NO135969B - - Google Patents

Download PDF

Info

Publication number
NO135969B
NO135969B NO740817A NO740817A NO135969B NO 135969 B NO135969 B NO 135969B NO 740817 A NO740817 A NO 740817A NO 740817 A NO740817 A NO 740817A NO 135969 B NO135969 B NO 135969B
Authority
NO
Norway
Prior art keywords
gas
cooling
grinding
gas flow
mill
Prior art date
Application number
NO740817A
Other languages
Norwegian (no)
Other versions
NO135969C (en
NO740817L (en
Inventor
H Meinass
Original Assignee
Linde Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Ag filed Critical Linde Ag
Publication of NO740817L publication Critical patent/NO740817L/en
Publication of NO135969B publication Critical patent/NO135969B/no
Publication of NO135969C publication Critical patent/NO135969C/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C19/186Use of cold or heat for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0404Disintegrating plastics, e.g. by milling to powder
    • B29B17/0408Disintegrating plastics, e.g. by milling to powder using cryogenic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S241/00Solid material comminution or disintegration
    • Y10S241/37Cryogenic cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

Oppfinnelsen angår en fremgangsmåte ved nedmaling av materialer ved lave temperaturer under anvendelse av en kjølegass-strøm og en transportørgasstrøm, idet kjølegasstrømmen avkjøler innkommende malegods som derefter kommer inn i en mølle, mens transportgasstrømmen ledes inn i møllen. The invention relates to a method for grinding down materials at low temperatures using a cooling gas flow and a conveyor gas flow, the cooling gas flow cooling incoming grinding material which then enters a mill, while the transport gas flow is led into the mill.

Ved kjente nedmalingsprosesser ved lav temperatur avkjøles malegodset med en gasstrøm, f.eks. en nitrogenstrøm, som oppdeles i en kjølegasstrøm og en transportga s strøm,. idet kjølegasstrømmen strømmer gjennom malegodset i en kjølesjakt mens transportgass-strømmen ledes inn i møllen. En del av den oppvarmede kjølegass som forlater kjølesjakten, kan sammen med en del av transportgassen som er blitt separert fra produktet, tilføres en vifte, igjen av-kjøles ved innsprøyting av flytende gass og oppdeles i de to nevnte strømmer. In known low-temperature paint-down processes, the paint material is cooled with a gas stream, e.g. a nitrogen flow, which is divided into a cooling gas flow and a transport gas flow. as the cooling gas flow flows through the grinding material in a cooling shaft while the transport gas flow is led into the mill. Part of the heated cooling gas that leaves the cooling shaft, together with part of the transport gas that has been separated from the product, can be supplied to a fan, cooled again by injection of liquid gas and divided into the two streams mentioned.

Denne prosess er imidlertid beheftet med den vesentlige This process is, however, affected by the essential

ulempe at den er sterkt uøkonomisk. De ofte meget lave temperaturer som er nødvendige for f.eks. i tilstrekkelig grad å kunne nedmale termoplaster, betinger en stor mengde kjølegass og derved høy energiinnsats. disadvantage is that it is highly uneconomical. The often very low temperatures that are necessary for e.g. to a sufficient extent to be able to grind down thermoplastics requires a large amount of cooling gas and thereby a high energy input.

Det tas ved oppfinnelsen sikte på å tilveiebringe en ned-malingsprosess ved lav temperatur som muliggjør et vesentlig lavere gassforbruk under erholdelse av en samtidig optimal av-kjøling av malegodset. The aim of the invention is to provide a grinding process at a low temperature which enables a significantly lower gas consumption while obtaining a simultaneous optimal cooling of the grinding material.

Dette problem løses ifølge oppfinnelsen ved at begge gass-strømmer i maleanlegget føres med et trykk som er lavere enn atmosfæretrykk. This problem is solved according to the invention by both gas streams in the grinding plant being carried at a pressure which is lower than atmospheric pressure.

Oppfinnelsen er basert på den oppdagelse at ved de kjente nedmalingsprosesser ved lav temperatur forbrukes den alt vesentlige del av kjølemidlets, f.eks. gassformig nitrogens, kulde av gass-friksjonen. Oppdelingen av den disponible kulde vil fremgå av den følgende tabell: The invention is based on the discovery that in the known grinding-down processes at low temperature, the all-important part of the coolant, e.g. gaseous nitrogen, cold by gas friction. The breakdown of the available cold will appear from the following table:

Ved turbulent strømning i møllen vil derved ved konstant temperatur og konstant hastighet den på grunn av friksjonen for-brukte ytelse være proporsjonal med gasstettheten og denne igjen med trykket, som følger: In the case of turbulent flow in the mill, at constant temperature and constant speed, the performance consumed due to friction will be proportional to the gas density and this in turn to the pressure, as follows:

Ytelse proporsjonal med gasstetthet proporsjonal med Performance proportional to gas density proportional to

absolutt trykk absolute pressure

eller or

ytelse proporsjonal med absolutt trykk. performance proportional to absolute pressure.

Derav lar det seg erkjenne at de på grunn av den turbulente strømning utviklede friksjonskrefter lar seg redusere i samme grad sdm trykket. Dette innebærer at mindre kulde og dermed mindre gass er nødvendig, og dette fører til en ytterligere besparelse av elektrisk energi. Det har hittil ikke kunnet unngås at en vesentlig andel av den energi som tilføres til nedmalingsapparaturén, forbrukes for gasstransporten i møllen. Ved hjelp av trykk-senkningen fjernes i det vesentlige fullstendig årsaken til denne ulempe, dvs. at gasstettheten tiltar med synkende temperatur. From this it can be recognized that the frictional forces developed due to the turbulent flow can be reduced to the same extent as the sdm pressure. This means that less cold and thus less gas is needed, and this leads to a further saving of electrical energy. Up until now, it has not been possible to avoid that a significant proportion of the energy supplied to the grinding equipment is consumed for the gas transport in the mill. By means of the pressure reduction, the cause of this disadvantage is essentially completely removed, i.e. that the gas density increases with decreasing temperature.

Dessuten oppnås en bedre nedmalingseffekt da malegodsets kinetiske energi vil absorberes mindre sterkt av den omgivende gass. In addition, a better grinding effect is achieved as the kinetic energy of the grinding material will be absorbed less strongly by the surrounding gas.

Undertrykket tilveiebringes fortrinnsvis derved at en kompressor benyttes for å presse en del av gassen ut i atmosfæren. Dersom denne kompressor fordelaktig innstilles slik at undertrykket blir på 0,1-0,4 bar, fortrinnsvis 0,2 bar, vil, forutsatt et hittil anvendt trykk på ca. 1 bar, gassfriksjonens kuldeandel reduseres fra ca. 80% til 16%, dvs. til 1/5, på grunn av den The negative pressure is preferably provided by a compressor being used to push part of the gas out into the atmosphere. If this compressor is advantageously set so that the negative pressure is 0.1-0.4 bar, preferably 0.2 bar, assuming a previously used pressure of approx. 1 bar, the cooling part of the gas friction is reduced from approx. 80% to 16%, i.e. to 1/5, because of it

proporsjonale sammenheng mellom ytelse og trykk. proportional relationship between performance and pressure.

Fortrinnsvis oppvarmes det malte gods i motstrøm til den kjølegasstrøm som forlater nedmalingsanleggets kjølesjakt. Derved tar kjølegassen igjen opp en del av den til malegodset avgitte kulde, og kuldetapet via malegodset blir lavere, dvs. at den termiske virkningsgrad forbedres. Dessuten unngås på grunn av gjenoppvarmingen en isdannelse i det nedmalte gods som følge av fuktighetsinnholdet i atmosfæren. For denne varmeoverføring er et apparat spesielt egnet, hvor oppvarmingen av det nedmalte gods finner sted i kaskadelignende anordnede sykloner og hvor gassen som forlater syklonene, avkjøles ved innsprøyting av flytende gass og blandes med kjøle- og/eller transportgasstrømmen. Preferably, the milled goods are heated in countercurrent to the cooling gas flow that leaves the cooling shaft of the grinding plant. Thereby, the cooling gas again takes up part of the cold given off to the grinding material, and the cold loss via the grinding material is lower, i.e. the thermal efficiency is improved. Furthermore, because of the reheating, the formation of ice in the ground goods as a result of the moisture content in the atmosphere is avoided. For this heat transfer, an apparatus is particularly suitable, where the heating of the ground goods takes place in cascade-like arranged cyclones and where the gas leaving the cyclones is cooled by injecting liquefied gas and mixed with the cooling and/or transport gas stream.

For å unngå at luft og dermed fuktighet skal trenge inn i anlegget er det dessuten fordelaktig at en sperregass mot atmosfæren ledes til ikke fullstendig forseglbare deler av anlegget. Det er spesielt gunstig å lede en sperregass til innløpet og ut-løpet for malegodset. In order to prevent air and thus moisture from entering the system, it is also advantageous that a barrier gas against the atmosphere is directed to parts of the system that cannot be completely sealed. It is particularly advantageous to lead a barrier gas to the inlet and outlet for the grinding material.

Dette kan med fordel utføres ved at det ved malegodsinnløpet anvendes en kald sperregass og ved malegodsutløpet en varm sperregass. Den kalde sperregass kan for dette formål tas fra gassfasen i en lagringsbeholder for flytende gass, mens en del av de gasser som fra kjølesjakten skal presses ut i atmosfæren, kan anvendes som varm sperregass for malegodsutløpet. This can be advantageously carried out by using a cold barrier gas at the material inlet and a hot barrier gas at the outlet. For this purpose, the cold barrier gas can be taken from the gas phase in a storage container for liquefied gas, while part of the gases that are to be pushed out into the atmosphere from the cooling shaft can be used as hot barrier gas for the grinding stock outlet.

Dessuten er det også hva gjelder kuldetapene sterkt fordelaktig å isolere samtlige gassgjennomstrømte deler av anlegget som har en temperatur under omgivelsestemperaturen, mot kulde. In addition, in terms of the cold losses, it is also highly advantageous to insulate all parts of the plant through which gas flows, which have a temperature below the ambient temperature, against the cold.

Et apparat for utførelse av den foreliggende fremgangsmåte består i det vesentlige av en ved utløpet fra en kjølesjakt anordnet mølle, hvortil minst en varmeoverføringsinnretning er tilkoblet som via et filter står. i forbindelse med et injektorblandeapparat og dessuten med et rørledningssystem som omfatter minst to kompressorer. An apparatus for carrying out the present method essentially consists of a mill arranged at the outlet from a cooling shaft, to which at least one heat transfer device is connected via a filter. in connection with an injector mixer and also with a pipeline system comprising at least two compressors.

For å opprettholde det nødvendige undertrykk i nedmalingsanlegget og de to sirkulerende strømmer av kjøle- og transport-gass er det gunstig å anordne to kompressorer, hvorav én i en ledning til nedmalingsanlegget og den annen i en ledning for ut-slipping av gass i atmosfæren. In order to maintain the necessary negative pressure in the paint down plant and the two circulating streams of cooling and transport gas, it is advantageous to arrange two compressors, one of which in a line to the paint down plant and the other in a line for releasing gas into the atmosphere.

For oppvarming av det malte gods hhv. for avkjøling av gassen fra kjølesjakten består fortrinnsvis varmeoverføringsinn-retningen av kaskadelignende anordnede sykloner. For heating the ground goods or for cooling the gas from the cooling shaft, the heat transfer device preferably consists of cascade-like arranged cyclones.

For ytterligere avkjøling av gassene som forlater syklonene og som i et filter er blitt fullstendig befridd for malegods, anvendes et injektorblandeapparat som via en rørledning står i forbindelse med en lagringsbeholder for flytende gass. Gassfasen i denne lagringsbeholder står via flere rørledninger i forbindelse med alle deler av anlegget som ikke fullstendig lar seg forsegle, først og fremst med malegodsinnløpet og -utløpet. For further cooling of the gases which leave the cyclones and which have been completely freed of grinding material in a filter, an injector mixing device is used which is connected via a pipeline to a storage container for liquid gas. The gas phase in this storage container is via several pipelines in connection with all parts of the plant that cannot be completely sealed, primarily with the grinding material inlet and outlet.

Ytterligere enkeltheter ved den foreliggende fremgangsmåte Further details of the present method

vil bli beskrevet i forbindelse med tegningen. will be described in connection with the drawing.

Det fremgår av tegningen at malegodset tilføres til en trakt-formig beholder 1 og at det fra denne via en skovlhjulsluse 2 kommer inn i en mellombeholder 3 og derfra via en ytterligere skovlhjulsluse 4 inn i en kjølesjakt 5, I denne avkjøles malegodset It is clear from the drawing that the grinding material is supplied to a funnel-shaped container 1 and that from this via a paddle wheel sluice 2 it enters an intermediate container 3 and from there via a further paddle wheel sluice 4 into a cooling shaft 5, In this the grinding material is cooled

i motstrøm til en kjølegass som via en ledning 9 kommer inn i kjølesjakten 5 ved dens nedre ende, og ledes via en skovlhjulsluse in countercurrent to a cooling gas which via a line 9 enters the cooling shaft 5 at its lower end, and is led via a paddle wheel lock

6 inn i en mølle 7 som transportgassen strømmer inn i via en ledning 8. Efter nedmaling i møllen 7 kommer det malte gods inn 6 into a mill 7 into which the transport gas flows via a line 8. After grinding down in the mill 7, the milled goods enter

i en syklon 10 hvori det befris for transportgassen. Efter en skovlhjulsluse 11 strømmer det malte gods gjennom tre ytterligere sykloner 14, 15 og 16 som er skilt fra hverandre ved hjelp av skovlhjulsluser 12 og 13, og forlater til slutt anlegget via en skovlhjulsluse 17, en mellombeholder 18 og en skovlhjulsluse 19. in a cyclone 10 in which it is freed from the transport gas. After a paddle wheel sluice 11, the ground material flows through three further cyclones 14, 15 and 16 which are separated from each other by means of paddle wheel sluices 12 and 13, and finally leaves the plant via a paddle wheel sluice 17, an intermediate container 18 and a paddle wheel sluice 19.

Den varme kjølegass som forlater kjølesjakten 5 via en ledning 2 5 og som har en temperatur litt under temperaturen for det tilførte malegods, oppdeles i to strømmer. En første delstrøm presses via en ventil 38 og en ledning 39 ut i atmosfæren ved hjelp av en kompressor 26 som opprettholder et undertrykk på 0,2 bar inne i kaldnedmalingsanlegget. Den annen delstrøm kommer via en ledning 27 inn i syklonen 16, strømmer derefter gjennom syklonene 15 og 14 hvorved den igjen tar opp fra det malte gods en del av den kulde som den i kjølesjakten 5 har avgitt til malegodset som derved oppvarmes til nær omgivelsestemperatur, hvorefter den føres sammen med transportgasstrømmen som forlater syklonen 10. Denne gasstrøm befris fullstendig for medrevet malegods i et filter 20 The hot cooling gas which leaves the cooling shaft 5 via a line 25 and which has a temperature slightly below the temperature of the supplied grinding material is divided into two streams. A first partial flow is pushed via a valve 38 and a line 39 into the atmosphere by means of a compressor 26 which maintains a negative pressure of 0.2 bar inside the cold grinding system. The other partial flow enters the cyclone 16 via a line 27, then flows through the cyclones 15 and 14 whereby it again takes up from the milled goods part of the cold that it has given off in the cooling shaft 5 to the milled goods, which is thereby heated to close to ambient temperature, after which it is fed together with the transport gas stream leaving the cyclone 10. This gas stream is completely freed of entrained grinding material in a filter 20

og avkjøles i et injektorblandeapparat 22 med flytende gass som sprøytes inn fra ledningen 21. Den således avkjølte gass and is cooled in an injector mixing device 22 with liquid gas that is injected from line 21. The thus cooled gas

komprimeres i en kompressor 23 for utjevning av strømningstapene i anlegget og oppdeles derefter ved maletemperatur i en kjølegass-strøm 9 og en transportgasstrøm 8. is compressed in a compressor 23 to equalize the flow losses in the plant and is then divided at grinding temperature into a cooling gas stream 9 and a transport gas stream 8.

Den for avkjøling av gassen nødvendige flytende gass tas fra en lagringsbeholder 41 via ledningen 21. Fra lagringsbe-holderens 41 gassfase strømmer kald sperregass via en ledning 24 og en samleledning 28 via en ledning 29 inn i mellombeholderen 3 ved malegodsinnløpet, og via ledningene 30-37 til andre deler av anlegget som ikke fullstendig lar seg forsegle, som skovlhjul-slusene 4, 6, 11, 12, 13 og 14, og dessuten til møllens 7 og kompressorens 23 pakninger. Efter kompressoren 26 avgrenes varm gass fra ledningen 3 9 til en ledning 40 og ledes som sperregass inn i mellombeholderen 18 ved malegodsutløpet. The liquefied gas required for cooling the gas is taken from a storage container 41 via the line 21. From the gas phase of the storage container 41, cold barrier gas flows via a line 24 and a collecting line 28 via a line 29 into the intermediate container 3 at the material inlet, and via the lines 30- 37 to other parts of the plant which cannot be completely sealed, such as the paddle wheel locks 4, 6, 11, 12, 13 and 14, and also to the mill 7 and compressor 23 seals. After the compressor 26, hot gas is branched off from the line 39 to a line 40 and is led as barrier gas into the intermediate container 18 at the material outlet.

Claims (5)

1. Fremgangsmåte ved nedmaling av materialer ved lav temperatur under anvendelse av en kjølegasstrøm og en transportgasstrøm, idet kjølegasstrømmen avkjøler innkommende malegods som derefter kommer inn i en mølle, mens transportgasstrømmen ledes inn i møllen, karakterisert ved at begge gasstrømmer inne i nedmalingsanlegget ledes med et trykk som er lavere enn atmosfæretrykk.1. Procedure for grinding down materials at low temperature using a cooling gas flow and a transport gas flow, the cooling gas flow cooling the incoming grinding material which then enters a mill, while the transport gas flow is led into the mill, characterized in that both gas flows inside the grinding down plant are led with a pressure lower than atmospheric pressure. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det opprettholdes et undertrykk på 0,1-0,4 bar, fortrinnsvis 0,2 bar.2. Method according to claim 1, characterized in that a negative pressure of 0.1-0.4 bar, preferably 0.2 bar, is maintained. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at sperregass mot atmosfæren ledes til deler av anlegget som ikke fullstendig lar seg forsegle.3. Method according to claim 1 or 2, characterized in that barrier gas against the atmosphere is directed to parts of the facility that cannot be completely sealed. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at sperregassen ledes til malegodsinnløpet og -utløpet.4. Method according to claim 3, characterized in that the barrier gas is led to the material inlet and outlet. 5. Fremgangsmåte ifølge krav 4,karakterisert ved at kald sperregass anvendes ved malegodsinnløpet og varm sperregass ved malegodsutløpet.5. Method according to claim 4, characterized in that cold barrier gas is used at the grind material inlet and hot barrier gas at the grind material outlet.
NO740817A 1973-03-09 1974-03-08 Procedure for grinding materials. NO740817L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2311933A DE2311933C3 (en) 1973-03-09 1973-03-09 Process and device for the comminution of substances at low temperatures

Publications (3)

Publication Number Publication Date
NO740817L NO740817L (en) 1974-09-10
NO135969B true NO135969B (en) 1977-03-28
NO135969C NO135969C (en) 1977-07-06

Family

ID=5874369

Family Applications (1)

Application Number Title Priority Date Filing Date
NO740817A NO740817L (en) 1973-03-09 1974-03-08 Procedure for grinding materials.

Country Status (11)

Country Link
US (1) US3921917A (en)
AT (1) AT327658B (en)
BE (1) BE812095A (en)
BR (1) BR7401798D0 (en)
CH (1) CH570202A5 (en)
DE (1) DE2311933C3 (en)
ES (1) ES424119A1 (en)
FR (1) FR2220309B3 (en)
NL (1) NL7316936A (en)
NO (1) NO740817L (en)
ZA (1) ZA741563B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102503A (en) * 1975-04-16 1978-07-25 Linde Aktiengesellschaft Method of and apparatus for the low-temperature milling of materials
US3985086A (en) * 1975-06-09 1976-10-12 The Raymond Lee Organization, Inc. Freezer, vacuum, oven sewage treatment system
FR2352589A1 (en) * 1976-05-28 1977-12-23 Air Liquide PROCESS FOR FRAGILIZING THE TEGUMENTS OF SMALL-SIZED SEEDS
GB1558320A (en) * 1978-05-30 1979-12-19 Hastie A M B Bitumen recovery
US4222527A (en) * 1979-02-22 1980-09-16 Union Carbide Corporation Cryopulverizing packed bed control system
US4511091A (en) * 1983-01-06 1985-04-16 Augusto Vasco Method and apparatus for recycling thermoplastic scrap
US4645131A (en) * 1984-12-24 1987-02-24 Hailey Robert W Powder milling method to produce fine powder sizes
US4692982A (en) * 1986-05-22 1987-09-15 Rice Norman B Lining removal process
US4846408A (en) * 1988-01-21 1989-07-11 Gentex Corporation Method for making a friction material
JP2725505B2 (en) * 1991-12-02 1998-03-11 株式会社日立製作所 Waste treatment method and apparatus
US5533680A (en) * 1994-12-28 1996-07-09 U.S. Rubber Reclaiming, Inc. Process to grind thermoset or thermoplastic materials
US5597123A (en) * 1995-06-30 1997-01-28 Praxair Technology, Inc. Ultra-high energy cryogenic impact system
DE19533078A1 (en) * 1995-09-07 1997-03-13 Messer Griesheim Gmbh Method and device for grinding and classifying regrind
US6076752A (en) * 1998-06-01 2000-06-20 Quality Botanical Ingredients, Inc. Method and apparatus for inert gas purging/temperature control for pulverizing/grinding system
KR100351868B1 (en) * 2001-11-15 2002-09-13 Kolon Construction Co Ltd Method for freezing pulverizing waste materials using freezing gas
DE102014112154A1 (en) * 2014-08-26 2016-03-03 Netzsch Trockenmahltechnik Gmbh METHOD FOR CLASSIFYING SOLID PRODUCT FRACTIONS, SEPARATING DEVICE AND CLEANING PLANT
US10675634B2 (en) * 2015-08-13 2020-06-09 Lehigh Technologies, Inc. Systems, methods, and apparatuses for manufacturing micronized powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609150A (en) * 1949-11-05 1952-09-02 Union Carbide & Carbon Corp Mechanical pulverization of refrigerated plastics
DE1291502B (en) * 1965-07-20 1969-03-27
DE1778559C3 (en) * 1968-05-10 1973-10-31 Linde Ag, 6200 Wiesbaden Device for shredding substances at low temperatures
CH491675A (en) * 1969-12-01 1970-06-15 Inventa Ag METHOD OF GRINDING GRAINY MATERIALS AT LOW TEMPERATURES

Also Published As

Publication number Publication date
BR7401798D0 (en) 1974-11-19
DE2311933A1 (en) 1974-09-19
NO135969C (en) 1977-07-06
CH570202A5 (en) 1975-12-15
ATA166574A (en) 1975-04-15
FR2220309A1 (en) 1974-10-04
US3921917A (en) 1975-11-25
NO740817L (en) 1974-09-10
DE2311933C3 (en) 1979-12-20
DE2311933B2 (en) 1979-04-26
ZA741563B (en) 1975-02-26
AT327658B (en) 1976-02-10
NL7316936A (en) 1974-09-11
BE812095A (en) 1974-07-01
FR2220309B3 (en) 1977-07-15
ES424119A1 (en) 1976-06-16

Similar Documents

Publication Publication Date Title
NO135969B (en)
US2717658A (en) Carbon black collecting and separating process and apparatus
WO2009089575A1 (en) Animal feed from co-products of ethanol production
US3633830A (en) Process and apparatus for the comminution of soft material
US4102503A (en) Method of and apparatus for the low-temperature milling of materials
CN201434562Y (en) Microwave fluidized-bed equipment used for drying powder
US20140144042A1 (en) Furnace including multiple trays and phase-change heat transfer
CN101561226B (en) Energy-saving device manufactured by chemical material carrier
US3285719A (en) Ofw xx
CN102618300B (en) Coke quenching method for coke quenching furnace with gas-liquid two-phase distributor
WO2023159890A1 (en) Multi-component refrigerant cold box separation system for propane dehydrogenation, and process method
CN101560403A (en) Oil shale dry-process coking method and water spraying structure of gas retort
CN103619995B (en) Apparatus and method for wood flour or the continuous carbonization of garbage and other carbonizable organic material
CN104862016A (en) Gas recycling and cooling system of biomass carbonization furnace
CN206300409U (en) A kind of utilization associated gas isolates the processing unit of LPG and stable light hydrocarbon
EP3456810B1 (en) Plant and process for biogas upgrading
US9005537B1 (en) Continuous flow, high capacity system for rapidly converting the combination natural gas and coal to liquid fuels
EP3045849A2 (en) A plant for liquefying methane gas
CN205316904U (en) Air can environmental protection drying -machine
NO140363B (en) CONNECTION DEVICE FOR DEMODULATION OF A FREQUENCY DIFFERENTIAL PHASE MODULATED SIGNAL MIXTURE
US3581509A (en) Moisture removal apparatus
US9475993B1 (en) Continuous flow, high capacity system for rapidly converting hydrocarbon containing post-consumer and post-industrial waste and renewable feedstocks into biofuel
CN111502963A (en) Grading utilization system and method for compressed air of thermal power plant
CN202511587U (en) Complete set of free energy heat pump vacuum drying equipment
NO811675L (en) PROCEDURE FOR THE COOLING OF MELTED CALCIUM CARBID, AND APPARATUS FOR IMPLEMENTING THE PROCEDURE