NO122497B - - Google Patents

Download PDF

Info

Publication number
NO122497B
NO122497B NO16687467A NO16687467A NO122497B NO 122497 B NO122497 B NO 122497B NO 16687467 A NO16687467 A NO 16687467A NO 16687467 A NO16687467 A NO 16687467A NO 122497 B NO122497 B NO 122497B
Authority
NO
Norway
Prior art keywords
electrode
sheath
corrugation
ribs
holder
Prior art date
Application number
NO16687467A
Other languages
Norwegian (no)
Inventor
R Saxholm
Original Assignee
Saxholm Rolf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saxholm Rolf filed Critical Saxholm Rolf
Priority to NO16687467A priority Critical patent/NO122497B/no
Priority to SE1366272A priority patent/SE381343B/en
Priority to SE329971A priority patent/SE400123B/en
Priority to SE199268A priority patent/SE356598B/xx
Priority to FR1573936D priority patent/FR1573936A/fr
Priority to GB773168A priority patent/GB1235685A/en
Priority to GB52761/70A priority patent/GB1235686A/en
Priority to DK63468A priority patent/DK121971B/en
Priority to NO132669A priority patent/NO122606B/no
Priority to DK688069A priority patent/DK127440B/en
Priority to CA105253A priority patent/CA936455A/en
Priority to CA105252A priority patent/CA936077A/en
Priority to US00156738A priority patent/US3843450A/en
Publication of NO122497B publication Critical patent/NO122497B/no
Priority to DK640271A priority patent/DK137806B/en
Priority to US05/502,108 priority patent/US4021308A/en
Priority to US05/502,107 priority patent/US3981776A/en
Priority to US07183671 priority patent/US4992377B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Discharge Heating (AREA)

Description

Elektrodemantel for sclvbrennende elektroder. Electrode jacket for sclv-burning electrodes.

Foreliggende oppfinnelse angår mantler for selvbrennende elektroder. Mantelen om-gir elektroden og senkes sammen med denne gjennom elektrodeholderen ned i smelte-ovnen. The present invention relates to sheaths for self-igniting electrodes. The mantle surrounds the electrode and is lowered together with it through the electrode holder into the melting furnace.

Brenningen (forkoksingen) av selvbrennende elektroder foregår under drift og ved ved ca. 400—450°C. Før brenningen har den varme og mer eller mindre flytende elek-trodemasse en ubetydelig elektrisk ledningsevne. Brenningen gjør massen fast og hard med god mekanisk styrke, samtidig som den gir elektroden en praktisk anvendbar elektrisk ledningsevne. The burning (coking) of self-igniting electrodes takes place during operation and at approx. 400-450°C. Before burning, the hot and more or less liquid electrode mass has negligible electrical conductivity. The firing makes the mass firm and hard with good mechanical strength, while at the same time giving the electrode a practically usable electrical conductivity.

Temperaturen i elektrodene under drift The temperature in the electrodes during operation

avtar i aksial retning fra spissen (i smelte-ovnen) til toppen. Under drift vil derfor elektrodene bestå av en nedre ferdigbrent del som er fast og hard, og en øvre del som er mer eller mindre flytende. Grenseområ-det mellom den brente og ubrente delen kal-les brennsonen. decreases in the axial direction from the tip (in the melting furnace) to the top. During operation, the electrodes will therefore consist of a lower pre-burnt part which is solid and hard, and an upper part which is more or less liquid. The border area between the burned and unburned part is called the burn zone.

Ved enkelte lysbueovner vil elektrodenes brennsone ligge på høyde med den vann-kjølte strømførende elektrodeholders underkant, d.v.s. nettopp der hvor elektroden får sin største mekaniske påkjenning. Denne beliggenhet av brennsonen er derfor meget uheldig og medfører ofte elektrodebrudd like under elektrodeholderen, — enten på grunn av mekanisk påkjenning (som f. eks. vibrasjon eller ras i ovnen) eller fordi elektrodemantelen smelter ovenfor brennsonen på grunn av for stor strømtetthet i mantelen rundt elektrodens ubrente del. In the case of some electric arc furnaces, the electrodes' burning zone will lie at the same height as the lower edge of the water-cooled current-carrying electrode holder, i.e. precisely where the electrode receives its greatest mechanical stress. This location of the combustion zone is therefore very unfortunate and often leads to electrode breakage just below the electrode holder, — either due to mechanical stress (such as vibration or collapse in the oven) or because the electrode sheath melts above the combustion zone due to excessive current density in the surrounding sheath the unburnt part of the electrode.

Foreliggende oppfinnelse har til øyemed The present invention aims to

å avhjelpe disse ulemper hvilket ifølge oppfinnelsen er oppnådd ved å erstatte den vanlige, glatte sylindriske elektrodemantel med en korrugert mantel, formet slik at kontakt- to remedy these disadvantages, which according to the invention has been achieved by replacing the usual, smooth cylindrical electrode sheath with a corrugated sheath, shaped so that contact

flatene mellom mantelen og elektrodeholderen reduseres. Herved reduseres samtidig det varmetap som oppstår fra elektrodemassen gjennom mantelen til elektrodeholderens kjølevann. the surfaces between the mantle and the electrode holder are reduced. This simultaneously reduces the heat loss that occurs from the electrode mass through the jacket to the electrode holder's cooling water.

I en elektrode med korrugert mantel kommer derfor brennsonen høyere i forhold til elektrodeholderens underkant enn i en elektrode med vanlig sylindrisk mantel. Elektroden får derved en større mekanisk styrke og en større elektrisk ledningsevne i In an electrode with a corrugated sheath, the burning zone is therefore higher in relation to the lower edge of the electrode holder than in an electrode with a normal cylindrical sheath. The electrode thereby gains greater mechanical strength and greater electrical conductivity

det kritiske området ved elektrodeholderens the critical area of the electrode holder

underkant. Korrugeringen bidrar således til å redusere faren for elektrodebrudd og øker elektrodenes belastningsevne. At brennsonen heves i forhold til elektrodeholderens underkant, gjør det samtidig mulig å forenkle lower edge. The corrugation thus helps to reduce the risk of electrode breakage and increases the load capacity of the electrodes. The fact that the burning zone is raised in relation to the lower edge of the electrode holder also makes it possible to simplify

eller helt unnvære det system av blikkribber som vanligvis er sveiset til mantelens inner-side. Et forenklet ribbesystem vil kunne gi or completely dispense with the system of tin ribs which are usually welded to the inner side of the mantle. A simplified rib system will be able to provide

en gunstigere overflate i elektrodens spiss og redusere elektrodeforbruket pr. produk-sjonsenhet. Videre vil et forenklet ribbesystem betinge en lavere pris pr. elektrodemantel. a more favorable surface at the tip of the electrode and reduce electrode consumption per production unit. Furthermore, a simplified rib system will result in a lower price per electrode sheath.

Korrugeringen kan være utført på mange forskjellige måter. Ifølge en utførel-sesform for oppfinnelsen dannes korrugeringen av kontinuerlige ribber som strekker seg i mantelens lengderetning. Ved denne utfø-relse dannes det mellom ribbene og elektrodeholderen kanaler som de varme gasser fra ovnen kan stige opp gjennom. Dette bidrar ytterligere til å redusere varmetapet fra elektrodemassen. Den samme eller lig-nende virkning oppnås ved skruelinjeformet anordning av ribbene eller ved en utførelse hvor langsgående eller eventuelt skruelinjeformete ribber er avbrutt med jevne mel-lomrom i sin lengderetning. The corrugation can be carried out in many different ways. According to one embodiment of the invention, the corrugation is formed by continuous ribs which extend in the longitudinal direction of the mantle. With this design, channels are formed between the ribs and the electrode holder through which the hot gases from the oven can rise. This further contributes to reducing the heat loss from the electrode mass. The same or similar effect is achieved by a helical arrangement of the ribs or by an embodiment where longitudinal or possibly helical ribs are interrupted with regular spaces in their longitudinal direction.

Ifølge en videre utførelse består korrugeringen helt eller delvis av innpressete vortéformete fordypninger. Disse bidrar i særlig grad til å erstatte de ellers vanlige blikkribber som er sveiset. til innsiden av mantelen. Slike vortéformete fordypninger kan anvendes i kombinasjon med langsgående eller skruelinjeformete korrugeringer. According to a further embodiment, the corrugation consists wholly or partly of pressed-in vorté-shaped depressions. These help to a particular extent to replace the otherwise usual tin slats that are welded. to the inside of the mantle. Such vorté-shaped recesses can be used in combination with longitudinal or helical corrugations.

Oppfinnelsen skal i det følgende be-skrives nærmere i forbindelse med tegningen som illustrerer noen utførelsesformer for oppfinnelsen. Fig. 1 viser et skjematisk aksialt snitt gjennom en avbrutt del av en elektrode med mantel av vanlig utførelse anbragt i en vann-avkjølt holder. Fig. 2 er et tilhørende horisontalt snitt. Fig. 3 viser på tilsvarende måte som fig. 1 en elektrode med aksialt korrugert mantel ifølge en utførelsesform for oppfinnelsen og fig. 4 er et tilhørende horisontalt snitt. Fig. 5 viser i noe større målestokk et avbrutt oppriss av en elektrodemantel med skruelinjeformet korrugering. Fig. 6 er et riss i likhet med fig. 5 av en elektrodemantel med avbrutt aksial korrugering. Fig. 7 er et riss i likhet med fig. 5 og 6 av en elektrodemantel forsynt med innpressete vortéformete fordypninger, idet venstre halvdel av figuren forøvrig viser en glatt mantel, mens høyre halvdel viser en mantel forsynt med aksial korrugering. Fig. 8 viser i noe større målestokk et snitt gjennom en av de vortéformete fordypninger. In the following, the invention will be described in more detail in connection with the drawing which illustrates some embodiments of the invention. Fig. 1 shows a schematic axial section through an interrupted part of an electrode with a jacket of a conventional design placed in a water-cooled holder. Fig. 2 is an associated horizontal section. Fig. 3 shows in a similar way as fig. 1 an electrode with an axially corrugated sheath according to an embodiment of the invention and fig. 4 is an associated horizontal section. Fig. 5 shows, on a slightly larger scale, an interrupted elevation of an electrode sheath with helical corrugation. Fig. 6 is a drawing similar to fig. 5 of an electrode sheath with interrupted axial corrugation. Fig. 7 is a drawing similar to fig. 5 and 6 of an electrode sheath provided with pressed-in vorté-shaped recesses, the left half of the figure otherwise showing a smooth sheath, while the right half shows a sheath provided with axial corrugation. Fig. 8 shows, on a slightly larger scale, a section through one of the vorté-shaped depressions.

På fig. 1 og 2 betegner 1 en vanlig, glatt, sylindrisk elektrodemantel fylt med elek-trodemasse 2. 3 er en holder utført med et ringformet hulrom 4 for sirkulasjon av kjøle-vannet. 5 betegner den elektroden omgivende del av et ovnshvelv og 6 er en tettingsring. In fig. 1 and 2, 1 denotes a normal, smooth, cylindrical electrode jacket filled with electrode mass 2. 3 is a holder made with an annular cavity 4 for circulation of the cooling water. 5 denotes the electrode surrounding part of a furnace vault and 6 is a sealing ring.

Foråt elektrodemassen skal holdes på plass og for å øke elektrodens elektriske ledningsevne i den ennå ubrente del, forsynes slike elektrodemantler med et innvendig system av blikkribber 7 som vist på fig. 2. Ved en slik elektrode vil brennsonen 8 i alminnelighet befinne seg i høyde med underkanten av holderen 3. På fig. 3 betegner 3, 4, 5 og 6 samme deler som på fig. 1. 11 er elektrodemantelen som er utført med en langsgående korrugering bestående av fremspringende ribber 12 og mellomliggende fordypninger 13. Som det tydeligst fremgår av fig. 4 dannes der av disse fordypninger og den tilstøtende vegg av beholderen 3 langsgående kanaler 14 som de varme gasser fra ovnen kan stige opp gjennom. Dels som følge herav og dels som følge av at berøringsflaten mellom inner-veggen av holderen .3 og elektrodemantelen 11 begrenses til utsiden av ribbene 12, heves brennsonen 15 noe opp fra underkanten av holderen 3. Ved utførelsen ifølge fig. 5 er mantelen forsynt med korrugeringer 17 med tilnærmet samme profil som korrugeringene 12, men anordnet skruelinjef ormet. Mellom korrugeringene dannes det her kontinuerlige skruelinjeformete forløpende kanaler 18 som de varme gasser fra ovnen kan stige opp gjennom. Fig. 6 viser en mantel med korrugeringer 19 svarende til korrugeringene 12, men avbrutt i lengderetningen. Også ved denne utførelse vil der mellom korrugeringene 19 dannes sammenhengende kanaler som de varme gasser kan stige opp gjennom. Fig. 7 viser sluttelig en utførelsesform ved hvilken mantelen er forsynt med innpressete vortéformete fordypninger 20. Venstre halvdel av fig. 7 viser en forøvrig glatt mantel hvor fordypningene 20 således trer istedetfor korrugeringene 12, 17 eller 19, mens høyre halvdel av figuren viser fordypningene 20 kombinert med en langsgående korrugering 12. Eventuelt kan fordypninger svarende til fordypningene 20 kombineres også med en skruelinjef ormet korrugering 17 eller en avbrutt langsgående korrugering 19. Before the electrode mass is to be held in place and to increase the electrode's electrical conductivity in the still unburned part, such electrode sheaths are provided with an internal system of tin ribs 7 as shown in fig. 2. With such an electrode, the burning zone 8 will generally be at the same height as the lower edge of the holder 3. In fig. 3 denotes 3, 4, 5 and 6 the same parts as in fig. 1. 11 is the electrode sheath which is made with a longitudinal corrugation consisting of protruding ribs 12 and intermediate recesses 13. As is most clearly evident from fig. 4 longitudinal channels 14 through which the hot gases from the oven can rise up are formed by these depressions and the adjacent wall of the container 3. Partly as a result of this and partly as a result of the contact surface between the inner wall of the holder 3 and the electrode sheath 11 being limited to the outside of the ribs 12, the burning zone 15 is raised somewhat from the lower edge of the holder 3. In the design according to fig. 5, the mantle is provided with corrugations 17 with approximately the same profile as the corrugations 12, but arranged helically. Between the corrugations, continuous spiral-shaped continuous channels 18 are formed here, through which the hot gases from the furnace can rise. Fig. 6 shows a mantle with corrugations 19 corresponding to the corrugations 12, but interrupted in the longitudinal direction. Also in this embodiment, continuous channels will be formed between the corrugations 19 through which the hot gases can rise. Fig. 7 finally shows an embodiment in which the mantle is provided with pressed-in vorté-shaped recesses 20. The left half of fig. 7 shows an otherwise smooth mantle where the recesses 20 thus replace the corrugations 12, 17 or 19, while the right half of the figure shows the recesses 20 combined with a longitudinal corrugation 12. Optionally, recesses corresponding to the recesses 20 can also be combined with a helical corrugation 17 or an interrupted longitudinal corrugation 19.

Ved samtlige utførelsesformer, fig. 5, 6 og 7, kan det innvendige ribbesystem helt unnværes. Formen av korrugeringene 17, 19 og 20 vil nemlig bevirke at elektrodemassen får tilstrekkelig støtte også uten slike ribber. In all embodiments, fig. 5, 6 and 7, the internal rib system can be completely dispensed with. The shape of the corrugations 17, 19 and 20 will cause the electrode mass to receive sufficient support even without such ribs.

Claims (5)

1. Elektrodemantel for selvbrennende elektroder, karakterisert ved at den er korrugert slik at den får kontakt med elektrodeholderen bare med en del av sin overflate.1. Electrode jacket for self-igniting electrodes, characterized in that it is corrugated so that it makes contact with the electrode holder only with part of its surface. 2. Elektrodemantel som angitt i påstand 1 karakterisert ved at korrugeringen dannes av kontinuerlige ribber (12) som strekker seg i mantelens lengderetning.2. Electrode sheath as stated in claim 1, characterized in that the corrugation is formed by continuous ribs (12) which extend in the longitudinal direction of the sheath. 3. Elektrodemantel som angitt i påstand 1, karakterisert ved at korrugeringene dannes av kontinuerlige ribber (17) som er anordnet skruelinjef ormet.3. Electrode jacket as stated in claim 1, characterized in that the corrugations are formed by continuous ribs (17) which are arranged in a helical shape. 4. Modifikasjon av elektrodemantel som angitt i påstand 2 eller 3, karakterisert ved at ribbene (19) er avbrutt i sin lengderetning. (Fig. 6).4. Modification of the electrode sheath as stated in claim 2 or 3, characterized in that the ribs (19) are interrupted in their longitudinal direction. (Fig. 6). 5. Elektrodemantel som angitt i påstand 1—4, karakterisert ved at korrugeringen helt eller delvis utgjøres av innpressete vortéformete fordypninger (20).5. Electrode sheath as stated in claim 1-4, characterized in that the corrugation is wholly or partly made up of pressed-in vorté-shaped recesses (20).
NO16687467A 1967-02-16 1967-02-16 NO122497B (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
NO16687467A NO122497B (en) 1967-02-16 1967-02-16
SE1366272A SE381343B (en) 1967-02-16 1968-02-15 CARRIER BODY
SE329971A SE400123B (en) 1967-02-16 1968-02-15 PROCEDURE AND DEVICE FOR PRIMARY LISTING LABORATORY SURVEY DATA
SE199268A SE356598B (en) 1967-02-16 1968-02-15
DK63468A DK121971B (en) 1967-02-16 1968-02-16 Tablet, paper disc or similar object suitable for contact with a substrate and containing a test dose of active substance for use in performing a microbiological, immunological or similar diffusion test.
GB773168A GB1235685A (en) 1967-02-16 1968-02-16 Magnetically responsive, biologically active substance, method and apparatus
GB52761/70A GB1235686A (en) 1967-02-16 1968-02-16 Improvements in diffusion testing and apparatus therefor
FR1573936D FR1573936A (en) 1967-02-16 1968-02-16
NO132669A NO122606B (en) 1967-02-16 1969-03-29
DK688069A DK127440B (en) 1967-02-16 1969-12-29 A method of performing diffusion tests for determining change in growth and / or reaction in a microorganism or other component used in immunological studies and present in or on a microporous substrate, and apparatus for performing the method.
CA105252A CA936077A (en) 1967-02-16 1971-02-12 Magnetically responsive, biologically active substance, method and apparatus
CA105253A CA936455A (en) 1967-02-16 1971-02-12 Magnetically responsive, biologically active substance, method and apparatus
US00156738A US3843450A (en) 1967-02-16 1971-06-25 Magnetically responsive,biologically active substance and associated methods
DK640271A DK137806B (en) 1967-02-16 1971-12-28 Method and reading apparatus for measuring data from laboratory examination of reactions.
US05/502,108 US4021308A (en) 1967-02-16 1974-08-30 Apparatus associated with magnetically responsive, biologically active substance for testing thereof
US05/502,107 US3981776A (en) 1967-02-16 1974-08-30 Magnetically responsive, biologically active substance and associated methods and apparatus
US07183671 US4992377B1 (en) 1967-02-16 1988-04-19 Article for carrying out biological or chemical procedures containing magnetically responsive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO16687467A NO122497B (en) 1967-02-16 1967-02-16

Publications (1)

Publication Number Publication Date
NO122497B true NO122497B (en) 1971-07-05

Family

ID=19909938

Family Applications (1)

Application Number Title Priority Date Filing Date
NO16687467A NO122497B (en) 1967-02-16 1967-02-16

Country Status (4)

Country Link
DK (2) DK121971B (en)
GB (1) GB1235685A (en)
NO (1) NO122497B (en)
SE (3) SE356598B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR231590A1 (en) * 1981-04-29 1984-12-28 Ciba Geigy Ag IMMUNOLOGICAL ANALYSIS DEVICE AND PROCEDURE TO OBTAIN IT

Also Published As

Publication number Publication date
DK127440B (en) 1973-11-05
DK121971B (en) 1971-12-27
SE381343B (en) 1975-12-01
SE400123B (en) 1978-03-13
GB1235685A (en) 1971-06-16
SE356598B (en) 1973-05-28

Similar Documents

Publication Publication Date Title
US2658094A (en) Combined electrode and skimmer for electric glass melting furnaces
NO149451B (en) PROCEDURE FOR PRODUCING CONTINUOUS ELECTRODES
NO122497B (en)
NO131922B (en)
CN106232265A (en) Casting ladle heater
US2520159A (en) Igniter for vaporizing oil burners of the open receptacle type
US2876269A (en) Electrode casing for self-baking electrodes
JP5836525B1 (en) Crucible furnace
US913888A (en) Electric furnace.
US2161916A (en) Electric shaft furnace
US3440322A (en) Electrical resistance furnaces
US3531275A (en) Use of silicide electrode in glass melting
NO158937B (en) ELECTRICAL MELTING Oven.
US2682566A (en) Radiation melting furnace
JPS6121170B2 (en)
SU39283A1 (en) Electric oven
US898691A (en) Electric-furnace process.
NO124620B (en)
US855441A (en) Cooling-jacket for electric-furnace electrodes.
US865016A (en) Electric furnace.
JP7437097B1 (en) Heater for electric melting furnace
SU63958A1 (en) The method of obtaining anhydrous magnesium chloride
US3182113A (en) Electric glass melting furnace
US1410086A (en) Furnace
US2101409A (en) Storm lantern