnet at innen-for de ovenfor angitte grenser for den totale sammensetning alt eller en del av thoriumet i de nevnte legeringer kan erstattes med en passende mengde yttrium, hvorved man får like gode eller bedre strekkfasthets-egenskaper ved høyere temperaturer. Nærvær av yttrium har videre den fordel at bestandigheten med hensyn til siging ved høyere temperaturer forbedres. In the applicant's Norwegian patent application no. 754344, improved magnesium alloys have been described which contain 0.5 - 2.1% neodymium and 0.3 - 1.9% thorium, whereby the total amount of these two elements is from 1.5 to 2, 4%. It has been found that within the above stated limits for the total composition, all or part of the thorium in the mentioned alloys can be replaced with a suitable amount of yttrium, thereby obtaining equally good or better tensile strength properties at higher temperatures. The presence of yttrium also has the advantage that the resistance to seepage at higher temperatures is improved.

Man ønsker normalt at legeringen inneholder opptil 1% zirkonium som en kornforfiner. Et zirkoniuminnhold på minst 0,4% foretrekkes. En del av zirkoniumet erstattes med opptil 0,2% mangan, men i dette tilfelle er mengdene av zirkonium og mangan begrenset av deres gjensidige løselighet. You normally want the alloy to contain up to 1% zirconium as a grain refiner. A zirconium content of at least 0.4% is preferred. Part of the zirconium is replaced by up to 0.2% manganese, but in this case the amounts of zirconium and manganese are limited by their mutual solubility.

De ovenfor nevnte øvrige elementer (sink, kadmium, litium, kalsium, gallium, indium, thallium, bly og vismut) kan forekomme i de ovenfor nevnte mengder, og disse elementer forstyrrer ikke virkningen av de andre bestanddelene. The other elements mentioned above (zinc, cadmium, lithium, calcium, gallium, indium, thallium, lead and bismuth) can occur in the amounts mentioned above, and these elements do not interfere with the effect of the other components.

Varmebehandling kreves normalt for å erholde optimale mekaniske egenskaper i disse legeringer. Denne behandling om-fatter en høy-temperatur-gløding ved en temperatur fra 450^C til solidus -temperaturen for legeringen i en tid som er tilstrekke-lig for å erholde oppløsning, hvilken tid vanligvis er 2 timer. Deretter foretas bråavkjøling samt utherding ved en lav temperatur, såsom fra 100° til 350°C i minst en halv time. Typiske varmebehandlingsbetingelser er 8 timer ved 520° etterfulgt av utherding ved 200°C i 16 timer. Heat treatment is normally required to obtain optimum mechanical properties in these alloys. This treatment comprises a high-temperature annealing at a temperature from 450°C to the solidus temperature of the alloy for a time sufficient to obtain dissolution, which time is usually 2 hours. Then rapid cooling and curing at a low temperature, such as from 100° to 350°C for at least half an hour, is carried out. Typical heat treatment conditions are 8 hours at 520° followed by quenching at 200°C for 16 hours.

Alternative varmebehandlings-betingelser er initial-opp-løsnings-gløding ved 480°C i 8 timer, etterfulgt av videre opp-løsnings-gløding ved 520°C i 4 timer samt utherding i 8 timer ved 250°C. Alternative heat treatment conditions are initial solution annealing at 480°C for 8 hours, followed by further solution annealing at 520°C for 4 hours and quenching for 8 hours at 250°C.

Legeringens solidus-temperatur varierer ifølge legeringens eksakte sammensetning, og faller markant ved yttriuminnhold på over 6%. Temperaturen ved oppløsningsglødingen kan da måtte senkes tilsvarende. The alloy's solidus temperature varies according to the alloy's exact composition, and falls markedly at yttrium content of more than 6%. The temperature during solution annealing may then have to be lowered accordingly.

Legeringer ifølge nærværende oppfinnelse skal i det føl-gendes beskrives ved hjelp av nedenstående eksempler. Alloys according to the present invention will be described in the following with the help of the following examples.

Eksempler Examples

Legeringer med sammensetninger ifølge nedenstående tabell ble fremstilt og støpt for fremstilling av prøvestykker ved hjelp av en konvensjonell metode. Alloys with compositions according to the table below were prepared and cast for the production of test pieces using a conventional method.

Prøvestykkene ble deretter oppløsnings-glødet i 8 timer ved 520° eller 525°C, etterfulgt av bråavkjøling samt utherding The test pieces were then solution annealed for 8 hours at 520° or 525°C, followed by quenching and quenching

i 16 timer ved 200°C. for 16 hours at 200°C.

Flytegrensen, strekkf asthete.n og bruddforlengelsen av prøvene ble målt ved romtemperatur, og ved 250°C i henhold til British Standard 3688. Resultatene fremgår av tabellen. The yield strength, tensile strength and elongation at break of the samples were measured at room temperature and at 250°C in accordance with British Standard 3688. The results appear in the table.

Man ser av disse resultater at høytemperatur-egenskapene til yttrium-holdige legeringer er betydelig bedre enn egenskapene til lignende legeringer som ikke inneholder yttrium. It can be seen from these results that the high-temperature properties of yttrium-containing alloys are significantly better than the properties of similar alloys that do not contain yttrium.

De samme forsøk ble foretatt med en magnesiumlegering The same experiments were carried out with a magnesium alloy

som inneholdt 2,09 vekt-% Ag, 3,04 vekt-% Y og 0,52 vekt-% Zr men ikke noe neodym. Flytegrensen, strekkfasthet og bruddfor- which contained 2.09 wt% Ag, 3.04 wt% Y and 0.52 wt% Zr but no neodymium. The yield strength, tensile strength and fracture

o 2 2 o 2 2

lengelsen ved 250 C var hhv. 107 N/mm , 134 N/mm og 1%. Disse verdier er meget lavere enn de man fikk i forbindelse med neodym-holdige legeringer. the elongation at 250 C was respectively 107 N/mm, 134 N/mm and 1%. These values are much lower than those obtained in connection with neodymium-containing alloys.

For å vurdere sigeegenskapene til legeringene, ifølge nærværende oppfinnelse ble legeringer med omtrent følgende sammensetning undersøkt med hensyn til siging ifølge British Standard 3500 ved 250°C, og resultatene gis nedenfor. In order to evaluate the seepage properties of the alloys, according to the present invention, alloys of approximately the following composition were examined with regard to seepage according to British Standard 3500 at 250°C, and the results are given below.

For å anskueliggjøre effekten av zirkonium på såvel korn-størrelse som mekaniske egenskaper ble det utført en rekke for-søk med legeringer som inneholdt relativt små eller ubetydelige mengder Zr og 5 - 7 vekt-% hhv. 0 vekt-% Y. In order to visualize the effect of zirconium on both grain size and mechanical properties, a number of tests were carried out with alloys containing relatively small or negligible amounts of Zr and 5 - 7% by weight respectively. 0 wt% Y.

Nedenstående tabeller viser resultatene av forsøk som er utført med legeringer som er varmebehandlet på samme måte som tidligere angitt. De mekaniske egenskapene er testet ved henholds-vis romtemperatur og 250°C. De sjeldne jordmetallene inneholder minst 6 0 vekt-% neodym. The tables below show the results of tests carried out with alloys that have been heat treated in the same way as previously indicated. The mechanical properties have been tested at room temperature and 250°C respectively. The rare earth metals contain at least 60% by weight of neodymium.

Av tabellene ses at mens en legering som ikke inneholdt yttrium samt en ubetydelig mengde zirkonium resulterte i stor kornstørrelse og relativt dårlige mekaniske egenskaper, så oppviser legeringer som inneholder 5 eller 7 vekt-% yttrium og ikke noe zirkonium gode mekaniske genskaper og liten kornstørrelse. Således er det klart at yttrium alene har en kornforfinende effekt, slik at tilsetning av zirkonium for å avstedkomme korn-forfining ikke er nødvendig. From the tables it can be seen that while an alloy containing no yttrium and an insignificant amount of zirconium resulted in a large grain size and relatively poor mechanical properties, alloys containing 5 or 7% by weight of yttrium and no zirconium show good mechanical properties and small grain size. Thus, it is clear that yttrium alone has a grain-refining effect, so that the addition of zirconium to bring about grain-refining is not necessary.

Claims (6)

1. Magnesiumlegering med spesielt gode mekaniske egenskaper ved høyere temperaturer og således særlig egnet som kon-struksjonsmateriale i f.eks. luftfartsindustrien, karakterisert ved at den inneholder følgende bestand-deler regnet i vekt-% med unntakelse av forurensninger: og at den eventuelt befinner seg i en herdet tilstand som av-stedkommes ved oppløsningsgløding med etterfølgende utherding.1. Magnesium alloy with particularly good mechanical properties at higher temperatures and thus particularly suitable as a construction material in e.g. the aviation industry, characterized by the fact that it contains the following components calculated in % by weight with the exception of pollutants: and that it is possibly in a hardened state which is obtained by solution annealing with subsequent quenching. 2. Magnesiumlegering ifølge krav 1, karakterisert ved at den inneholder fra 3 til 5 vekt-% yttrium, og fra 1 til 2,5 vekt-% sjeldne jordmetaller.2. Magnesium alloy according to claim 1, characterized in that it contains from 3 to 5% by weight of yttrium, and from 1 to 2.5% by weight of rare earth metals. 3. Magnesiumlegering ifølge krav 1 eller 2, karakterisert ved at den inneholder minst 0,4 vekt-% zirkonium.3. Magnesium alloy according to claim 1 or 2, characterized in that it contains at least 0.4% by weight of zirconium. 4. Magnesiumlegering ifølge ett av de foregående krav, karakterisert ved at den inneholder opp til 0,2% mangan, hvorved den maksimale og tillatte mengde mangan er begrenset av dets gjensidige løselighet med eventuell forekomm-ende zirkonium.4. Magnesium alloy according to one of the preceding claims, characterized in that it contains up to 0.2% manganese, whereby the maximum and permitted amount of manganese is limited by its mutual solubility with any zirconium present. 5. Magnesiumlegeringer ifølge ett av de foregående krav, karakterisert ved at den inneholder 2 til 3 vekt-% sølv.5. Magnesium alloys according to one of the preceding claims, characterized in that it contains 2 to 3% by weight of silver. 6. Magnesiumlegering ifølge ett av de foregående krav, karakterisert ved at de sjeldne jordmetaller ikke inneholder mer enn 25 vekt-% cerium og lanthan tilsammen.6. Magnesium alloy according to one of the preceding claims, characterized in that the rare earth metals do not contain more than 25% by weight of cerium and lanthanum together.
NO754367A 1974-12-30 1975-12-23 MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES NO142582C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5602174A GB1463608A (en) 1974-12-30 1974-12-30 Magnesium alloys

Publications (3)

Publication Number Publication Date
NO754367L NO754367L (en) 1976-07-01
NO142582B true NO142582B (en) 1980-06-02
NO142582C NO142582C (en) 1980-09-10

Family

ID=10475539

Family Applications (3)

Application Number Title Priority Date Filing Date
NO754345A NO142581C (en) 1974-12-30 1975-12-22 APPLICATION OF A MAGNESIUM ALLOY TO COMPONENTS WHICH HAVE GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES
NO754344A NO142580C (en) 1974-12-30 1975-12-22 SUSTAINABLE MAGNESIUM ALOYES AND PROCEDURES IN THE PREPARATION OF THIS.
NO754367A NO142582C (en) 1974-12-30 1975-12-23 MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES

Family Applications Before (2)

Application Number Title Priority Date Filing Date
NO754345A NO142581C (en) 1974-12-30 1975-12-22 APPLICATION OF A MAGNESIUM ALLOY TO COMPONENTS WHICH HAVE GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES
NO754344A NO142580C (en) 1974-12-30 1975-12-22 SUSTAINABLE MAGNESIUM ALOYES AND PROCEDURES IN THE PREPARATION OF THIS.

Country Status (14)

Country Link
JP (3) JPS5856742B2 (en)
AU (2) AU507250B2 (en)
BE (3) BE837169A (en)
CA (3) CA1047282A (en)
CH (3) CH611650A5 (en)
DE (3) DE2558519C2 (en)
FR (3) FR2296697A1 (en)
GB (1) GB1463608A (en)
IL (3) IL48763A (en)
IN (3) IN155906B (en)
IT (3) IT1052037B (en)
NL (3) NL7515190A (en)
NO (3) NO142581C (en)
SE (3) SE448241B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240872U (en) * 1985-08-27 1987-03-11
JPS63174477U (en) * 1987-01-21 1988-11-11
DE10003970B4 (en) * 2000-01-25 2005-09-22 Technische Universität Clausthal Process for producing magnesium alloys having a superplastic microstructure
JP3592310B2 (en) 2001-06-05 2004-11-24 住友電工スチールワイヤー株式会社 Magnesium-based alloy wire and method of manufacturing the same
AUPS311202A0 (en) * 2002-06-21 2002-07-18 Cast Centre Pty Ltd Creep resistant magnesium alloy
WO2007139438A2 (en) * 2006-05-26 2007-12-06 Obschestvo S Ogranichennoi Otvetstvennostuy 'vniibt-Burovoy Instrument' Worm gerotor pump
CN102057068B (en) * 2008-06-06 2012-08-29 斯恩蒂斯有限公司 Resorbable magnesium alloy
DE102010008393A1 (en) 2010-02-10 2011-10-06 Technische Universität Dresden Substrate for soil improvement with water-retaining property, process for its preparation and its use
GB201413327D0 (en) 2014-07-28 2014-09-10 Magnesium Elektron Ltd Corrodible downhole article
GB201700714D0 (en) 2017-01-16 2017-03-01 Magnesium Elektron Ltd Corrodible downhole article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1243398B (en) * 1958-05-16 1967-06-29 Magnesium Elektron Ltd Cast or wrought magnesium alloy containing rare earth metals

Also Published As

Publication number Publication date
FR2296698A1 (en) 1976-07-30
SE421634B (en) 1982-01-18
IN142860B (en) 1977-09-03
DE2558519A1 (en) 1976-07-08
NO754344L (en) 1976-07-01
NO142582C (en) 1980-09-10
DE2558915C2 (en) 1984-06-14
JPS5918457B2 (en) 1984-04-27
JPS5192706A (en) 1976-08-14
NL7515191A (en) 1976-07-02
BE837171A (en) 1976-04-16
IL48762A (en) 1978-12-17
FR2296697B1 (en) 1981-08-28
CA1053484A (en) 1979-05-01
JPS594497B2 (en) 1984-01-30
NO142581B (en) 1980-06-02
FR2296698B1 (en) 1979-07-13
NL7515192A (en) 1976-07-02
FR2296696B1 (en) 1981-08-28
FR2296696A1 (en) 1976-07-30
SE7514711L (en) 1976-07-01
CA1066923A (en) 1979-11-27
SE7514710L (en) 1976-07-01
AU8791875A (en) 1977-07-07
AU500182B2 (en) 1979-05-10
IL48763A (en) 1978-07-31
BE837169A (en) 1976-04-16
IT1052036B (en) 1981-06-20
SE7514709L (en) 1976-07-01
DE2558545C2 (en) 1986-03-20
NO142581C (en) 1980-09-10
NO142580C (en) 1980-09-10
AU8781475A (en) 1977-06-30
JPS5856742B2 (en) 1983-12-16
FR2296697A1 (en) 1976-07-30
GB1463608A (en) 1977-02-02
DE2558545A1 (en) 1976-07-08
IL48761A (en) 1978-07-31
IN155906B (en) 1985-03-23
NL7515190A (en) 1976-07-02
CH608832A5 (en) 1979-01-31
IT1052037B (en) 1981-06-20
NO142580B (en) 1980-06-02
SE448241B (en) 1987-02-02
CH608833A5 (en) 1979-01-31
JPS5192708A (en) 1976-08-14
CA1047282A (en) 1979-01-30
IL48762A0 (en) 1976-02-29
IT1052035B (en) 1981-06-20
JPS5192707A (en) 1976-08-14
IN143219B (en) 1977-10-15
NO754367L (en) 1976-07-01
NO754345L (en) 1976-07-01
IL48763A0 (en) 1976-02-29
SE421635B (en) 1982-01-18
BE837170A (en) 1976-04-16
AU507250B2 (en) 1980-02-07
CH611650A5 (en) 1979-06-15
AU8781575A (en) 1977-06-30
IL48761A0 (en) 1976-02-29
DE2558915A1 (en) 1976-07-08
DE2558519C2 (en) 1986-03-20

Similar Documents

Publication Publication Date Title
US2915391A (en) Aluminum base alloy
NO142582B (en) MAGNESIUM ALLOY WITH GOOD MECHANICAL PROPERTIES AT HIGHER TEMPERATURES
NO161866B (en) ALUMINUM ALLOYS.
US3151981A (en) Nickel-chromium-cobalt alloy
DE2658187A1 (en) MAGNESIUM ALLOYS
Aoki et al. The relation between the defect hardening and substitutional solid solution hardening in an intermetallic compound Ni3Al
US2459492A (en) Aluminum copper alloy
US3833363A (en) Titanium-base alloy and method of improving creep properties
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
US3892565A (en) Magnesium alloy for die casting
US3378368A (en) Titanium-base alloys
US4149882A (en) Magnesium alloys
GB787665A (en) Improvements relating to aluminium-base alloys
US2837422A (en) Addition agents for the treatment of molten cast iron
US4168161A (en) Magnesium alloys
JPH0432140B2 (en)
DE1284632B (en) Use of an Al-Si-Ni cast alloy
GB2095288A (en) Magnesium alloys
US3157496A (en) Magnesium base alloy containing small amounts of rare earth metal
US3107999A (en) Creep-resistant nickel-chromiumcobalt alloy
US4071359A (en) Copper base alloys
US3092492A (en) Magnesium-base alloy
US2983602A (en) Cobalt alloys
SU331110A1 (en) ALLOY BASED ON ALUMINUM
JPH07138689A (en) Mg alloy excellent in high temperature strength