NO132864B - - Google Patents

Download PDF

Info

Publication number
NO132864B
NO132864B NO448669A NO448669A NO132864B NO 132864 B NO132864 B NO 132864B NO 448669 A NO448669 A NO 448669A NO 448669 A NO448669 A NO 448669A NO 132864 B NO132864 B NO 132864B
Authority
NO
Norway
Prior art keywords
catalyst
alkali
carboxylates
acetate
carboxylate
Prior art date
Application number
NO448669A
Other languages
Norwegian (no)
Other versions
NO132864C (en
Inventor
K Sennewald
W Vogt
H Erpenbach
H Glaser
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO132864B publication Critical patent/NO132864B/no
Publication of NO132864C publication Critical patent/NO132864C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • C07C67/05Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
    • C07C67/055Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds

Description

Det er kjent å fremstille umettede karboksylsyre-estere ved omsetning av olefiniske forbindelser med 2 til 20 C-atomer og en alifatisk eller aromatisk karboksylsyre med 2 til 20 C-atomer med molekylært oksygen resp. luft i gassfase på metallisk palladiumsholdig bærekatalysator. Bærekatalysatorene kan dessuten inneholde forskjellige metaller som f.eks. kobber, It is known to prepare unsaturated carboxylic acid esters by reacting olefinic compounds with 2 to 20 C atoms and an aliphatic or aromatic carboxylic acid with 2 to 20 C atoms with molecular oxygen or air in gas phase on metallic palladium-containing support catalyst. The support catalysts can also contain different metals, such as copper,

gull, sink, kadmium, tinn, bly, mangan, krom, molybden, wolfram, uran, jern, kobolt, nikkel, niob, vanadium eller tantal som aktivatorer. Det er også kjent til slike bærekatålysatorer for ytterligere aktivitetsøkning av alkalikarboksylater eller jordalkalikarboksylater resp. alkali- eller jordalkaliforbindelser (f.eks. hydroksyder eller karbonater), som under reaksjonsbe- gold, zinc, cadmium, tin, lead, manganese, chromium, molybdenum, tungsten, uranium, iron, cobalt, nickel, niobium, vanadium or tantalum as activators. Such carrier catalysts are also known for further increasing the activity of alkali carboxylates or alkaline earth carboxylates or alkali or alkaline earth compounds (e.g. hydroxides or carbonates), which during reaction be-

tingelsene danner alkali- eller jordalkalikarboksylater. Mens det f.eks. med alkaliacetatfrie katalysatorer ved omsetning av etylen, eddiksyre og oksygen bare oppnås ytelser fra 5 til 10 g vinylacetat/liter katalysator . time muliggjør de samme katalysatorer imidlertid med et alkaliinnhold fra 1,5 til 5 vekt# ytelser på mer enn 150 g vinylacetat/liter katalysator . time. Det samme gjelder også for fremstilling av umettede karboksyl-syreestere med høyere antall C-atomer. I alle hittil kjente fremgangsmåter ble alkalikarboksylatinnholdet i katalysatoren, hvis det overhodet ble omtalt alkalisalter som aktivatorer ved impregnering av katalysatoren med jordalkalioppløsningen inn-stillet før dens anvendelse. Denne metode har den ulempe at den gir katalysatorer, hvis produksjonsytelser ikke er innstillbare etter ønske. the compounds form alkali or alkaline earth carboxylates. While it e.g. with alkali acetate-free catalysts when converting ethylene, acetic acid and oxygen only yields from 5 to 10 g vinyl acetate/liter catalyst are achieved. hour, however, the same catalysts with an alkali content of 1.5 to 5 wt# enable performances of more than 150 g of vinyl acetate/liter of catalyst. hour. The same also applies to the production of unsaturated carboxylic acid esters with a higher number of C atoms. In all previously known methods, the alkali carboxylate content in the catalyst, if alkali salts were mentioned at all as activators, was adjusted by impregnating the catalyst with the alkaline earth solution before its use. This method has the disadvantage that it produces catalysts whose production performance cannot be adjusted as desired.

Det er nå funnet at man kan innstille ytelsen av en katalysator på enkel måte ved at man eksempelvis analogt den i belgisk patent nr. 706.355 omtalte fremgangsmåte gjennom-fører en alkaliimpregnering av katalysatoren under driften i gassfase. Den,store forskjell består imidlertid i at fremgangsmåten ifølge belgisk patent 706.355 går ut fra en allerede fra begynnelsen av alkaliacetatholdig katalysator og i det vesentlige bare erstatter avdampstap når den varme katalysator av alkaliacetat ved kontinuerlig etterdosering av alkaliacetat. I forhold til dette kan man ved fremgangsmåten ifølge oppfinnelsen anvende en i det vesentlige av metallisk palladium metallisk gull og en It has now been found that the performance of a catalyst can be set in a simple way by carrying out an alkali impregnation of the catalyst during operation in the gas phase, for example analogously to the method mentioned in Belgian patent no. 706,355. The big difference, however, consists in the fact that the method according to Belgian patent 706,355 starts from a catalyst containing alkali acetate from the beginning and essentially only replaces evaporation loss when the catalyst is heated by alkali acetate by continuous addition of alkali acetate. In relation to this, in the method according to the invention one can use an essentially metallic palladium metallic gold and a

-ærer bestående katalysator som dessuten ikke inneholder alkali-karboksylat og til denne katalysator under drift dosert tilfører alkalikarboksylat i gassfase. Samtidig lar den ønskede mengde alkaliforbindelser også i fast form under driften over en sluse føre til i reaktoren befinnende katalysator, her spesielt i hvirvelsjiktfremgangsmåten. Begge har den fordel at impregner-ings- og tørkningsprosess før katalysatorens anvendelse bort-faller, helt spesielt imidlertid kan den begynnende katalysator-aktivitet langsomt økes etter graden av den med gasstrømmen eller over sluser tilførte alkaliforbindelser således at det er innstillbart en ønsket produksjonsytelse. Fremgangsmåten ifølge oppfinnelsen byr på den mulighet å drive et produksjonsanlegg med delelast når avkobling av anleggsdeler ikke er mulig på grunn av enbaneoppbygning. Forøvrig er det ofte verdifullt å -ears consisting of a catalyst which also does not contain alkali carboxylate and to this catalyst during operation metered addition of alkali carboxylate in gas phase. At the same time, the desired quantity of alkali compounds also allows in solid form during operation over a sluice to lead to the catalyst in the reactor, here especially in the fluidized bed method. Both have the advantage that the impregnation and drying process before the use of the catalyst is omitted, however, in particular, the initial catalyst activity can be slowly increased according to the degree of the alkali compounds supplied with the gas stream or via sluices so that a desired production performance can be set. The method according to the invention offers the possibility of operating a production plant with partial load when decoupling of plant parts is not possible due to single-track construction. Incidentally, it is often valuable to

ta i drift et anlegg ved strupet ytelse. start up a plant in case of throttled performance.

Den før driftstagen alkalifri katalysator kan The alkali-free catalyst before the operating stage can

f.eks. inneholde 0,1 til 6, fortrinnsvis 0,5 til'2 vekt# palla- e.g. contain 0.1 to 6, preferably 0.5 to'2 wt# palla-

dium og 0,01 til 5, fortrinnsvis .0,1 til 2 vekt# gull på en bærer.. Ved kontinuerlig drift av et anlegg til fremstilling av umett.ede estere av karboksylsyregassfase bør. man så snart den ved i innledningsvis omtalte forholdsregler av innføring av alkalikarboksylater i reaksjonssonen, som inneholder bærekatalysatoren innstillbare, ønskede katalysatorytelse resp. produksjonsytelse er oppnådd og bærekatalysatoren inneholder således f.eks. 0,1 til 20 vekt/»,, fortrinnsvis 0,5 til 10 vekt# alkali-metall i form av karboksylater til reaksjonssonen, gjennomsnitt- dium and 0.01 to 5, preferably .0.1 to 2 weight # of gold on a support.. During continuous operation of a plant for the production of unsaturated esters of carboxylic acid gas phase should. as soon as the initially mentioned precautions of introducing alkali carboxylates into the reaction zone, which contain the support catalyst adjustable, desired catalyst performance resp. production performance has been achieved and the carrier catalyst thus contains e.g. 0.1 to 20 wt/",, preferably 0.5 to 10 wt# alkali metal in the form of carboxylates to the reaction zone, average

lig dessuten bare føre så meget dampformede resp. faste alkalikarboksylater som på den annen side uttas dampformet fra reaksjonssonen for å opprettholde den ønskede katalysatorytelse under den samlede driftstid. lig also only lead as much steam-shaped resp. solid alkali carboxylates which, on the other hand, are withdrawn in vapor form from the reaction zone in order to maintain the desired catalyst performance during the overall operating time.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av umettede estere av karboksylsyrer ved omsetning av et olefin med 2 til 20 C-atomer og en alifatisk eller aromatisk karboksylsyre med 2 til 20 C-atomer med molekylært oksygen i gassfase, eventuelt i nærvær av inertgasser ved temperaturer fra 100 til 250°C, fortrinnsvis 150 til 220°C og trykk fra 1 til 21 The invention relates to a method for producing unsaturated esters of carboxylic acids by reacting an olefin with 2 to 20 C atoms and an aliphatic or aromatic carboxylic acid with 2 to 20 C atoms with molecular oxygen in the gas phase, possibly in the presence of inert gases at temperatures from 100 to 250°C, preferably 150 to 220°C and pressure from 1 to 21

ata, fortrinnsvis 5 til 11 ata på katalysatorer bestående av metallisk palladium, et alkalikarboksylat, et bærestoff og ata, preferably 5 to 11 ata on catalysts consisting of metallic palladium, an alkali carboxylate, a carrier and

eventuelt ytterligere metaller som aktivatorer, idet man til katalysatoren tilfører alkalikarboksylater eller alkaliforbindelser som under reaksjonsbetingelsene danner alkalikarboksylater, possibly further metals as activators, adding alkali carboxylates or alkali compounds which under the reaction conditions form alkali carboxylates to the catalyst,

for å erstatte den varme katalysators avdampstap på alkalikarboksylater, idet fremgangsmåten er karakterisert ved at man under driften i et første fremgangsmåtetrinn til katalysatoren som ennu ikke inneholder alkalikarboksylat setter alkalikarboksylater eller alkaliforbindelser som under reaksjonsbetingelsene danner alkalikarboksylater og først etter innstilling av den optimale katalysatorytelse i et annet fremgangsmåtetrinn på i og for seg kjent måte erstatter den varme katalysators avdamps- to replace the hot catalyst's evaporation loss of alkali carboxylates, the method being characterized by the fact that during operation in a first process step, alkali carboxylates or alkali compounds which under the reaction conditions form alkali carboxylates are added to the catalyst which does not yet contain alkali carboxylate, and only after setting the optimum catalyst performance in another method step in a manner known per se replaces the hot catalyst's evaporation

tap av alkalikarboksylater. loss of alkali carboxylates.

Man kan derved gå frem således at man til den over katalysatoren førende gassblanding tilblander en.eller flere alkaliforbindelser. Man kan imidlertid.også til den katalysatorholdige reaksjonssone over en sluse, tilføre en eller flere alkaliforbindelser 1 fast form.- Alkaliforbindelsen;kan oppløses i ,den indoserende eller fordampende karboksylsyre, idet .man for det annet fremgangsmåtetrinn innstiller en alkalikonsentrasjon som tilsvarer mengden -av alkali-<1 >karboksylat i.karboksylsyren og umettet karboksylsyreesterholdig • ovnskondensat.. Den indoserte karboksylsyre kan på i og for seg kjent måte. fordampes i en karboksylsyrefordampningssone og-denne sone beskikkes:med alkaliforbinåelsen.• >Man kari' innføre den olefiniske forbindelse og det molekylære oksygen resp. luft likeledes i den med allalif orbindelsen beskikkede karboksylsyrefordampningssone. Den olefiniske forbindelse, kårboksylsyredampen og det molekylære oksygen resp. luften kan føres gjennom eller over eri ved 100 til 250°C, fortrinnsvis 150 til 220°C oppvarmet patron, som inneholder alkaliforbindelsen på en bærer hvorpå den med dampformig alkalikarboksylat anrikede gassblanding føres til reaksjonssonen som inneholder katalysioren. Endelig kan en på grunn av avdampning av alkalikarboksylat forbrukt patron regenereres ved påsprøytning av en oppløsning av alkalikarboksylat i karboksylsyre. One can thereby proceed in such a way that one or more alkali compounds are added to the gas mixture leading over the catalyst. However, you can also add one or more alkali compounds in solid form to the catalyst-containing reaction zone above a sluice. alkali-<1 >carboxylate in the carboxylic acid and unsaturated carboxylic acid ester-containing • oven condensate. The carboxylic acid dosed can in a manner known per se. is evaporated in a carboxylic acid evaporation zone and this zone is coated with the alkali compound. You can introduce the olefinic compound and the molecular oxygen resp. air likewise in the carboxylic acid evaporation zone coated with the allalif or compound. The olefinic compound, the carboxylic acid vapor and the molecular oxygen resp. the air can be passed through or over the eri at 100 to 250°C, preferably 150 to 220°C heated cartridge, containing the alkali compound on a carrier whereupon the vaporous alkali carboxylate enriched gas mixture is passed to the reaction zone containing the catalyst. Finally, a cartridge consumed due to evaporation of alkali carboxylate can be regenerated by spraying a solution of alkali carboxylate in carboxylic acid.

Den olefiniske forbindelse med 2 til 20, fortrinnsvis 2 til 10' karbonatomer kan f.eks. være en alifatisk eller cykloali-fatisk olefin-eller diolefin, særlig etylen, propylen, buten^ buta-dien, penten, cyklopentadien, cykloheksen eller cyklohéksadien. Karboksylsyren med 2 til-20, fortrinnsvis 2 til 10 karbonatomer kan f.eks. være eddiksyre, propionsyre, smørsyre, isosmørsyre, valerian-syre, laurinsyre, palmitinsyre, stearinsyre eller benzosyre. De umettede estere av karboksylsyrer inneholder tilsammen 4 til 40, fortrinnsvis 4 til 20 karbonatomer. ' Som aktivatorer'for katalysatoren kan brukes f.eks. de ovenfor nevnte metaller. Som bærestoffer for katalysatoren kommer fortrinnsvis på tale kiselsyre (SiO^), kisel-gur, diatoménjord, aluminiumoksyd, aluminiumsilikat, aluminiumfos-fat, pimpstein, asbest, silisiumkarbid eller aktivkull. The olefinic compound with 2 to 20, preferably 2 to 10' carbon atoms can e.g. be an aliphatic or cycloaliphatic olefin or diolefin, in particular ethylene, propylene, butene, butadiene, pentene, cyclopentadiene, cyclohexene or cyclohexadiene. The carboxylic acid with 2 to 20, preferably 2 to 10 carbon atoms can e.g. be acetic acid, propionic acid, butyric acid, isobutyric acid, valerian acid, lauric acid, palmitic acid, stearic acid or benzoic acid. The unsaturated esters of carboxylic acids contain a total of 4 to 40, preferably 4 to 20 carbon atoms. 'As activators' for the catalyst can be used e.g. the above mentioned metals. Carriers for the catalyst preferably include silicic acid (SiO 2 ), diatomaceous earth, diatomaceous earth, aluminum oxide, aluminum silicate, aluminum phosphate, pumice, asbestos, silicon carbide or activated carbon.

Fremgangsmåten ifølge oppfinnelsen skal forklares ved hjelp av noen få eksempler: The method according to the invention will be explained with the help of a few examples:

Eksempel 1. ( Sammenligningseksempel). Example 1. ( Comparison example).

1 kg (=1,85 1) av en kiselsyrebærer i kuleform med en diameter på 5 til 6 mm ble blandet og grundig impregnert med en oppløsning som inneholdt 11 g edelmetallionernemlig 8 g Pd<++>'som PdCl2 og 3 g Au+ 'som HAuCl^. Déretter ble det'tørket under'om-røring for å oppnå en ensartet fordeling av edelmetallsalter'på bæreren. Den tørre masse ble derpå innført i en 5#-ig vandig hydra-zinhydratoppløsning. Etter avsluttet reduksjon av edelmetallforbindelser til de tilsvarende edelmetaller dekanterte man væsken, vasket grundig med destillert vann og tørket"deretter i vakuum ved 60°C. Denne alkalifrie' katalysator kunne brukés uten noen videre behandling, og den inneholdt pr. liter 5, 95 g edelmetaller. henholdsvis ca..0,7 ,. 1 kg (=1.85 1) of a spherical silica support with a diameter of 5 to 6 mm was mixed and thoroughly impregnated with a solution containing 11 g of noble metal ions, namely 8 g of Pd<++>'as PdCl2 and 3 g of Au+' as HAuCl^. It was then dried with stirring in order to achieve a uniform distribution of noble metal salts on the carrier. The dry mass was then introduced into a 5% aqueous hydrazine hydrate solution. After completion of the reduction of noble metal compounds to the corresponding noble metals, the liquid was decanted, washed thoroughly with distilled water and then dried in a vacuum at 60°C. This alkali-free catalyst could be used without any further treatment, and it contained per liter 5.95 g precious metals respectively approx..0.7 ,.

vekt# Pd og 0,26 vekt$ Au. wt# Pd and 0.26 wt$ Au.

Over 100 ml av den således fremstilte katalysator som befant seg i en reaktor med 32 mm diameter og 2 m lengde, ledet man ved l80°C og et trykk på 6 at i et enkelt gjennomløp 1380 Nl/ti startgass med en sammensetning av 16,3 volum- eddiksyre. 23,2 volum-nitrogen, 6,1 volum- oksygen og 54,4 volum- etylen. Man erholdt en strømningshastighet av 13 cm/seg og en oppholdstid av 9, 6 sek. Reaksjonsproduktene ble fjernet fra reaksjonsgassen ved kondensasjon. Over 100 ml of the catalyst thus produced, which was in a reactor with a diameter of 32 mm and a length of 2 m, at 180°C and a pressure of 6 at, 1380 Nl/ti of starting gas with a composition of 16, 3 volumes of acetic acid. 23.2 volumes of nitrogen, 6.1 volumes of oxygen and 54.4 volumes of ethylene. A flow rate of 13 cm/sec and a residence time of 9.6 sec were obtained. The reaction products were removed from the reaction gas by condensation.

Man erholdt 600 h/h kondensat med 1 vekt% vinylacetat. Det ble oppnådd katalysatorytelser på gjennomsnittlig 6 g vinylacetat/liter katalysator pr. time. Beregnet på en- etylenomsetning av 0,23$ var vinylacetatutbyttet 90%. 600 h/h condensate with 1% by weight vinyl acetate was obtained. Catalyst performances of an average of 6 g vinyl acetate/liter of catalyst per hour. Calculated on an ethylene turnover of $0.23, the vinyl acetate yield was 90%.

Eksempel 2: Over 1000 ml av katalysatoren av eksempel 1 ble^... ledet under de i eksempel 1 angitte betingelser en gassblanding med den samme sammensetning og mengde. Til forskjell med eksempel 1 ble i gass-strømmen Jbran reaktoren innført en til 180°C opphetet patron. Patronen som tjente til alkaliimpregnering av katalysatoren inneholdt en blanding av 15 g kaliumacetat og 15 g natriumacetat på 250 g av kiselsyre som bærer, og ble til å begynne .med byttet ut hver 7de dag. Like etter at den ble tatt i bruk kunne man konstan-tere en rask stigning av katalysatorytelsen. Example 2: Over 1000 ml of the catalyst of Example 1 was^... conducted under the conditions stated in example 1 a gas mixture with the same composition and quantity. In contrast to example 1, a cartridge heated to 180°C was introduced into the gas stream Jbran reactor. The cartridge used for alkali impregnation of the catalyst contained a mixture of 15 g of potassium acetate and 15 g of sodium acetate on 250 g of silicic acid as carrier, and was initially replaced every 7 days. Shortly after it was put into use, a rapid increase in catalyst performance could be observed.

Etter 33 driftsdager' var prosessen i likevekt og man erholdt 675 g/ time kondensat mad 27,5 vekt$ vinylacetat. After 33 operating days', the process was in equilibrium and 675 g/hour of condensate with 27.5 wt% of vinyl acetate was obtained.

De under driftstiden gjennomførte alkalibestemmelser i kondensatene viste at det fra alkalipatronen fordampende alkaliacetat til å begynne med var fullstendig absorbert av katalysatoren. Det følger endel bestemmelsesverdier: The alkali determinations in the condensates carried out during operation showed that the alkali acetate evaporating from the alkali cartridge was initially completely absorbed by the catalyst. The following are the final determination values:

Fra 30de driftsdag av ble patronen byttet ut med en slik rytme at den på den forankoplede patron på katalysatoren på-førte alkaliacetatmengde stemte overens med fordampningstapet av al-kaliacetater i den hete bærerkatalysator. På dette tidspunkt var vinylacetatutbyttet 91% beregnet på en etylenomsetning på 7, 1%. Eksempel 3. ( Sammenligningseksempel). From the 30th day of operation onwards, the cartridge was replaced with such a rhythm that the quantity of alkali acetate applied to the previously connected cartridge on the catalyst corresponded to the evaporation loss of alkali potassium acetates in the hot carrier catalyst. At this point, the vinyl acetate yield was 91% calculated on an ethylene conversion of 7.1%. Example 3. ( Comparison example).

Gjennom en i et teknisk kretsløpapparat anordnet katalysatorovn med en lengde av 2,8 m og et katalysatorinnhold på 2 liter med den i eksempel 1 angitte sammensetning, ble ledet 1,8 m^/ time startgass med sammensetningen 6l,2 volum- etylen, 20,5 volum-eddiksyre, 6,6 volum- oksygen og 11,7 volum- CO^ under et inngangs-trykk av 8 ata ved en reaksjonstemperatur på 200°C, idet man fikk en oppholdstid på 4 sek., en gassbelastning på 4,16 Nm /liter katalysator pr. time og en strømningshastighet på 70 cm/sek. Reaksjonsproduktene ble fjernet fra reaksjonsgassen ved kondensasjon (4560 g/ time kondensat med 0,44 vekt% vinylacetat), ikke omsatt eddiksyre ble tilbakevunnet og etter erstatning av den omsatte etylen og oksygen tilsatt igjen til kretsløpet. Ved et vinylacetatutbytte på 88% beregnet på en etylenomsetning av 0, 12% erholdt man en katalysatorytelse av 10 g vinylacetat/liter pr. time. Eksempel 4. Through a catalyst furnace arranged in a technical circuit apparatus with a length of 2.8 m and a catalyst content of 2 liters with the composition specified in example 1, 1.8 m^/hour of starting gas with the composition 6l.2 volumes of ethylene, 20 .5 volume acetic acid, 6.6 volume oxygen and 11.7 volume CO^ under an inlet pressure of 8 ata at a reaction temperature of 200°C, obtaining a residence time of 4 sec., a gas load of 4 .16 Nm / liter of catalyst per hour and a flow rate of 70 cm/sec. The reaction products were removed from the reaction gas by condensation (4560 g/h condensate with 0.44% by weight of vinyl acetate), unreacted acetic acid was recovered and, after replacement of the reacted ethylene and oxygen, added back to the circuit. With a vinyl acetate yield of 88% calculated on an ethylene conversion of 0.12%, a catalyst performance of 10 g vinyl acetate/liter per hour. Example 4.

Over 2 liter av katalysatoren av eksempel 1 ble. under de i eksempel 3 angitte betingelser ledet en gassblanding med den samme sammensetning og mengde. Til forskjell med eksempel 3 ble i gass-strømmen foran reaktoren innført en til 200°C'opphetet patron. Patronen som ble brukt til alkaliimpregnering av katalysatoren inneholdt' en blanding av 80 g kaliumacetat og 20 g natriumacetat på 500 g kiselsyre som bærer. Den ble til å bégynne 'med byttet ut hver fjerde dag til det tidspunkt hvor alkalitapet av den hete bærerkåtalysator' stemte overens med alkalipåføringen av katalysatoren. Fra dette øye-blikk av erholdt man 5070 g/time kondensat med 18,8 vekt$ vinylacetat, 12 deler pr. million Na+ og 7 deler pr. million K<+>. Pr. time fordampet altså ca. 60 mg Na+ og 35 mg K+ som acetater fra katalysatoren. Patronene ble nå bare skiftet ut i en slik følge at fordampningstapet av alkaliacetat i den hete bærerkåtalysator ble erstattet. Ved et vinylacetatutbytté av 89 y 5% beregnet på' det i 5, 5% omsatte etylen erholdt man en-katalysatorytelse av 475 g vinylacetat/liter katalysator pr. time. Over 2 liters of the catalyst of Example 1 was. under the conditions indicated in example 3, a gas mixture with the same composition and quantity was conducted. In contrast to example 3, a cartridge heated to 200°C was introduced into the gas flow in front of the reactor. The cartridge used for alkali impregnation of the catalyst contained a mixture of 80 g of potassium acetate and 20 g of sodium acetate on 500 g of silicic acid as carrier. It was to begin 'with the replacement every four days until the time when the alkali loss of the hot supported catalyst' matched the alkali application of the catalyst. From this point on, 5070 g/hour of condensate was obtained with 18.8 wt% of vinyl acetate, 12 parts per million Na+ and 7 parts per million K<+>. Per hour, therefore, approx. 60 mg Na+ and 35 mg K+ as acetates from the catalyst. The cartridges were now only replaced in such a way that the evaporation loss of alkali acetate in the hot carrier catalyst was replaced. With a vinyl acetate yield of 89 y 5% calculated on the ethylene converted to 5.5%, a catalyst yield of 475 g vinyl acetate/liter of catalyst was obtained per hour.

Det samme resultat erholdt man hvis mån i stedet for å bruke en alkaliacetatpatron påfører alkaliacetateri"fast form over en sluse på katalysatoren. Eksempel 5. ( Sammenligningseksempel).' The same result was obtained if, instead of using an alkali acetate cartridge, alkali acetate is applied in solid form over a sluice on the catalyst. Example 5. (Comparative example).'

1350 g (- 3 liter) av en kiselsyrebærer med én par-tikkelstørrelse på 0,1 til 0,2 mm ble blandet og grundig impregnert med en vandig oppløsning som inneholdt 21,6 g edelmetallioner, nemlig 16,1 g Pd + + som PdCl2 og 5,5 g Au + + +som HAuCl^. Vannmengden i opp-løsningen ble bestemt således ab væsken nettopp kunne opptas av bærermaterialet. Deretter ble massen tørket i nitrogenatmosfære. Den tørre masse ble for reduksjon av de påførte edelmetallforbindelser til de tilsvarende edelmetaller innført i en vandig hydrazinoppløsning. Etter avsluttet reduksjon ble katalysatormassen grundig vasket med • vann og deretter tørket under nedsatt trykk. Denne alkalifrie katalysator kunne brukes uten videre behandling- og den inneholdt pr. liter 7,32 g edelmetaller henholdsvis ca. 1 vekt<g> Pd og 0,4 'vekt#'Au.- 2*5 liter ar katalysatoren ble innført i en hvirvelsjiktreaktor.' Hvirvel-sjiktreaktoren besto av et 3 m'langt dampopphetet rør av édelstål méd en diameter på- 50 mm. 1350 g (- 3 liters) of a silicic acid carrier with one particle size of 0.1 to 0.2 mm was mixed and thoroughly impregnated with an aqueous solution containing 21.6 g of noble metal ions, namely 16.1 g of Pd + + which PdCl2 and 5.5 g Au + + +as HAuCl^. The amount of water in the solution was determined so that the liquid could just be taken up by the carrier material. The mass was then dried in a nitrogen atmosphere. The dry mass was introduced into an aqueous hydrazine solution to reduce the applied noble metal compounds to the corresponding noble metals. After completion of the reduction, the catalyst mass was thoroughly washed with • water and then dried under reduced pressure. This alkali-free catalyst could be used without further treatment and it contained per liter 7.32 g precious metals respectively approx. 1 wt<g> Pd and 0.4 'wt#'Au.- 2*5 liters ar the catalyst was introduced into a fluidized bed reactor.' The fluidized bed reactor consisted of a 3 m long steam-heated stainless steel tube with a diameter of 50 mm.

Gjennom 2,5 liter av katalysatoren ble ved et trykk på 8 ata og en reaksjonstemperatur av 188 o C ledet 10 Nm 3/time av en gass sbm besto av 64 volum? etylen, 16 volum- eddiksyre, 8 volum-oksygen og 12 volum- CO^. Strømningshastigheten'av denne gassblanding var 34 cm/sek, oppholdstiden 4,1 sek., beregnet på løst volum Through 2.5 liters of the catalyst, at a pressure of 8 ata and a reaction temperature of 188 o C, 10 Nm 3/hour of a gas sbm consisted of 64 volume? ethylene, 16 volumes of acetic acid, 8 volumes of oxygen and 12 volumes of CO^. The flow rate of this gas mixture was 34 cm/sec, the residence time 4.1 sec., calculated on loose volume

(2,5 liter) av katalysatoren, gassbelastningen vår 4,0 Nm^ pr. liter (2.5 liters) of the catalyst, our gas load 4.0 Nm^ per litres

katalysator og time. catalyst and hour.

Reaksjonsproduktene ble på vanlig måte fjernet fra reaksjonsgassen. Kondensatmengden var 4375 g/time med 1,8 vekt% vinylacetat. Det ble oppnådd en katalysatorytelse av 32 g vinylacetat/liter katalysator pr. time. Vinylacetatutbyttet var 89$ beregnet på en etylenomsetning på 0,36$. The reaction products were removed from the reaction gas in the usual way. The amount of condensate was 4375 g/hour with 1.8% by weight of vinyl acetate. A catalyst performance of 32 g vinyl acetate/liter of catalyst per hour. The vinyl acetate yield was $89 calculated on an ethylene turnover of $0.36.

Bkaempei- 6. Bkaempei- 6.

Over 2,5 liter av katalysatoren av eksempel 5 ble under de samme betingelser ledet en gassblanding med den samme sammensetning og mengde. Til forskjell med eksempel 5 ble like etter at for-søket var begynt tilført til katalysatoren under driften over en sluse 85 g kaliumacetat. Allerede etter 8 driftstimer oppnådde man en katalysatorytelse av 890 g vinylacetat/liter katalysator pr. time. Fra dette tidspunkt av erholdt man 5650 g/time kondensat med 42 vekt$ vinylacetat og 12 deler pr. million K<+>. Pr. time fordampet altså ca. 68 mg K som acetat (= 1,63 g pr. dag) fra den hete bærerkåtalysator. Vinylacetatutbyttet var 90$ beregnet på en etylenomsetning på 10,5$. Over 2.5 liters of the catalyst of example 5, a gas mixture with the same composition and quantity was passed under the same conditions. In contrast to example 5, 85 g of potassium acetate were added to the catalyst during operation over a sluice just after the experiment had begun. Already after 8 operating hours, a catalyst performance of 890 g vinyl acetate/liter of catalyst was achieved per hour. From this point on, 5650 g/hour of condensate was obtained with 42 wt% of vinyl acetate and 12 parts per million K<+>. Per hour, therefore, approx. 68 mg K as acetate (= 1.63 g per day) from the hot carrier catalyst. The vinyl acetate yield was $90 calculated on an ethylene turnover of $10.5.

Under det videre forsøksforløp tilførte man til katalysatoren over en sluse bare så meget alkaliacetat som svarte til fordampningstapet av alkaliacetat i den hete bærerkåtalysator. Dette oppnådde man ved at man til 2,5 liter av katalysatoren tilsatte under driften over en sluse 1 gang'pr. dagen 4,15 g kaliumacetat. Eksempel 7. During the further course of the experiment, only as much alkali acetate was added to the catalyst via a sluice that corresponded to the evaporation loss of alkali acetate in the hot carrier catalyst. This was achieved by adding 2.5 liters of the catalyst during operation over a sluice once a day. the day 4.15 g of potassium acetate. Example 7.

Over 2,5 liter av den i eksempel 5 beskrevne katalysator ble i det beskrevne hvirvelsjiktapparat ledet ved et trykk på Over 2.5 liters of the catalyst described in example 5 was introduced into the fluidized bed apparatus described at a pressure of

8 ata og en temperatur av 190°C, 10 m^/time av en gass som besto av 8 ata and a temperature of 190°C, 10 m^/hour of a gas which consisted of

64 volum$ etylen, 16 volum$ propionsyre, 8 volum$ oksygen og 12 64 vol$ ethylene, 16 vol$ propionic acid, 8 vol$ oxygen and 12

volum$ CO2. Strømningshastigheten av denne gassblanding var 34 cm/sek., oppholdstiden 4,1 sek., beregnet på løst volum av katalysatoren, gassbelastningen var 4,0 Nm^/liter katalysator pr. time. Like etter at apparatet var satt i drift ble tilsatt til katalysatoren under driften over en.sluse 100 g kaliumpropionat. Allerede etter 10 timer var katalysatorytelsen 900 g vinylpropionat/liter katalysator pr. volume$ CO2. The flow rate of this gas mixture was 34 cm/sec., the residence time 4.1 sec., calculated on the loose volume of the catalyst, the gas load was 4.0 Nm^/liter of catalyst per hour. Just after the apparatus had been put into operation, 100 g of potassium propionate were added to the catalyst during operation over a sluice. Already after 10 hours, the catalyst performance was 900 g vinyl propionate/liter of catalyst per

time. Fra dette tidspunkt av erholdt man 6300 g/time kondensat med 35,8 vekt$ vinylpropionat og 8 deler pr. million K<+>. Pr. time fordampet altså ca. 50 mg K<+> som propionat (= 1,21 g pr. dag) fra den hete katalysator. Utbyttet av vinylpropionat beregnet på det til 8,5$ omsatte etylen var 81$. hour. From this point on, 6300 g/hour of condensate was obtained with 35.8 wt% of vinyl propionate and 8 parts per million K<+>. Per hour, therefore, approx. 50 mg K<+> as propionate (= 1.21 g per day) from the hot catalyst. The yield of vinyl propionate calculated on the ethylene sold at $8.5 was $81.

Under det videre forsøksforløp ble det til katalysa-torén tilført over en sluse bare så meget kaliumpropionat som svarte til fordampningstapet av den hete bærerkåtalysator. Eksempel 8. During the further course of the experiment, only as much potassium propionate was added to the catalyst tower via a sluice that corresponded to the evaporation loss of the hot carrier catalyst. Example 8.

Under (de i eksempel 7 beskrevne.betingelser ble over katalysatoren ledet 10 m^/time'av en gass med 65 volum? etylen, 15 volum? isosmørsyre, 8 volum? oksygen og 12 volum? - C02. Like etter at forsøket begynte ble til katalysatoren til-ført over en sluse en.blanding av 85 g kaliumacetat og 15 g natriumacetat som under driften omvandlet seg til isobutyrater. Allerede etter noen få timer erholdt man en katalysatorytelse på 500 g vinylisobutyrat/liter katalysator pr. time. Fra dette tidspunkt av erholdt man 6925 g/time kondensat med 18 vekt? vinylitsobutyrat, 10 deler pr. million Na<+> og 6 deler pr. million K<+>. Pr. time fordampet altså ca. 69 mg Na<+> og 41,5 g K<+> som isobutyrater (= 1,65 g pr. dag Na<+> og 1 g pr. dag K+.) fra den hete katalysator. I samsvar med fordampningstapet av alkali-isobutyrat i den hete bærerkåtalysator ble over en sluse til-ført en alkaliacetatmengde med samme størrelse. Beregnet på en etylenomsetning av 4,1? var vinylisobutyrat-utbyttet 90?. Eksempel 9. Under the conditions described in Example 7, 10 m^/hour of a gas with 65 volumes of ethylene, 15 volumes of isobutyric acid, 8 volumes of oxygen and 12 volumes of CO2 was passed over the catalyst. Just after the experiment began, a mixture of 85 g of potassium acetate and 15 g of sodium acetate was added to the catalyst via a sluice, which converted to isobutyrates during operation. After just a few hours, a catalyst performance of 500 g vinyl isobutyrate/liter of catalyst per hour was obtained. From this point on of which 6925 g/hour of condensate was obtained with 18 wt. vinyl isobutyrate, 10 parts per million Na<+> and 6 parts per million K<+>. Thus, approximately 69 mg Na<+> and 41, 5 g K<+> as isobutyrates (= 1.65 g per day Na<+> and 1 g per day K+.) from the hot catalyst. In accordance with the evaporation loss of alkali isobutyrate in the hot supported catalyst, over a sluice added an amount of alkali acetate of the same size. Calculated on an ethylene conversion of 4.1%, the vinyl isobutyrate yield was 90%. Example 9.

Under de i eksempel 7 angitte betingelser ble over katalysatoren ledet en startgassblanding av 10 Nm^/time med 60 volum? propylen, 18 volum? eddiksyre, 8,2 volum? oksygen og Under the conditions stated in example 7, a starting gas mixture of 10 Nm^/hour with 60 volume? propylene, 18 volume? acetic acid, 8.2 volume? oxygen and

13,8 volum? CO2. Like etter at forsøket begynte ble til katalysatoren under driften tilført over en sluse 85 g kaliumacetat. I løpet av noen få timer fikk man en katalysatorytelse på 450 g allylacetat/liter katalysator pr. time. Fra dette tidspunkt av erholdt man 5550 g/time kondensat med 20,2 vekt? allylacetat og II deler pr. million K<+>. Pr. time fordampet altså ca. 6l mg K<+> som acetat (= 1,46 g pr. dag K<+>) fra den hete katalysator. Ettersom kaliumacetat fordampet fra den hete bærerkåtalysator tilførte man til katalysatoren over en sluse fersk kaliumacetat. Beregnet på en propylenomsetning av 4,8? var allylacetat-utbyttet 85?. 13.8 volume? CO2. Shortly after the experiment began, 85 g of potassium acetate were added to the catalyst during operation via a sluice. Within a few hours, a catalyst yield of 450 g allyl acetate/liter of catalyst was obtained per hour. From this point on, 5550 g/hour of condensate was obtained with 20.2 weight? allyl acetate and II parts per million K<+>. Per hour, therefore, approx. 6l mg K<+> as acetate (= 1.46 g per day K<+>) from the hot catalyst. As potassium acetate evaporated from the hot carrier catalyst, fresh potassium acetate was added to the catalyst via a sluice. Calculated on a propylene turnover of 4.8? the allyl acetate yield was 85%.

Claims (1)

Fremgangsmåte til fremstilling av umettede estere av karboksylsyrer ved omsetning av et olefin med 2 til 20 C-atomer og en alifatisk eller aromatisk karboksylsyre med 2 til 20 C-atomer med molekylært oksygen i gassfase, eventuelt i nærvær av inerte gasser ved temperaturer fra 100 til 250°C, fortrinnsvisProcess for the production of unsaturated esters of carboxylic acids by reacting an olefin with 2 to 20 C atoms and an aliphatic or aromatic carboxylic acid with 2 to 20 C atoms with molecular oxygen in gas phase, possibly in the presence of inert gases at temperatures from 100 to 250°C, preferably 150 til 220°C og trykk fra 1 til 21 ata, fortrinnsvis 5 til 11 ata, på katalysatorer bestående av metallisk palladium, et alkalikarboksylat, et bærestoff og eventuelt ytterligere metaller som aktivåtorer, idet man til katalysatoren setter alkalikarboksylater eller alkaliforbindelser som under reaksjonsbetingelsene danner alkalikarboksylater for å erstatte den varme katalysators avdampstap på alkalikarboksylatet, karakterisert ved at man under driften i et første fremgangsmåtetrinn til katalysatoren som ennu ikke inneholder alkalikarboksylat setter alkalikarboksylater eller alkaliforbindelser, som under reaksjonsbetingelsene danner alkalikarboksylater og først etter innstilling av den optimale katalysatorytelse i et annet fremgangsmåtetrinn på i og for seg kjent måte erstatter den varme katalysators avdampstap av alkalikarboksylater.150 to 220°C and pressure from 1 to 21 ata, preferably 5 to 11 ata, on catalysts consisting of metallic palladium, an alkali carboxylate, a carrier and possibly further metals as activators, adding to the catalyst alkali carboxylates or alkali compounds which under the reaction conditions form alkali carboxylates to replace the hot catalyst's evaporation loss of the alkali carboxylate, characterized in that during operation in a first process step, alkali carboxylates or alkali compounds are added to the catalyst which does not yet contain alkali carboxylate, which under the reaction conditions form alkali carboxylates and only after setting the optimum catalyst performance in a second process step in a manner known per se, replaces the hot catalyst's evaporation loss of alkali carboxylates.
NO448669A 1968-11-13 1969-11-12 NO132864C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19681808610 DE1808610C3 (en) 1968-11-13 1968-11-13 Process for the preparation of unsaturated esters of carboxylic acids

Publications (2)

Publication Number Publication Date
NO132864B true NO132864B (en) 1975-10-13
NO132864C NO132864C (en) 1976-01-28

Family

ID=5713188

Family Applications (1)

Application Number Title Priority Date Filing Date
NO448669A NO132864C (en) 1968-11-13 1969-11-12

Country Status (17)

Country Link
JP (1) JPS5120485B1 (en)
AT (1) AT289742B (en)
BE (1) BE741636A (en)
BG (1) BG24794A3 (en)
BR (1) BR6913955D0 (en)
CH (1) CH517692A (en)
CS (1) CS164835B2 (en)
DE (1) DE1808610C3 (en)
ES (1) ES373419A1 (en)
FR (1) FR2024859A1 (en)
GB (1) GB1250265A (en)
HU (1) HU171286B (en)
LU (1) LU59802A1 (en)
NL (1) NL6916848A (en)
NO (1) NO132864C (en)
RO (1) RO59690A (en)
SE (1) SE371433B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155791U (en) * 1974-10-24 1976-04-30
JPS51131397U (en) * 1975-04-11 1976-10-22
JPS51131399U (en) * 1975-04-11 1976-10-22
JPS51131398U (en) * 1975-04-11 1976-10-22
JPS51132100U (en) * 1975-04-14 1976-10-23
GB0201378D0 (en) 2002-01-22 2002-03-13 Bp Chem Int Ltd Process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190912A (en) * 1962-05-02 1965-06-22 Nat Distillers Chem Corp Process for preparing esters
IT725140A (en) * 1963-06-04

Also Published As

Publication number Publication date
NO132864C (en) 1976-01-28
DE1808610A1 (en) 1970-06-11
GB1250265A (en) 1971-10-20
DE1808610C3 (en) 1975-04-10
JPS5120485B1 (en) 1976-06-25
BE741636A (en) 1970-05-13
CH517692A (en) 1972-01-15
AT289742B (en) 1971-05-10
NL6916848A (en) 1970-05-15
RO59690A (en) 1976-06-15
BG24794A3 (en) 1978-05-12
HU171286B (en) 1977-12-28
SE371433B (en) 1974-11-18
FR2024859A1 (en) 1970-09-04
ES373419A1 (en) 1971-12-16
DE1808610B2 (en) 1974-08-22
BR6913955D0 (en) 1973-03-15
LU59802A1 (en) 1970-05-13
CS164835B2 (en) 1975-11-28

Similar Documents

Publication Publication Date Title
AU616551B2 (en) Process for starting-up an ethylene oxide reactor
KR100658383B1 (en) Catalysts for the gas-phase oxidation of ethylene and acetic acid to vinyl acetate and method for the production
US4600571A (en) Catalysts and their use in ammonia production
US4550185A (en) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst
US4224236A (en) Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
JP2000000473A (en) Catalyst in production of vinyl acetate and its use
US3634496A (en) Process for producing vinyl acetate
NO132864B (en)
DE1793474A1 (en) Process for the production of vinyl acetate
US4288558A (en) Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
US7265243B2 (en) Catalytic oxacylation vapor phase process
US3830834A (en) Process for the continuous preparation of vinyl acetate
US4010198A (en) Process for the preparation of allyl acetate
JPS5929054B2 (en) Production method of vinyl saccharide
SU1111684A3 (en) Process for producing acetic acid,acetic aldehyde,ethanol and c2-c4 olefins
US3637819A (en) Process for the manufacture of unsaturated esters of carboxylic acids
US3592840A (en) Production of vinyl acetate
US4571431A (en) Process for the production of allyl acetate
EP1112775B1 (en) Catalyst for the preparation of allyl acetate
EP0194328B1 (en) Manufacture of phenyl esters and phenol
US3441601A (en) Process for the manufacture of vinyl acetate
US3087970A (en) Synthesis of propargyl alcohol from formaldehyde and acetylene
NO125814B (en)
JPH0237329B2 (en)
NO123032B (en)