NO122493B - - Google Patents

Download PDF

Info

Publication number
NO122493B
NO122493B NO167488A NO16748867A NO122493B NO 122493 B NO122493 B NO 122493B NO 167488 A NO167488 A NO 167488A NO 16748867 A NO16748867 A NO 16748867A NO 122493 B NO122493 B NO 122493B
Authority
NO
Norway
Prior art keywords
emulsion
oil
filter
microns
water
Prior art date
Application number
NO167488A
Other languages
Norwegian (no)
Inventor
L Treat
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO122493B publication Critical patent/NO122493B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • B21C9/02Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M175/00Working-up used lubricants to recover useful products ; Cleaning
    • C10M175/04Working-up used lubricants to recover useful products ; Cleaning aqueous emulsion based
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/124Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms containing hydroxy groups; Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/142Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/14Containing carbon-to-nitrogen double bounds, e.g. guanidines, hydrazones, semicarbazones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/16Nitriles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/042Sulfate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2894Oils, i.e. hydrocarbon liquids for metal working or machining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)

Description

Påny-anvendbar smøremiddel-kjølemiddel-olje-i-vann-emulsjon for anvendelse Reusable lubricant-coolant-oil-in-water emulsion for use

ved formning av metall.when forming metal.

Foreliggende oppfinnelse vedrører en påny-anvendbar smøremiddel-kjølemiddel -ol je-i-vann-emuls jon for anvendelse ved formning av metall hvor arbeidsstykket og verktøyet bringes i kontakt med en strøm av emulsjonen, og hvor emulsjonen inneholder fra 0,5 til 20 vektprosent av en ren oppløselig olje, vann og et polykarboksylsyre-chelatiseringsmiddel som er et alkalimetallsalt, ammoniumsalt eller et aminsalt av en alkylenaminopoly-eddiksyre. The present invention relates to a reusable lubricant-coolant oil-in-water emulsion for use in forming metal where the workpiece and the tool are brought into contact with a stream of the emulsion, and where the emulsion contains from 0.5 to 20 percent by weight of a pure soluble oil, water and a polycarboxylic acid chelating agent which is an alkali metal salt, ammonium salt or an amine salt of an alkylene amino polyacetic acid.

I den følgende beskrivelse anvendes en del betegnelser som for ordens skyld skal klargjøres betydningen av: (1) aluminium og dets legeringer, inneholdende minst 70 vektprosent aluminium, kalles aluminium} (2) magnesium og dets legeringer, inneholdende minst 70 vektprosent magnesium, kalles magnesium; (3) kobber og dets legeringer inneholdende minst 50 vektprosent kobber, kalles kobber; (4) jern og dets legeringer, inneholdende minst 75 vektprosent jern, kalles "ferrometaller"; (5) valsing, bearbeiding, trekning, skjæring, fresning, avskalling, boring eller sliping av metaller kalles i det følgende "fremgangsmåte for formning av metall" eller "metallformning", og (6) uttrykket "rennende smøremiddel-kjølemiddel-emulsjon med olje i vann" skal omfatte slike emulsjoner som sprøytes på arbeidsstykket eller verktøyet. In the following description, a number of designations are used which, for the sake of clarity, must clarify the meaning of: (1) aluminum and its alloys, containing at least 70% aluminum by weight, are called aluminium} (2) magnesium and its alloys, containing at least 70% magnesium by weight, are called magnesium ; (3) copper and its alloys containing at least 50 percent by weight of copper are called copper; (4) iron and its alloys, containing at least 75 percent iron by weight, are called "ferrous metals"; (5) rolling, working, drawing, cutting, milling, peeling, drilling or grinding of metals is hereinafter called "metal forming process" or "metal forming", and (6) the term "flowing lubricant-coolant-oil emulsion in water" shall include such emulsions that are sprayed onto the workpiece or tool.

Ved fremgangsmåter for formning av metaller, hvor det kreves smøremiddel, er det blitt vanlig å anvende en emulsjon In methods for forming metals, where a lubricant is required, it has become common to use an emulsion

med olje i vann i stedet for tidligere anvendte, ikke vannholdige hydrokarbonsmøremidler. F.eks. ved valsing av et metall, som aluminium, magnesium eller stål ved hjelp av stålvalser, er det vanlig å anvende en emulsjon med olje i vann for å spyle valsene og with oil in water instead of previously used non-aqueous hydrocarbon lubricants. E.g. when rolling a metal, such as aluminium, magnesium or steel using steel rolls, it is common to use an oil-in-water emulsion to flush the rolls and

arbeidsstykket. Emulsjonen tjener både som kjølemiddel og smøre-middel. Når den anvendes som kjølemiddel ved skjære-arbeider, hjelper emulsjonen til å regulere temperaturen på skjæreverktøy-et. Som kjølemiddel ved andre formninger, f.eks. ved valsing, anvendes fordelingsmønsteret av emulsjonen på arbeidsvalsene for å regulere temperaturgradienten på valsene på tvers mot arbeidsstykket, hvorved formen på valsene reguleres. Strømningshastig-heten av emulsjonen på det metall som formes, regulerer temperaturen på dette under de forskjellige formningstrinn. the workpiece. The emulsion serves both as a coolant and a lubricant. When used as a coolant during cutting work, the emulsion helps to regulate the temperature of the cutting tool. As a coolant in other forms, e.g. in rolling, the distribution pattern of the emulsion on the work rolls is used to regulate the temperature gradient on the rolls across the workpiece, whereby the shape of the rolls is regulated. The flow rate of the emulsion on the metal being formed regulates its temperature during the various forming steps.

Som smøremiddel tjener emulsjonen til (1) å regulere de friksjonskrefter som eksisterer mellom arbeidsstykket og arbeids-verktøyet, (2) til å lette dannelsen av ønsket verktøybelegg under formningsoperasjonen, f.eks. belegg på valsene under valsing; (3) til å hindre en altfor kraftig overføring av metall fra arbeidsstykket til verktøyet eller fra verktøyet til arbeidsstykket, f.eks. mellom valsene og arbeidsstykket under valsing. As a lubricant, the emulsion serves to (1) regulate the frictional forces that exist between the workpiece and the working tool, (2) to facilitate the formation of the desired tool coating during the forming operation, e.g. coating on the rollers during rolling; (3) to prevent an excessively strong transfer of metal from the workpiece to the tool or from the tool to the workpiece, e.g. between the rollers and the workpiece during rolling.

Typiske smøremiddel-kjølemiddel-emulsjoner med olje i vann, som er anvendt for metallformning, som f.eks. valsing eller skjæring, har hovedsakelig bestått av 0,5 - 20 vektprosent av en olje i vann, idet oljen utgjøres av en blanding som kalles ren oppløselig olje eller oppløselig olje. En slik oppløselig olje selges som et konsentrat, som i alminnelighet inneholder 70- 90 vektprosent av en grunnolje, som en lett mineralolje, 1-20 vektprosent, beregnet på den oppløselige olje, av ett eller flere anioniske og/eller ikke-ioniske emulgeringsmidler for olje i vann, og resten i det vesentligste vann. For de fleste metallformningsmetoder må den oppløselige olje også inneholde 0,5 - 15 vektprosent smøringsevne-tilsetninger som f.eks. langkjedete fettsyrer og salter eller estere av disse, f.eks. alkanolamin-såper eller estere som butylstearater, som tjener som middel for ekstreme trykk. Slike emulsjoner fremstilles hensiktsmessig ved blanding av ett av de kommersielt tilgjengelige, hovedsakelig vannfrie konsentrater med vann. De kommersielle konsentrater inneholder vanligvis opp til 0,5 vektprosent bakteriedrepende midler og 0,5 - 5 vektprosent koblingsmiddel, dvs. en forbindelse som sta-biliserer konsentratet under lagring før anvendelsen. Typical lubricant-coolant emulsions with oil in water, which are used for metal forming, such as rolling or cutting, has mainly consisted of 0.5 - 20 percent by weight of an oil in water, the oil being made up of a mixture called pure soluble oil or soluble oil. Such a soluble oil is sold as a concentrate, which generally contains 70-90% by weight of a base oil, such as a light mineral oil, 1-20% by weight, calculated on the soluble oil, of one or more anionic and/or non-ionic emulsifiers for oil in water, and the rest mainly water. For most metal forming methods, the soluble oil must also contain 0.5 - 15% by weight of lubricity additives such as e.g. long-chain fatty acids and their salts or esters, e.g. alkanolamine soaps or esters such as butyl stearates, which serve as extreme pressure agents. Such emulsions are suitably prepared by mixing one of the commercially available, mainly anhydrous concentrates with water. The commercial concentrates usually contain up to 0.5% by weight of bactericides and 0.5 - 5% by weight of coupling agent, i.e. a compound which stabilizes the concentrate during storage before use.

Sammensetningen av selve den rene oppløselige olje danner ingen del av foreliggende oppfinnelse. Ved den påny-anvendbare smøremiddel-kjølemiddel-olje-i-vann-emulsjon i henhold til oppfinnelsen anvendes med praktisk talt alle alminnelig kjente og anvendte, kommersielt tilgjengelige oppløselige oljer uten modifi-kasjon av den oppløselige olje i og for seg. The composition of the pure soluble oil itself forms no part of the present invention. With the reusable lubricant-coolant-oil-in-water emulsion according to the invention, practically all commonly known and used, commercially available soluble oils are used without modification of the soluble oil in and of itself.

En typisk oppløselig olje, som er kommersielt tilgjen-gelig, har følgende vanlige sammensetning i vektprosent: lett mineralolje 83%, smøreevne-tilsetninger 11 prosent, emulgeringsmiddel 4 prosent, koblingsmiddel 0,5 prosent, bakteriedrepende middel 0,5 prosent og rengjøringsmiddel 1 prosent. A typical soluble oil, which is commercially available, has the following common composition by weight: light mineral oil 83%, lubricity additives 11%, emulsifier 4%, coupling agent 0.5%, bactericide 0.5% and cleaning agent 1% .

Den grunnolje som anvendes ved fremstillingen av en opp-løselig olje, velges i alminnelighet fra en lett hydrokarbon eller lett hydrokarbonblanding med en viskositet på 40-200 Saybolt Universal Seconds (SUS) ved 38°C. imidlertid kan andre smøremate-rialer som f.eks. fete oljer, såsom palmeolje eller syntetiske materialer, f.eks. palmeolje-substituenter også anvendes som en grunnolje ved fremstilling av oppløselig olje. Slike andre smøremateri-aler kan ha viskositeter på helt opp til 850 SUS. The base oil used in the production of a soluble oil is generally selected from a light hydrocarbon or light hydrocarbon mixture with a viscosity of 40-200 Saybolt Universal Seconds (SUS) at 38°C. however, other lubricants such as e.g. fatty oils, such as palm oil or synthetic materials, e.g. palm oil substitutes are also used as a base oil in the production of soluble oil. Such other lubricating materials can have viscosities of up to 850 SUS.

I foreliggende beskrivelse omfatter uttrykket "grunnolje" de lette hydrokarboner eller hydrokarbonblandinger som kalles lette mineraloljer, foruten smørematerialer inklusive vegetabilske oljer, såsom palmeolje, dyrefett, f.eks. isterolje, og palmeolje-substituenter og ekvivalenter derav, f.eks. polyglykoler og etere og estere derav, utvalgt blant slike materialer som ikke danner flekker på det metall som formes. In the present description, the term "base oil" includes the light hydrocarbons or hydrocarbon mixtures called light mineral oils, besides lubricating materials including vegetable oils, such as palm oil, animal fat, e.g. ice oil, and palm oil substitutes and equivalents thereof, e.g. polyglycols and ethers and esters thereof, selected from materials which do not stain the metal being formed.

Hensiktsmessige emulgeringsmidler for olje i vann, som anvendes i tilstrekkelige mengder til å emulgere grunnoljen, omfatter f.eke.: (1) alkylarylsulfonater såsom de høyere alkyl- benzensulfonater, hvor høyere alkyl betyr en alkylgruppe med i det minste 8 karbonatomer, f.eks. C^2H25C6H4S03Na; (2) fettalkylsulfa-ter, såsom C<H>3(CH2)^QØSO^Na; (3) de sulfonerte fettamider såsom C17H33CON^CH3^C2H4S03Na* ^ alkalimetallsalter av sulfonerte fettsyrer eller lignende. De andre alkalimetallsalter av disse forbin-delser og trietanolaminsaltene utgjør ekvivalenter av ovennevnte natriumsalter. Alkanolaminsåpene av langkjedete fettsyrer er særlig egnet, f.eks. diisopropanolamindietanolamin- eller monoetanol-aminsalter av oleinsyre, palmitinsyre eller stearinsyre, hvorunder saltene kan anvendes alene enkeltvis eller som blandinger. ;Hensiktsmessige ikke-ioniske emulgeringsmidler for olje;i vann inkluderer ikke-ioniske etere, f.eks. derivert fra alkyl-fenoler og étylenoksyd, f.eks. C8<H>17<C>6H4OC2H4(OC2H4)x0H, hvor x har en verdi av 9 - 14 eller mere, primære alkohol-etylenoksydaddukter og sekundære alkohol-etylenoksydaddukter. ;Når en av de ovenfor beskrevne emulsjoner for olje i vann anvendes ved metallformning, arbeider den som oftest godt til å begynne med både som kjølemiddel og som smøremiddel, skjønt det ofte kan iakttas at den oppnådde metalloverflate under metallformningen forbedres etter flere dagers anvendelse av emulsjonen. Ved fortsatt resirkulering og fornyet anvendelse opptar emulsjonen vanligvis faste, finfordelte materialer av metall, metalloksy-der, oksyderte oljer, smuss og vanlige industrielle forurensninger i luften. Dessuten kommer hydrauliske oljer og lagersmøremidler iblant inn i emulsjonen gjennom utilsiktet lekasje, og kalles kollektiv vagabondolje. Som en følge av slik forurensning og og-så av den almindelige anvendelse av emulsjoner, begynner emulsjonen å ødelegges, og de fine dråper i oljefasen danner større dråper, av hvilke en del samles i tilstrekkelig grad til å danne en betydelig mengde av kontinuerlig fri oljefase. ;Separeringen av den frie olje, dvs. grunnoljen, fra emulsjonen påvirker smøreegenskapene hos smøremidlet/kjølemidlet på ;en for valsingen uheldig måte, hvilket fører til at valseverket ikke kan motta det arbeidsstykke som mates inn i valsene, hvis ik-ke valsene er innstilt for bare en ubetydelig reduksjon av arbeidsstykket. Herved oppstår en uheldig minskning av den prosentuelle reduksjon som kan oppnåes pr. operasjon. Iblant opptar ikke valseverket arbeidsstykket hvis ikke valsene er innstilt på nullreduk-sjon. Ved skjæring eller sliping kan en altfor stor smøreevne redusere effektiviteten hos skjære- eller slipeverktøyet. Over-skuddet av kontinuerlig fri oljefase kan også renne ut på arbeidsstykket ved ikke skjærende formning, f.eks. valsing, og føre til ;til besværlig flekkdannelse under den etterfølgende behandling f.eks. varmebehandling. Lignende skadelige effekter kan iakttas uansett om den kontinuerlige frie oljefase kommer av ødeleg-gelsen av emulsjonen eller ansamling av vagabondolje, som hverken er emulgert eller fjernet fra systemet under resirkuleringen. ;I foreliggende søknad ansees en emulsjon, som inneholder, høyst ca. 0,2 vektprosent kontinuerlig fri oljefase for å være fri for slik fri oljefase. ;Ansamlingen av fast, finfordelt materiale påvirker form-ningen, f.eks. valsing på en uheldig måte. Det finfordelte materiale har en tilbøyelighet til å innleires i metalloverflaten, hvilket fører til en dårlig overflate. Innleiret finfordelt materiale ødelegger overflatebehandlinger så som eloksering eller belegning. Tidligere har disse problemer nødvendiggjort avskumning av en del av de flytende forurensninger fra emulsjonen og/eller en utfelling av faste partikler såsom en oppslemming på bunnen av store avsetningsbeholdere. Den borttagning som man herved oppnådde, var imidlertid ikke tilstrekkelig. En avskumning er også uheldig, idet en del anvendbar emulsjon fjernes sammen med forurensningene, hvorfor tilsetning av tilsatsolje er nødvendig. Man har forsøkt å filtrere smøremiddel-kjølemiddelemulsjonen-, men dette har vært vanskelig å gjennomføre i lengere perioder på grunn av tilstopning av filteret. Alle årsaker til tilstopning av filteret er ikke åpenbare, men det er sandsynlig at medvirkende faktorer er tilbøyeligheten hos den kontinuerlige frie oljefase til å samle seg på filtermaterialet, og således avskjerme eller blokkere ytterligere passasje av både den vannholdige fase og oljefasen i form av finfordelte dråper gjennom filteret, og også dannelsen og ansamlingen av polyvalente metallsåper i emulsjonen. Bare filtere som slipper igjennom relativt store partikler har kunnet arbeide i lengere perioder, og disse filtere er relativt ineffek-tive. I de fleste tilfeller har man helt enkelt kastet vekk hele emulsjonen etter 3-6 uker eller mindre av kontinuerlig anvendelse. De to systemer, som anvender en stor emulsjonsbeholder, har arbeidet i noe lengere perioder. I et valseverk innebærer dette en betydelig emulsjonsmengde. ;Typiske industrielle emulsjonssystemer varierer i størrelse fra kanskje 19 000 - 38 OOO liter eller derunder for mindre skjærings- eller slipearbeider til systemer på kanskje helt opp til 380 000 - 1 900 000 liter for store valseverk, av hvilke en del krever en sirkulasjon av 3800 - 38 000 liter emulsjon pr. minutt for ett eller flere valsestolpar. ;Ovennevnte ulemper er eliminert ved foreliggende oppfinnelse som angår en påny-anvendbar smøremiddel-kjølemiddel-olje-i-vann-emuls jon for anvendelse ved formning av metall hvor arbeidsstykket og verktøyet bringes i kontakt med en strøm av emulsjonen, og hvor emulsjonen inneholder fra 0,5 til 20 vektprosent av en ren oppløselig olje, vann og et polykarboksylsyre-chelatiseringsmiddel som er et alkalimetallsalt, ammoniumsalt eller et aminsalt av en alkylenaminopoly-eddiksyre, og midlet erkarakterisert vedat emulsjonen har en hårdhet opptil 400 ppm beregnet som CaCO^, en pH av fra 5 til 11, oljefasen er i form av kuler med en middels diameter i området 1 til 25 mikron og praktisk talt ingen kuler har en diameter som er større enn 50 mikron, emulsjonen er lett filtrerbar gjennom et mekanisk filter og er i alt vesentlig fri for faste partikler som er større enn en på forhånd bestemt størrelse innen området 0,5 til 10 mikron og er i alt vesentlig uten kontinuerlig fri oljefase. ;Særlig fordelaktig har emulsjonen en pH-verdi av fra 7 til 10. ;I tilfelle av at en skumdannelse danner et problem, er det hensiktsmessig å bringe hårdhetsinnholdet til området 25 til 400 ppm, fortrinnsvis 100 til 200 ppm. Foruten den opprinnelige innstilling er et bibehold av et regulert hårdhetsinnholdnivå som ligger under 400 milliondeler, uttrykt som CaCO^, og en pH-verdi på 5 - 11 vesentlig. En slik regulering av emulsjonen hindrer i høy grad en oljeseparering fra denne, og har ytterligere følgende viktige effekter: (a) emulsjonen stabiliseres slik at den kan filtreres gjennom et mekanisk filter, som kan fjerne fast, finfordelt materiale, som har en størrelse som overstiger 10 - 20 mikron, og fortrinnsvis overstiger 1 mikron, hvorunder et slikt filter er forsynt med et forbelegg av kisel? (b) faste, finfordelte forurensninger, f.eks. smuss, metallpartikler og metalloksydpartikler fjernes lett på filteret uten at filteret tilstoppes på forhånd; (c) vagabondoljer med liten viskositet, som lekker inn i systemet, emulgeres i alt vesentlig, hvorved mengden av fri oljefase blir den minst mulige, og (d) oksyderte oljer og reaksjonsprodukter av disse fjernes under filtreringen. ;Et viktig trekk ved foreliggende oppfinnelse er den opp-dagelse at den partikkeldiameteren av sfærene av emulgert olje i det minste delvis er en funksjon av både pH-verdien og hårdhets innholdet av emulsjonen, idet naturen og konsentrasjonen av de foreliggende emulgeringsmaterialer også er regulerende faktorer. Betydningen av hårdheten har hittil ikke vært kjent. Både kalsium- og magnesiumhårdhet oppstår i almindelighet delvis fra vann som anvendes for å fremstille emulsjonen. Store mengder vann tilsettes ofte og periodisk ved mange metallformningsmetoder for å erstatte tap på grunn av avdampning, hvilket medfører betydelig kalsium- og magnesiumhårdhet. Kalsium- og i en viss utstrekning magnesiumioner kommer også inn i emulsjonen fra betonggroper eller -sumper for valseverk og lagringsbeholdere, hvori emulsjonen mottas og lagres. Spesielt hva angår magnesium og aluminium er det anvendte arbeidsstykke en betydelig kilde for magnesium og/ eller kalsium- og/eller aluminium-ioner. Disse har vist seg å væ-re hovedkildene som medfører en oppbygning av hårdhetsinnholdet i emulsjonen, særlig kalsium og magnesium, da emulsjonen resirkuleres og anvendes påny. ;Mens praktisk talt alle hårdhets-ionene kan chelateres med de chelateringsmidler som anvendes ved oppfinnelsen ved behov, har en skumdannelse av emulsjonen under pumpingen og innsprøyt-ingen en tilbøyelighet til å skape et problem i de fleste tilfeller hvor hårdhetsnivået er altfor lavt. ;De metaller som kan valses eller formes ved foreliggende oppfinnelse, inkluderer aluminium, kobber, ferrometaller, som f.eks. stål og magnesium. Disse metaller kan formes i kold tilstand eller ved temperaturer helt opp til 565°C under anvendelse av foreliggende emulsjon. ;De chelateringsmidler som anvendes, utgjøres av alkalimetall- eller ammonium- eller aminsaltene av polykarboksylsyrer, inklusive sitronsyre, vinsyre, alkylenpolyaminpolyeddiksyrer og blandinger av disse salter av slike polykarboksylsyrer. Alkylen-polyaminpolyeddiksyrene inkluderer etylendiamintetraeddiksyre og dens velkjente homologer og analoger sem f.eks. N-hydroksyetylety-len-diamintrieddiksyre , dietylentriaminpentaeddiksyre, nitriltrieddiksyre, N-2-hydrokayetyliminodieddiksyre, cykloheksandiamintetraeddiksyre og deres åpenbare ekvivalenter. De angitte amin-salter eller -såper inkluderer spesielt de salter som fremstil- ;les av noen av disse polykarboksylsyrer og noen av etanolaminene. ;Den påny-anvendte smøremiddel-kjølemiddel-olje-i-vann-emulsjon som vanligvis anvendes ved foreliggende oppfinnelse';ved formning av et metall, hvorunder arbeidsstykket bringes i kontakt med en strøm av emulsjonen, omfatter: (1) 1-20 vektprosent av en ren, oppløselig olje; (2) polykarboksylsyrechelant som er forbrukt med metallioner utvalgt fra en gruppe bestående av kalsium, magnesium, aluminium og tunge metallioner; (3) opptil 400 milliondeler ikke cheiatert hårdhet uttrykt som CaCO^, og (4) resten i det vesentligste vann. Ved behov kan emulsjonen også inneholde (1) et skumdanneIses-under-trykkende middel og/eller (2) en korrosjonsbeskyttelse og/eller (3) ytterligere et smøreevne-forbedrende middel, hvorunder disse tilsetninger ikke overstiger ialt 5 vektprosent. ;Hvis den påny-anvendte emulsjon utgjøres av en tett emulsjon, som er bestemt for reverserings-valseverk- og skjære-arbeider, er den påny anvendte emulsjon ytterligerekarakterisert vedat den dispergerte grunnolje har form av sfærer med en gjennomsnittlig sfærediameter på 1-2 mikron og med praktisk talt ingen sfærer med en diameter som overstiger 5 mikron. ;Hvis den påny anvendte emulsjon utgjøres av en løs emulsjon, som er bestemt til å anvendes i et tandemverk eller ved arbeider hvor det kreves eller tolereres en større smøreevne, har den dispergerte oljefase form av sfærer med en gjennomsnittlig sfærediameter på 2-5 mikron med praktisk talt ingen sfærer' større enn 15 mikron. ;Hvis den påny anvendte emulsjon utgjøres av en grov emulsjon, som er bestemt for koldvalsing av stål eller aluminium, har den dispergerte oljefase ofte form av sfærer med en gjennomsnittlig sfærediameter på 5-20 mikron, hvorunder praktisk talt ingen sfærer er større enn 50 mikron. ;Hver og en av de tette, løse eller grove emulsjoner er lett filtrerbare ved behandling ifølge foreliggende oppfinnelse. Et viktig karakteristisk trekk ved oppfinnelsen er muligheten til å bibeholde og regulere sfærediametrene samtidig som ødeleggelse av emulsjonen unngåes. Også de normalt metastabile emulsjoner kan bibeholdes. ;Alkalimetall- eller ammonium- eller aminsaltene av polykarboksylsyre-chelateringsmidler som anvendes ved foreliggende oppfinnelse, tilsettes til det anvendte vann for fremstillingen av emulsjonen eller også kan chelateringsmidlet tilsettes til den utspedde emulsjon på hensiktsmessig måte, dvs. som en oppløsning, oppslemming eller et tørt, finfordelt fast materiale. I samtlige tilfeller tilsettes chelateringsmiddel, vanligvis i form av en 20-40 vektprosent vannholdig alkalisk oppløsning, i tilstrekkelig ;mengde for å tilveiebringe ovennevnte hårdhetsnivå og pH-verdi. Vanligvis analyseres det anvendte vann eller den ferdige emulsjon ;i foreliggende tilfelle, for å bestemme den nødvendige mengde che-lateringsmiddeloppløsning. ;Den ferdige emulsjon anvendes derpå under metallform - ingen. Vanligvis sirkuleres en ren emulsjon fra en lagringsbeholder til et arbeidsstykke, hvor den anvendes. Den emulsjon som av-renner fra arbeidsstykket og verktøyet eller valseverket, oppsamles f.eks. i en dam, hvor en del av det foreliggende finfordelte materiale avsettes. Emulsjonen kan ytterligere få avsettes i et system med en stor emulsjonsmengde, men i almindelighet er emulsjonen mere eller mindre konstant i sirkulasjon. En kort, rolig tidsperiode i en "smussig" beholder er hensiktsmessig for oppsamling og fjernelse av vagabondoljer før det etterfølgende filtrerings-trinn. Deretter tas det prøver av emulsjonen fra tid til annen for analyse og hårdhetsnivå og pH-verdien innstilles ved tilsetning av nødvendige mengder alkalisk oppløsning av chelateringsmiddel. Emulsjonen pumpes derpå til en beholder for ren emulsjon; ved behov kan tilsetningen av chelateringsmiddeloppløsning foregå til emulsjonen i denne beholder. ;Ved behov filtreres emulsjonen etter avsetning i beholderen for smussig emulsjon før prøvetagning, innstilling av hårdheten og pH-nivået, og pumping til beholderen for ren emulsjon. Filtreringen utføres hensiktsmessig og effektivt med praktisk talt hvilket som helst mekanisk filter, f.eks. et filter som benytter et filtrerpapir eller -membran, og særlig et filter som benytter et forbelegg av et kiselmateriale som f.eks. kiselgur.Filteret må kunne fjerne finfordelt materiale, fortrinnsvis alt materiale som er grovere enn 1 mikron. En meget effektiv filterform for en rask håndtering av store emulsjonsvolum er et filter av rørtypen, som anvender en gruppe sylindriske rør, som er utformet av trådnett avMonel-metall med maskeåpninger på 0,1-0,2 mm og belagt med et filterhjelpemiddel som f.eks. "Celite 545"-kiselgur, hvorav ca. 80% av partiklene er finere enn 40 mikron. Filterhjelpemidiet danner en filterkake på hvert rør, som tilbakeholder faste partikler som er større enn 1 mikron i den korteste dimensjon. Filterrøret stik-ker inn i den emulsjon som skal filtreres, og danner en meget stor filterflate innen en kompakt sone. ;Den rene emulsjon forblir i beholderen inntil den skal anvendes når cyklusen påbegynnes igjen med pumping av smøremiddel- kjølemiddelemulsjonen for metallformningen. Normalt er oppholdet i den rene beholder kort, av størrelsesordenen 5-30 minutter, så-fremt det ikke anvendes en meget stor emulsjonsmengde. Smøremid-del-k jølemiddel -emuls joner som er håndtert og behandlet på denne måte forblir stabile og anvendbare under mange cykler som utføres i en tidsperiode fra flere måneder opp til flere år, og vanligvis i det minste i 6 måneder eller mere av stadig anvendelse. ;De følgende eksempler illustrerer oppfinnelsen.;Eksempel 1;Dette eksempel vil best forståes i forbindelse med ved-lagte tegning, på hvilken er vist et skjematisk strømningskjerna for et emulsjonssystem på 68 000 liter. I diagrammet er vist strømningsmønsteret for smøremiddel/kjølemiddelemulsjonen fra valsene i et valseverk, gjennom kondisjoneringsanordningen og tilbake til valsene i et kommersielt aluminiumvalseverk. På tegningen betegner 1 generelt et 2,14 m bredt, reversibelt kvart-varmvalse-verk. I dette ble emner på 2 270 kg av aluminiumstøp (ikke vist) valset fra en opprinnelig dimensjon på ca. 35,5 cm til forskjellige tykkelser ned til en sluttykkelse på mindre enn ca. 6,4 mm, hvorunder metallet i sluttproduktet hadde formen av en skive eller plate. Produktene fra dette valseverk må være egnet enten som sluttprodukt eller som et emne for fortsatt valsing før anvendelsen. Under valsingen ble det tilført en strøm av smøremiddel/kjø-lemiddelemuls jonen på den i det foregående beskrevne måte til valsene gjennom et system av sprøytemunnstykker (ikke vist). Den relative fordeling av kjølemiddel over valsenes bredde ble regulert ved innstilling av strømmen gjennom de forskjellige anordnede munn-stykker. Ved regulering av kjølingsgraden på arbeidsvalsene fra deres midtpunkt til kantene reguleres den relative størrelse av avstanden mellom valsene fra midtpunktene til kantene på valsene, slik at planheten av produktene bibeholdes. Emulsjonstemperaturen lå innenfor det foretrukne område 48,9-54,4°c slik som den opprinnelig er på valsene. ;En strøm av kjølemiddel/emulsjon ble rettet også direkte på selve produktet (ikke vist) når det forlater valsene og innen det ble oppviklet eller oppskåret i stykker og lagret. En kjøling av metallproduktet i dette trinn er ofte vesentlig for å hindre overflateskader på det ferdige produkt. ;I dette tilfelle ble denne effekt tilveiebragt ved at smøremiddel-kjølemiddelemulsjonen, da den forlot valsene, kunne sprute ned over det valsede metall når dette forlot valseverket. ;Emulsjonen ble nøyaktig fjernet fra det valsede metall ved hjelp;av luftstråler (ikke vist) som blåste den av innen metallet hadde nådd videre langt fra valseverket. En nøyaktig fjernelse er av stor betydning, fordi resterende kjølemiddel på produktet kan med-føre en flekkdannelse på dets overflate. ;Kjølemidlet passerte derpå ved innvirkning av tyngdekraf-ten inn i en valseverkgrav 2, en 19 000 liters beholder under valseverket og derpå til en 15 000 liters dam 3. Disse to beholdere tjente først og fremst som oppsamlingssteder for kjølemidlet, ;men en gerdifull sekundær funksjon er skumlagring. Skum som dannes i valseverket, særlig ved sprøytekjøling, krever tid til å brytes ned og disse beholdere har en lagringskapasitet, som gir denne tid. Skumningsnedbrytningen kan understøttes ved tilsetning av egnede antiskumdannelsesmidler til innholdet i valseverkgraven. ;Dampumper 4 (sumppumper) førte deretter smøremiddel-kjølemiddelemulsjonen til en 45 420 liters lagringsbeholder 5, som er oppdelt i en ren avdeling 6 på 15 150 liter og en smussig avdeling 7 på 30 280 liter. Derfra ble den pumpet gjennom et mekanisk filter 8, som var forbelagt med "Celite 445"-kiselgur, og ble ført tilbake til den rene avdeling 6.Filteret hadde en kapasitet på ;5680 liter pr. minutt, en hastighet som er større enn det normale valseverkbehov. Da de rene og smussige avdelinger i lagringsbehol-deren står i forbindelse med hverandre, ble derfor den normale strøm, som ikke var påkrevet ved metallformningen, rettet fra den rene avdeling 6 til den smussige avdeling 7. Under midlertidige perioder, f.eks. når det mekanisk filter 8 ble bakvasket, ble strømningen reversert, dvs. den gikk fra den smussige avdeling til den rene avdeling. Derfor var det anordnet et sekundært grovere filter 9 i systemet for å fjerne tilstrekkelig store partikler som ville tilstoppe sprøytemunnstykkene i valseverket. Fra den rene avdeling 6 strømmet kjølemidlet vanligvis gjennom dette sekundære filter 9 på sin vei til valseverket. ;Derved hindres store forurensende partikler fra å føres;med kjølemidlet og tilstoppe sprøytemunnstykkene (ikke vist) i løpet av slike midlertidige perioder da det mekaniske filter ble passert. ;Det mekaniske filter besto av et filter av rørtypen, som inneholdt ca. 750 rør av vevet Monel-trådnett. Hvert rør hadde en diameter på 2,54 cm og en lengde på 91,4 cm. Tråddiameteren var 0,028 cm. Maskeåpningene hadde maksimumsdimensjoner på 0,015-0,020 cm ;mens de gjennomsnittlige åpninger var 0,010-0,015 cm.;Ved innledningen av filtreringen etter bakvasking av det mekaniske filter forsynes filterrørene med "Celite 545"-kiselgur et filterhjelpemiddel hvor ca. 80% av partiklene er finere enn 40mikron.Forbelegningen eller den på hvert filterrør dannede filter-teke tilbakeholdt faste partikler som hadde en diameter på over 1 mikron.Forbelegget ble innført i sugesiden av filterpumpen 10 ;fra en 568 liters beholder 11 i form av en suspensjon som inneholdt 45,3 kg fiHerhjelpemiddel og resten vann. Den ene halvpart av innholdet i denne beholder anvendes til å forbelegge filteret, hvorfor således 22,7 kg filterhjelpemiddel dannet den opprinnelige kake.Porøsiteten av filteret ble regulert i løpet av filterka-kens levetid ved periodisk regulerte tilsetninger av filterhjelpemiddel på velkjent måte. Disse etterfølgende tilsetninger ble fo-retatt fra en suspensjon kalt beskikningssats, og besto av ca. 22,7 kg filterhjelpemiddel og 1,037 liter vann. Normalt ble beskikningssatsen tilført i løpet av 3 sekunder pr. minutt med en hastighet som var tilstrekkelig til å gi ca. 22,7 kg filterhjelpemiddel i løpet av hver 24 timers periode. Foruten det opprinnelige 22,7 kg forbelegg kan filteret anvende ytterligere 90,8 kg beskikningssats. Under normale driftsbetingelser oppnådde man således ca. 5 dagers filterdrift mellom hver bakvasking. Hvis en uvanlig situasjon inn-traff, f.eks. en altfor stor lekasje av vagabondolje inn i systemet, eller en større forurensningsbelastning under valsing av visse legeringer, anvender man en raskere tilførsel av beskikningssatsen for å unngå et altfor høyt trykkfall over filteret. I dette tilfelle ble cyklen mellom bakvaskingene forkortet. * Suitable oil-in-water emulsifiers, used in sufficient amounts to emulsify the base oil, include e.g.: (1) alkyl aryl sulfonates such as the higher alkyl benzene sulfonates, where higher alkyl means an alkyl group of at least 8 carbon atoms, e.g. . C^2H25C6H4SO3Na; (2) fatty alkyl sulfates, such as C<H>3(CH2)^Q0SO^Na; (3) the sulfonated fatty amides such as C17H33CON^CH3^C2H4S03Na* ^ alkali metal salts of sulfonated fatty acids or the like. The other alkali metal salts of these compounds and the triethanolamine salts constitute equivalents of the above-mentioned sodium salts. The alkanolamine soaps of long-chain fatty acids are particularly suitable, e.g. diisopropanolamine diethanolamine or monoethanolamine salts of oleic acid, palmitic acid or stearic acid, whereby the salts can be used individually or as mixtures. ;Suitable nonionic emulsifiers for oil;in water include nonionic ethers, e.g. derived from alkyl phenols and ethylene oxide, e.g. C8<H>17<C>6H4OC2H4(OC2H4)x0H, where x has a value of 9 - 14 or more, primary alcohol-ethylene oxide adducts and secondary alcohol-ethylene oxide adducts. When one of the above-described oil-in-water emulsions is used in metal forming, it usually works well initially both as a coolant and as a lubricant, although it can often be observed that the metal surface obtained during metal forming improves after several days of using the emulsion . With continued recycling and renewed use, the emulsion usually absorbs solid, finely divided materials of metal, metal oxides, oxidized oils, dirt and common industrial pollutants in the air. In addition, hydraulic oils and bearing lubricants sometimes enter the emulsion through accidental leakage, and are collectively called vagabond oil. As a consequence of such contamination and also of the general use of emulsions, the emulsion begins to break down, and the fine droplets in the oil phase form larger droplets, a portion of which collects to a sufficient extent to form a considerable amount of continuous free oil phase . The separation of the free oil, i.e. the base oil, from the emulsion affects the lubrication properties of the lubricant/coolant in a way that is unfavorable for rolling, which means that the rolling mill cannot receive the workpiece that is fed into the rolls, if the rolls are not adjusted for only a negligible reduction of the workpiece. This results in an unfortunate reduction in the percentage reduction that can be achieved per operation. Sometimes the rolling mill does not take up the workpiece if the rolls are not set to zero reduction. When cutting or grinding, too much lubricity can reduce the efficiency of the cutting or grinding tool. The surplus of continuous free oil phase can also flow onto the workpiece in non-cutting shaping, e.g. rolling, and lead to troublesome staining during the subsequent treatment, e.g. heat treatment. Similar harmful effects can be observed regardless of whether the continuous free oil phase comes from the destruction of the emulsion or the accumulation of stray oil, which is neither emulsified nor removed from the system during recycling. In the present application, an emulsion is considered to contain, at most approx. 0.2% by weight continuous free oil phase to be free of such free oil phase. The accumulation of solid, finely divided material affects the shaping, e.g. rolling in an unfortunate way. The finely divided material has a tendency to become embedded in the metal surface, leading to a poor surface. Embedded finely divided material destroys surface treatments such as anodizing or coating. In the past, these problems have necessitated defoaming of a portion of the liquid contaminants from the emulsion and/or a precipitation of solid particles such as a slurry at the bottom of large deposition containers. However, the removal achieved was not sufficient. A skimming is also unfortunate, as some usable emulsion is removed together with the contaminants, which is why the addition of additive oil is necessary. Attempts have been made to filter the lubricant-coolant emulsion-, but this has been difficult to carry out for longer periods due to clogging of the filter. All causes of filter clogging are not obvious, but it is likely that contributing factors are the tendency of the continuous free oil phase to accumulate on the filter material, thus shielding or blocking further passage of both the aqueous phase and the oil phase in the form of finely divided droplets through the filter, and also the formation and accumulation of polyvalent metal soaps in the emulsion. Only filters that let through relatively large particles have been able to work for longer periods, and these filters are relatively ineffective. In most cases, the entire emulsion has simply been thrown away after 3-6 weeks or less of continuous use. The two systems, which use a large emulsion container, have worked for somewhat longer periods. In a rolling mill, this involves a significant amount of emulsion. ;Typical industrial emulsion systems range in size from perhaps 19,000 - 38,000 liters or less for smaller cutting or grinding operations to systems of perhaps as much as 380,000 - 1,900,000 liters for large rolling mills, some of which require a circulation of 3800 - 38,000 liters of emulsion per minute for one or more pairs of roller posts. The above-mentioned disadvantages are eliminated by the present invention, which relates to a reusable lubricant-coolant-oil-in-water emulsion for use in forming metal where the workpiece and the tool are brought into contact with a stream of the emulsion, and where the emulsion contains from 0.5 to 20% by weight of a pure soluble oil, water and a polycarboxylic acid chelating agent which is an alkali metal salt, ammonium salt or an amine salt of an alkylene amino polyacetic acid, and the agent is characterized in that the emulsion has a hardness up to 400 ppm calculated as CaCO^, a pH of from 5 to 11, the oil phase is in the form of spheres with an average diameter in the range of 1 to 25 microns and practically no spheres have a diameter greater than 50 microns, the emulsion is easily filterable through a mechanical filter and is in all substantially free of solid particles larger than a predetermined size within the range of 0.5 to 10 microns and is substantially free of continuous free oil phase. ;Particularly advantageously, the emulsion has a pH value of from 7 to 10. ;In the event that foaming forms a problem, it is appropriate to bring the hardness content to the range of 25 to 400 ppm, preferably 100 to 200 ppm. In addition to the original setting, maintaining a regulated hardness content level that is below 400 parts per million, expressed as CaCO^, and a pH value of 5 - 11 is essential. Such regulation of the emulsion greatly prevents oil separation from it, and has the following important additional effects: (a) the emulsion is stabilized so that it can be filtered through a mechanical filter, which can remove solid, finely divided material, which has a size exceeding 10 - 20 microns, and preferably exceeds 1 micron, below which such a filter is provided with a pre-coating of silicon? (b) solid, finely divided contaminants, e.g. dirt, metal particles and metal oxide particles are easily removed on the filter without clogging the filter beforehand; (c) vagabond oils of low viscosity, which leak into the system, are essentially emulsified, whereby the amount of free oil phase becomes the smallest possible, and (d) oxidized oils and their reaction products are removed during filtration. An important feature of the present invention is the discovery that the particle diameter of the spheres of emulsified oil is at least partly a function of both the pH value and the hardness content of the emulsion, the nature and concentration of the present emulsifying materials also being regulating factors . The significance of the hardness has not been known until now. Both calcium and magnesium hardness generally arise in part from water used to prepare the emulsion. Large amounts of water are added frequently and periodically in many metal forming methods to replace losses due to evaporation, which results in significant calcium and magnesium hardness. Calcium and to a certain extent magnesium ions also enter the emulsion from concrete pits or sumps for rolling mills and storage containers, in which the emulsion is received and stored. Especially with regard to magnesium and aluminium, the used workpiece is a significant source of magnesium and/or calcium and/or aluminum ions. These have been shown to be the main sources that lead to a build-up of the hardness content in the emulsion, particularly calcium and magnesium, as the emulsion is recycled and used again. While practically all the hardness ions can be chelated with the chelating agents used in the invention if necessary, foaming of the emulsion during pumping and injection has a tendency to create a problem in most cases where the hardness level is far too low. The metals which can be rolled or shaped by the present invention include aluminium, copper, ferrous metals, such as e.g. steel and magnesium. These metals can be formed in a cold state or at temperatures up to 565°C using the present emulsion. The chelating agents used consist of the alkali metal or ammonium or amine salts of polycarboxylic acids, including citric acid, tartaric acid, alkylene polyamine polyacetic acids and mixtures of these salts of such polycarboxylic acids. The alkylene-polyamine polyacetic acids include ethylenediaminetetraacetic acid and its well-known homologues and analogues, e.g. N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitriletriacetic acid, N-2-hydroxyethyliminodiacetic acid, cyclohexanediaminetetraacetic acid and their obvious equivalents. The specified amine salts or soaps include in particular those salts produced from some of these polycarboxylic acids and some of the ethanolamines. ;The recycled lubricant-coolant-oil-in-water emulsion commonly used in the present invention';in forming a metal, during which the workpiece is brought into contact with a stream of the emulsion, comprises: (1) 1-20 percent by weight of a pure, soluble oil; (2) polycarboxylic acid chelant which is consumed with metal ions selected from the group consisting of calcium, magnesium, aluminum and heavy metal ions; (3) up to 400 parts per million non-chelated hardness expressed as CaCO^, and (4) the remainder essentially water. If necessary, the emulsion can also contain (1) a foaming agent and/or (2) a corrosion protection agent and/or (3) a further lubricity-improving agent, whereby these additions do not exceed a total of 5 percent by weight. If the reused emulsion consists of a dense emulsion, which is intended for reversing rolling mill and cutting work, the reused emulsion is further characterized in that the dispersed base oil is in the form of spheres with an average sphere diameter of 1-2 microns and with virtually no spheres exceeding 5 microns in diameter. If the reused emulsion consists of a loose emulsion, which is intended to be used in a tandem plant or in works where a greater lubricity is required or tolerated, the dispersed oil phase has the form of spheres with an average sphere diameter of 2-5 microns with virtually no spheres' larger than 15 microns. If the reused emulsion consists of a coarse emulsion, which is intended for cold rolling of steel or aluminum, the dispersed oil phase often takes the form of spheres with an average sphere diameter of 5-20 microns, among which practically no spheres are larger than 50 microns . Each of the dense, loose or coarse emulsions is easily filterable by treatment according to the present invention. An important characteristic feature of the invention is the ability to maintain and regulate the sphere diameters while avoiding destruction of the emulsion. The normally metastable emulsions can also be retained. ;The alkali metal or ammonium or amine salts of polycarboxylic acid chelating agents used in the present invention are added to the water used for the preparation of the emulsion or the chelating agent can also be added to the diluted emulsion in an appropriate manner, i.e. as a solution, slurry or a dry , finely divided solid material. In all cases, a chelating agent is added, usually in the form of a 20-40% by weight aqueous alkaline solution, in sufficient quantity to provide the above-mentioned hardness level and pH value. Usually, the water used or the finished emulsion, in the present case, is analyzed to determine the required amount of chelating agent solution. The finished emulsion is then used under metal form - none. Typically, a pure emulsion is circulated from a storage container to a workpiece, where it is applied. The emulsion that drains from the workpiece and the tool or the rolling mill is collected, e.g. in a pond, where part of the present finely divided material is deposited. The emulsion can further be deposited in a system with a large amount of emulsion, but in general the emulsion is more or less constant in circulation. A short, quiet period of time in a "dirty" container is appropriate for the collection and removal of stray oils before the subsequent filtration step. Samples of the emulsion are then taken from time to time for analysis and hardness level and the pH value is adjusted by adding the necessary amounts of alkaline solution of chelating agent. The emulsion is then pumped to a pure emulsion container; if necessary, the addition of chelating agent solution can take place to the emulsion in this container. If necessary, the emulsion is filtered after settling in the container for dirty emulsion before sampling, setting the hardness and pH level, and pumping to the container for clean emulsion. The filtration is carried out appropriately and efficiently with practically any mechanical filter, e.g. a filter that uses a filter paper or membrane, and in particular a filter that uses a pre-coating of a silicon material such as e.g. diatomaceous earth. The filter must be able to remove finely divided material, preferably all material that is coarser than 1 micron. A very effective form of filter for the rapid handling of large volumes of emulsion is a tube-type filter, which uses a group of cylindrical tubes, which are formed of wire mesh of Monel metal with mesh openings of 0.1-0.2 mm and coated with a filter aid such as f .ex. "Celite 545" diatomaceous earth, of which approx. 80% of the particles are finer than 40 microns. The filter aid media forms a filter cake on each tube, which retains solid particles larger than 1 micron in the shortest dimension. The filter tube sticks into the emulsion to be filtered, and forms a very large filter surface within a compact zone. ;The clean emulsion remains in the container until it is to be used when the cycle begins again with the pumping of the lubricant-coolant emulsion for the metal forming. Normally, the stay in the clean container is short, of the order of 5-30 minutes, unless a very large amount of emulsion is used. Lubricant-part-coolant emulsions handled and treated in this way remain stable and serviceable during many cycles performed over a period of time ranging from several months up to several years, and usually at least for 6 months or more of continuous use . The following examples illustrate the invention. ;Example 1;This example will best be understood in connection with the attached drawing, which shows a schematic flow core for an emulsion system of 68,000 litres. The diagram shows the flow pattern of the lubricant/coolant emulsion from the rolls in a rolling mill, through the conditioner and back to the rolls in a commercial aluminum rolling mill. In the drawing, 1 generally denotes a 2.14 m wide, reversible quarter-hot-roll mill. In this, blanks of 2,270 kg of cast aluminum (not shown) were rolled from an original dimension of approx. 35.5 cm to various thicknesses down to a final thickness of less than approx. 6.4 mm, below which the metal in the final product had the shape of a disk or plate. The products from this rolling mill must be suitable either as a final product or as a blank for further rolling before use. During rolling, a stream of lubricant/coolant emulsion was supplied to the rolls in the previously described manner through a system of spray nozzles (not shown). The relative distribution of coolant over the width of the rollers was regulated by setting the flow through the various arranged nozzles. By regulating the degree of cooling of the work rolls from their center to the edges, the relative size of the distance between the rolls from the center to the edges of the rolls is regulated, so that the flatness of the products is maintained. The emulsion temperature was within the preferred range of 48.9-54.4°c as it is originally on the rolls. A flow of coolant/emulsion was also directed directly at the product itself (not shown) as it leaves the rolls and before it was wound or cut into pieces and stored. A cooling of the metal product in this step is often essential to prevent surface damage to the finished product. In this case, this effect was provided by the lubricant-coolant emulsion, as it left the rolls, being able to splash down over the rolled metal as it left the rolling mill. The emulsion was accurately removed from the rolled metal by means of air jets (not shown) which blew it off before the metal had advanced far from the rolling mill. Accurate removal is of great importance, because residual coolant on the product can lead to staining on its surface. The coolant then passed under the influence of gravity into a rolling mill pit 2, a 19,000 liter container under the rolling mill and then into a 15,000 liter pond 3. These two containers primarily served as collection points for the coolant, but a gerdiful secondary function is foam storage. Foam that forms in the rolling mill, especially during spray cooling, requires time to break down and these containers have a storage capacity, which allows this time. The foam breakdown can be supported by adding suitable anti-foaming agents to the contents of the rolling mill pit. Steam pumps 4 (sump pumps) then conveyed the lubricant-refrigerant emulsion to a 45,420 liter storage tank 5, which is divided into a clean compartment 6 of 15,150 liters and a dirty compartment 7 of 30,280 liters. From there it was pumped through a mechanical filter 8, which was pre-coated with "Celite 445" diatomaceous earth, and was returned to the clean compartment 6. The filter had a capacity of ;5680 liters per minute, a speed that is greater than the normal rolling mill requirement. As the clean and dirty compartments in the storage container are connected to each other, the normal flow, which was not required during the metal forming, was therefore directed from the clean compartment 6 to the dirty compartment 7. During temporary periods, e.g. when the mechanical filter 8 was backwashed, the flow was reversed, i.e. it went from the dirty compartment to the clean compartment. Therefore, a secondary coarser filter 9 was arranged in the system to remove sufficiently large particles that would clog the spray nozzles in the rolling mill. From the clean compartment 6, the coolant usually flowed through this secondary filter 9 on its way to the rolling mill. ;Thereby, large contaminating particles are prevented from being carried with the coolant and clogging the spray nozzles (not shown) during such temporary periods when the mechanical filter was passed. The mechanical filter consisted of a pipe-type filter, which contained approx. 750 tubes of woven Monel wire mesh. Each tube had a diameter of 2.54 cm and a length of 91.4 cm. The wire diameter was 0.028 cm. The mesh openings had maximum dimensions of 0.015-0.020 cm, while the average openings were 0.010-0.015 cm. At the start of the filtration after backwashing the mechanical filter, the filter tubes are supplied with "Celite 545" diatomaceous earth, a filter aid where approx. 80% of the particles are finer than 40 microns. The pre-coating or the filter-teke formed on each filter tube retained solid particles that had a diameter of over 1 micron. The pre-coating was introduced into the suction side of the filter pump 10; from a 568 liter container 11 in the form of a suspension containing 45.3 kg fiHer aid and the rest water. One half of the contents of this container is used to pre-coat the filter, which is why 22.7 kg of filter aid formed the original cake. The porosity of the filter was regulated during the life of the filter cake by periodically regulated additions of filter aid in a well-known way. These subsequent additions were made from a suspension called the coating rate, and consisted of approx. 22.7 kg of filter aid and 1.037 liters of water. Normally, the deposition rate was added within 3 seconds per minute at a speed that was sufficient to give approx. 22.7 kg of filter aid during each 24 hour period. In addition to the original 22.7 kg pre-coating, the filter can use an additional 90.8 kg coating rate. Under normal operating conditions, approx. 5 days of filter operation between each backwash. If an unusual situation occurred, e.g. an excessively large leakage of tramp oil into the system, or a greater contamination load during rolling of certain alloys, a faster supply of the coating rate is used to avoid an excessively high pressure drop across the filter. In this case, the cycle between backwashes was shortened.*

Bakvaskingen kjever ca. 35 minutter. Under bakvaskingen ble kjølemiddel tømt fra filterbeholderen i en 5680 liters gjen-vinnings-lagringsbeholder 13. Hele gjenvinningsfiltercyklusen tar ca. 7 timer. Filtreringen av bakvaskings-materialet for å holde tilbake anvendt fast filterhjelpemiddel som skal kastes The rear washing jaws approx. 35 minutes. During the backwash, coolant was emptied from the filter container into a 5,680 liter recycling storage container 13. The entire recycling filter cycle takes approx. 7 hours. The filtration of the backwash material to retain used solid filter aid to be discarded

vekk, tilveiebringes hensiktsmessig ved anvendelse av et filter av tøytypen eller lignende (ikke vist. away, is suitably provided by using a filter of the cloth type or similar (not shown.

Tilsetninger til emulsjonssystemet ble utført på følgen-de steder: (1) til erstatning av vann som er gått tapt ved avdampning og ved å bli igjen på produktet ble innført direkte i den smussige avdeling 7 (opp til 26 500 liter pr. dag). Avionisert vann anvendes for å minske tilførselen av magnesium- og kalsium-ioner så meget som mulig i systemet. Leilighetsvis anvendes vanlig hårdt vann, dvs- en viss hårdhet ble med hensikt tilført for å minske skumdannelsen så meget som mulig; (2) oppløselig olje og chelateringsmiddel ble tilført ved dammen (sumpen) 3; (3) ved behov ble antiskumningsmiddel tilført ved valseverkgraven (2). Additions to the emulsion system were carried out in the following places: (1) to replace water lost by evaporation and remaining on the product was introduced directly into the dirty compartment 7 (up to 26,500 liters per day). Deionized water is used to reduce the supply of magnesium and calcium ions as much as possible in the system. Regular hard water is occasionally used, i.e. a certain hardness was purposely added to reduce foam formation as much as possible; (2) soluble oil and chelating agent were added at pond (swamp) 3; (3) if necessary, anti-foaming agent was added at the rolling mill pit (2).

Prøver for analytisk kontroll ble fjernet etter den en-delige filtrering straks innen smøremiddel-kjølemiddelemulsjonen ble pumpet til valseverket. Samples for analytical control were removed after the one-part filtration immediately before the lubricant-coolant emulsion was pumped to the rolling mill.

Sammensetningen av smøremiddel-kjølemiddel-emulsjonen ble bibeholdt på følgende måte: Oljefasen i emulsjonen besto av 4,5-6,0 vektprosent av en lett olje med en viskositet ved 38°C på 100-200 SUS, emulgert i vann med ett eller flere anioniske og/eller ikke-ioniske emulgeringsmidler som anført i det foregående. Emulsjonen fremstilles med vann. Til den oppnådde emulsjon tilsettes en vannholdig oppløsning av et alkalisk chelateringsmiddel. Den anvendte mengde av et slikt alkalisk chelateringsmiddel var slik at hårdheten på vannfasen i emulsjonen gikk opp til 100-200 PPm uttrykt som CaCO^, og pH-verdien til 9-10 for å gi emulsjonen de ønskede egenskaper av stabilitet og smøreevne. Da hårdheten for emulsjonen nærmet seg 200 ppm, ble ytterligere chelateringsmiddel tilsatt. The composition of the lubricant-coolant emulsion was maintained as follows: The oil phase in the emulsion consisted of 4.5-6.0 weight percent of a light oil with a viscosity at 38°C of 100-200 SUS, emulsified in water with one or more anionic and/or nonionic emulsifiers as listed above. The emulsion is prepared with water. An aqueous solution of an alkaline chelating agent is added to the emulsion obtained. The amount of such an alkaline chelating agent used was such that the hardness of the water phase in the emulsion went up to 100-200 PPm expressed as CaCO^, and the pH value to 9-10 to give the emulsion the desired properties of stability and lubricity. When the hardness of the emulsion approached 200 ppm, additional chelating agent was added.

Nedenstående analytiske kontrollprøver ble utført rutine-messig for å bestemme tidspunkter for tilsetninger, som var nødven-dig for å bibeholde de ønskede egenskaper hos smøremiddel-kjøle-middelemuls jonene . 1. Prosent oppløselig olje. Denne prøve gir konsentrasjonen av olje i emulsjonen. Konsentrasjonen bestemmes ved å spalte en prøve av emulsjonen med syre, sentrifugere den spaltede emulsjon og måle oljeskiktet. En innstilling av oljekonsentrasjonen til det ønskede område ble frembragt ved tilsetning av oppløselig olje eller avionisert vann. 2. Prosent fri olje. Denne bestemmes ved sentrifugering av en prøve av emulsjonen i en på forhånd bestemt tidsperiode og må-ling av oljeskiktet. Vanligvis skal bare spor være synlige. Hensiktsmessig tilsettes, når det frie oljenivå har nådd 0,2-0,4%, chelateringsmiddel, for å kompensere. Når det frie oljenivå når et nivå på 0,6 vektprosent, blir det vanskelig å innføre stoffet i valseverket på grunn av en alt for stor smøreevne. 3. Filtreringstid. Denne prøve måler tiden for 3,8 liter varm smøremiddel-kjølemiddelemulsjon til" å passere gjennom et Whatman No. 30-filterpapir med en dobbelt tykkelse og en diameter på 7 cm under sugetrykk. En antagelig tidsperiode er 5-8 minutter ved et differentialtrykk på 0,7 kg/cm . Høyere verdier kan antyde at filteret ikke arbeider på riktig måte, hvilket fører til en alt for kraftig smussansamling, eller kan indikere en lav chelate-ringssalt- og/eller høy vagabondolje-konsentrasjon. The analytical control tests below were carried out routinely to determine the times for additions, which were necessary to maintain the desired properties of the lubricant-coolant emulsion. 1. Percent soluble oil. This sample gives the concentration of oil in the emulsion. The concentration is determined by splitting a sample of the emulsion with acid, centrifuging the split emulsion and measuring the oil layer. A setting of the oil concentration to the desired range was produced by the addition of soluble oil or deionized water. 2. Percent free oil. This is determined by centrifuging a sample of the emulsion for a predetermined period of time and measuring the oil layer. Usually only traces should be visible. Appropriately, when the free oil level has reached 0.2-0.4%, chelating agent is added to compensate. When the free oil level reaches a level of 0.6% by weight, it becomes difficult to introduce the material into the rolling mill due to an excessively large lubricating capacity. 3. Filtration time. This test measures the time for 3.8 liters of hot lubricant-coolant emulsion to" pass through a Whatman No. 30 filter paper of a double thickness and a diameter of 7 cm under suction pressure. An assumed time period is 5-8 minutes at a differential pressure of 0.7 kg/cm. Higher values may indicate that the filter is not working properly, leading to excessive dirt accumulation, or may indicate a low chelating salt and/or high tramp oil concentration.

Eksempel 2Example 2

Fremgangsmåten etter eksempel 1 ble gjentatt for et stort antall valseoperasjoner. En del av hver aluminium-plate og -rulle, og magnesium-plate og -rulle ble valset avvekslende i samme valseverk i en tid av 15 måneder. Hårdheten av smøremiddel-emulsjonen ble gradvis øket periodisk til ca. 250 ppm, beregnet som CaCO^- På ethvert tidspunkt hvor hårdheten nådde en slik konsentrasjon, ble tilsatt ca. 56,9 liter vannholdig 38%'s tetranatri-umsalt av etylendiamintetraeddiksyre til emulsjonen for å bringe hårdhetsnivået ned til ca. 150-100 ppm, uttrykt som CaCO^. I hvert tilfelle ble hårdhetsnivået redusert for å bibeholde hårdheten innen det omtrentlige område 100-200 ppm, uttrykt som CaCO^. Fra tid til annen ble tilsatt et 208 liters fat av oppløselig oljekon-sentrat, inneholdende emulgeringsmiddel til emulsjonen for å erstatte den grunnolje, som var fjernet gjennom filteret, og spesielt for å erstatte utilsiktet tap av emulsjonen. Vanntapet på grunna/fordampningen og vedhefting på produktet, som kan gå opp til .18 950 liter pr. 24 timer, ble erstattet ved tilsetning av nødvendige mengder avionisert vann. The procedure according to example 1 was repeated for a large number of rolling operations. A part of each aluminum plate and roll, and magnesium plate and roll was rolled alternately in the same rolling mill for a period of 15 months. The hardness of the lubricant emulsion was gradually increased periodically to approx. 250 ppm, calculated as CaCO^- At any point where the hardness reached such a concentration, approx. 56.9 liters of aqueous 38% tetrasodium salt of ethylenediaminetetraacetic acid to the emulsion to bring the hardness level down to approx. 150-100 ppm, expressed as CaCO^. In each case, the hardness level was reduced to maintain the hardness within the approximate range of 100-200 ppm, expressed as CaCO 2 . From time to time a 208 liter barrel of soluble oil concentrate containing emulsifier was added to the emulsion to replace the base oil removed through the filter and especially to replace accidental loss of the emulsion. The water loss from the soil/evaporation and adhesion to the product, which can be up to .18,950 liters per 24 hours, was replaced by adding the necessary amounts of deionized water.

Fra tid til annen ble innført en relativt liten mengde hydraulisk olje, som ikke oversteg ca. 758 liter, og med en viskositet ved 38°C på ca. 220 SUS i systemet på grunn av utilsiktet lekasje. Slik olje ble tatt opp under pumpingen og behandlingen av emulsjonen, den forsvant og var ikke lenger tilstede som en fri, forbundet fase. From time to time, a relatively small amount of hydraulic oil was introduced, which did not exceed approx. 758 litres, and with a viscosity at 38°C of approx. 220 SUS in the system due to accidental leakage. Such oil was taken up during the pumping and processing of the emulsion, it disappeared and was no longer present as a free, connected phase.

Under hele anvendelsesperioden ble emulsjonen filtrert under anvendelse av filteret og forbelegningen ifølge eksempel 1. During the entire period of use, the emulsion was filtered using the filter and the precoat according to example 1.

I løpet av perioder av aktiv anvendelse ble emulsjonen filtrert kontinuerlig under overføringen fra den smussige avdeling 7 til den rene avdeling 6. I løpet av disse perioder ble filteret bakvasket og filteret ble belagt pånytt hver 48. time. During periods of active use, the emulsion was filtered continuously during the transfer from the dirty compartment 7 to the clean compartment 6. During these periods the filter was backwashed and the filter recoated every 48 hours.

I løpet av hele 15-måneders-perioden forble emulsjonen stabil og ren og lett filtrerbar. Oljesfærene i emulsjonen forble i stabil form med en gjennomsnittlig sfærediameter på 1-2 mikron og ingen sfærer større enn 5 mikron, I almindelighet opptrådte ingen samlet eller kontinuerlig fase av fri olje (i en mengde som oversteg 0,2 vektprosent) unntagen under uventet lekkasje inn i systemet av uvanlig store mengder hydraulisk olje. Emulsjonens smøreegenskaper var helt tilfredsstillende i denne periode og over-flatekvaliteten av det valsede metall var god til utmerket i løpet av hele perioden. During the entire 15-month period, the emulsion remained stable and pure and easily filterable. The oil spheres in the emulsion remained in stable form with an average sphere diameter of 1-2 microns and no spheres larger than 5 microns. In general, no aggregate or continuous phase of free oil (in an amount exceeding 0.2% by weight) appeared except during unexpected leakage into the system of unusually large amounts of hydraulic oil. The lubrication properties of the emulsion were completely satisfactory during this period and the surface quality of the rolled metal was good to excellent during the entire period.

Eksempel 3Example 3

Koldvalsing av stål utføres på et femstol-pars tandemval-severk, hvori stålplaten ble redusert i tykkelse fra. 0,25-0,38 cm til 0,038-0,125 cm. Under valsingen smøres stålplaten og valsene med 3790 liter pr. minutt av en emulsjon med olje i vann fra et resirkulasjonssystem som inneholder 56 850 liter emulsjon. 3,79 1 ren olje tilføres pr. 3630 kg valset metall. Den anvendte grunnolje ved fremstillingen av emulsjonen utgjøres av palmeolje. Palme-ol jen emulgeres med vanlige emulgeringsmidler og utgjør 3 vektprosent av emulsjonen. Ved innledningen av emulsjonsanvendelsen ble emulsjonens pH-verdi innstillet på 8,5, og hårdheten i emulsjonen ble innstillet til 100 ppm, uttrykt som CaCO^ ved tilsetning av den nødvendige mengde trinatriumsalt av nitriltrieddiksyre. Cold rolling of steel is carried out on a five-chair tandem rolling mill, in which the steel sheet was reduced in thickness from. 0.25-0.38 cm to 0.038-0.125 cm. During rolling, the steel plate and rollers are lubricated with 3,790 liters per minute of an oil-in-water emulsion from a recirculation system containing 56,850 liters of emulsion. 3.79 1 pure oil is supplied per 3630 kg of rolled metal. The base oil used in the production of the emulsion consists of palm oil. Palm oil is emulsified with usual emulsifiers and makes up 3% by weight of the emulsion. At the start of the emulsion application, the pH value of the emulsion was set to 8.5, and the hardness of the emulsion was set to 100 ppm, expressed as CaCO 3 , by adding the required amount of trisodium salt of nitrile triacetic acid.

Under valsingen oppsamles den emulsjon som renner over valsene og spruter over metallplaten, i en underliggende dam, pumpes til en smussig lagringsbeholder, filtreres deretter gjennom et på forhånd belagt mekanisk filter under anvendelse av et kiselmateriale for for-belegningen, som kan fjerne finfordelt"materiale, som er større enn 1 mikron. Den filtrerte emulsjon oppsamles i en ren lagringsbeholder og anvendes påny umiddelbart i valseverket. Periodevis tas det prøver av den emulsjon som pumpes til filteret, som analyseres og nødvendig tilsetning av natriumsalt av nitriltrieddiksyre tilføres for å bibeholde pH-verdien på emulsjonen ved 8,5-9,5 og hårdhetsgraden i emulsjonen ved 100-200 ppm, uttrykt som CaCO^. Periodevis foretas tilsetning av vann og ren oppløse-lig olje for å kompensere for tapene gjennom avdampning og avled-ning. Periodiske prøver viser at størrelsen på oljesfærene i emulsjonen forblir stabile med en gjennomsnittlig størrelse på 15 mikrons diameter og praktisk talt ingen sfærer med en diameter som overstiger 40 mikron. During rolling, the emulsion that runs over the rolls and splashes onto the sheet metal is collected in an underlying pond, pumped to a dirty storage tank, then filtered through a pre-coated mechanical filter using a pre-coating silica material that can remove "fine" material , which is larger than 1 micron. The filtered emulsion is collected in a clean storage container and reused immediately in the rolling mill. Periodically, samples are taken of the emulsion pumped to the filter, which is analyzed and the necessary addition of sodium salt of nitrile triacetic acid is added to maintain the pH the value of the emulsion at 8.5-9.5 and the degree of hardness in the emulsion at 100-200 ppm, expressed as CaCO^. Water and pure soluble oil are periodically added to compensate for the losses through evaporation and drainage. Periodic tests show that the size of the oil spheres in the emulsion remains stable with an average size of 15 microns in diameter and practically in no spheres with a diameter exceeding 40 microns.

Etter en periode av 19 måneder forblir emulsjonenAfter a period of 19 months, the emulsion remains

stabil og praktisk talt fri for kontinuerlig fri oljefase, idet oljesfærestørrelsen forblir stabil ved 15 mikrons diameter. Stålplaten reduseres på en tilfredsstillende måte i tykkelse i valsene stable and virtually free of continuous free oil phase, the oil sphere size remaining stable at 15 micron diameter. The steel plate is satisfactorily reduced in thickness in the rollers

og overflaten på det valsede metall er glatt og lysende og praktisk talt fri for overflatefeil. and the surface of the rolled metal is smooth and bright and practically free from surface defects.

Eksempel 4Example 4

I et verkted hvor presisjonssliping ble utført, tilføres en emulsjon av olje i vann, som inneholder 1 vektprosent av en opp-løselig olje til hver av 15 slipemaskiner med en hastighet^på 75,8 liter pr. minutt og smører og kjøler arbeidsstykkene og slipeski-vene. i hver slipemaskin renner den anvendte emulsjon på en oppsam-lingsplate med en midtre fordypning, som dekkes av en grov sikt (0,51 cm siktåpninger) og rør drenerer oppsamlingsplaten til en fel-les dam (sump). Emulsjon som er oppsamlet i dammen, pumpes til et filter, som benytter en mikrocelmembran, som slipper igjennom finfordelt materiale som ikke er større enn 1-2 mikron. Filtrert emulsjon oppsamles i en ren forrådsavdeling innen den resirkuleres til slipemaskinene.Emulsjonen har en gjennomsnittlig oljesfære-diameter på 1-2 mikron, og en hårdhetsgrad på 100-200 milliondeler, uttrykt som CaCO^, og en pH-verdi på 8,5-9,5. Hårdhet og pH-verdi bibeholdes ved periodisk tilsetning av dinatriumsaltet av N-2-hydroksyetyliminodieddiksyre. Emulsjonstapene kompenseres ved tilsetning av en ny oppløselig olje og vannledningsvann og en tilstrekkelig mengde dinatriumsalt av N-2-hydroksyetyliminodieddik-syre for å bibeholde det anførte hårdhetsniv.å. Etter 13 måneders drift er emulsjonssystemet rent og stabilt, har emulsjonssfære-størrelser som ikke er nevneverdig endret, og emulsjonen forblir lett filtrerbar og anvendbar påny ved slipingen. In a workshop where precision grinding was carried out, an oil-in-water emulsion containing 1% by weight of a soluble oil is supplied to each of 15 grinding machines at a rate of 75.8 liters per hour. minute and lubricates and cools the workpieces and grinding wheels. in each grinding machine, the used emulsion flows onto a collection plate with a central depression, which is covered by a coarse sieve (0.51 cm sieve openings) and pipes drain the collection plate into a common pond (sump). Emulsion collected in the pond is pumped to a filter, which uses a microcell membrane, which lets through finely divided material no larger than 1-2 microns. Filtered emulsion is collected in a clean storage area before it is recycled to the grinding machines. The emulsion has an average oil sphere diameter of 1-2 microns, and a hardness of 100-200 parts per million, expressed as CaCO^, and a pH value of 8.5- 9.5. Hardness and pH value are maintained by periodic addition of the disodium salt of N-2-hydroxyethyliminodiacetic acid. The emulsion losses are compensated by the addition of a new soluble oil and tap water and a sufficient amount of disodium salt of N-2-hydroxyethyliminodiacetic acid to maintain the indicated hardness level. After 13 months of operation, the emulsion system is clean and stable, has emulsion sphere sizes that have not changed significantly, and the emulsion remains easily filterable and reusable during grinding.

På en måte som ligner hver og en av de foregående, er natrium-, kalium-, ammonium- og aminsaltene, og hver og en av etylendiamintetraeddiksyre, N-hydroksyetyletylendiamintrieddik-syre, N-2-hydroksyetyliminodieddiksyre, dietylentriaminpentaeddiksyre, nitriltrieddiksyre og cykloheksandiamintetraeddiksyre anvendbare for regulering og bibehold av smøremiddel-kjølemiddel-emuls joner med olje i vann, som anvendes ved metallformning som inkluderer valsing, bearbeiding, trekning, skjæring, fresing, avskalling, boring, maskinbearbeiding og sliping av magnesium, aluminium, kobber og ferrometall. In a manner similar to each of the foregoing, the sodium, potassium, ammonium and amine salts, and each of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, N-2-hydroxyethyliminodiacetic acid, diethylenetriaminepentaacetic acid, nitriletriacetic acid and cyclohexanediaminetetraacetic acid are useful for regulation and maintenance of lubricant-coolant-oil-in-water emulsions used in metal forming which includes rolling, machining, drawing, cutting, milling, peeling, drilling, machining and grinding of magnesium, aluminium, copper and ferrous metals.

Blandt de fordeler som foreliggende oppfinnelse medfører er deniakteriekontroll som oppnås uten at det kreves tilsetning av et bakteriedrepende middel. De anvendte chelateringsmidler binder betydelige deler av metallioner i emulsjonene, som ellers ville reagere med metallflatene for å danne molekylært hydrogen. Molekylært hydrogen, som har en kraftig katalytisk effekt på veksten av anaerobiske bakterier, unngåes i høy grad. Når en fin filtrering utføres, bortfiltreres videre en innledende bakterievekst i høy grad, slik at det ikke lett dannes kolonier. En fjernelse av fine metallpartikler gjennom filtrering fjerner også fine metallpartikler som ellers ville bidra til den elektrokjemiske effekt, som tilveiebringer det ikke ønskede molekylære hydrogen. Among the advantages brought about by the present invention is bacterial control which is achieved without requiring the addition of a bactericidal agent. The chelating agents used bind significant portions of metal ions in the emulsions, which would otherwise react with the metal surfaces to form molecular hydrogen. Molecular hydrogen, which has a strong catalytic effect on the growth of anaerobic bacteria, is largely avoided. When a fine filtration is carried out, an initial bacterial growth is further filtered out to a high degree, so that colonies are not easily formed. A removal of fine metal particles through filtration also removes fine metal particles that would otherwise contribute to the electrochemical effect, which provides the unwanted molecular hydrogen.

Claims (4)

1. Påny-anvendbar smøremiddel-kjølemiddel-olje-i-vann-emulsjon for anvendelse ved formning av metall hvor arbeidsstykket og verktøyet bringes i kontakt med en strøm av emulsjonen, og hvor emulsjonen inneholder fra 0,5 til 20 vektprosent av en ren oppløselig olje, vann og et polykarboksylsyre-chelatiseringsmiddel som er et alkalimetallsalt, ammoniumsalt eller et aminsalt av en alkylenaminopoly-eddiksyre, karakterisert ved at emulsjonen har en hårdhet opptil 400 ppm beregnet som CaCO^ , en pH av fra 5 til 11, oljefasen er i form av kuler med en middels diameter i området 1 til 25 mikron og praktisk talt ingen kuler har en diameter som er større enn 50 mikron, emulsjonen er lett filtrerbar gjennom et mekanisk filter og er i alt vesentlig fri for faste partikler som er større enn en på forhånd bestemt størrelse innen området 0,5 til 10 mikron og er i alt vesentlig uten kontinuerlig fri oljefase.1. Reusable lubricant-coolant-oil-in-water emulsion for use in metal forming where the workpiece and tool are brought into contact with a stream of the emulsion, and where the emulsion contains from 0.5 to 20% by weight of a pure soluble oil, water and a polycarboxylic acid chelating agent which is an alkali metal salt, ammonium salt or an amine salt of an alkyleneaminopolyacetic acid, characterized in that the emulsion has a hardness of up to 400 ppm calculated as CaCO^ , a pH of from 5 to 11, the oil phase is in the form of spheres with an average diameter in the range of 1 to 25 microns and practically no spheres have a diameter greater than 50 microns, the emulsion is easily filterable through a mechanical filter and is essentially free of solid particles larger than a predetermined size within the range of 0.5 to 10 microns and is essentially free of continuous free oil phase. 2. Emulsjon som angitt i krav 1, karakterisert ved at den har en pH-verdi av fra 7 til 10.2. Emulsion as stated in claim 1, characterized in that it has a pH value of from 7 to 10. 3. Emulsjon som angitt i krav 1, karakterisert ved at konsentrasjonen med hensyn til hårdhet er i området 25 til 400 ppm, fortrinnsvis 100 til 200 ppm.3. Emulsion as stated in claim 1, characterized in that the concentration with regard to hardness is in the range 25 to 400 ppm, preferably 100 to 200 ppm. 4. Emulsjon som angitt i krav 1, karakterisert ved at den er filtrert mekanisk for å fjerne partikler som er stør-re enn en forutbestemt størrelse i området 0,5 til 10 mikron.4. Emulsion as stated in claim 1, characterized in that it is mechanically filtered to remove particles larger than a predetermined size in the range of 0.5 to 10 microns.
NO167488A 1965-03-29 1967-03-29 NO122493B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US44352865A 1965-03-29 1965-03-29
US589730A US3408843A (en) 1965-03-29 1966-10-26 Lubricant-coolant emulsion stabilization and reuse
US589520A US3409551A (en) 1965-03-29 1966-10-26 Lubricant-coolant emulsion

Publications (1)

Publication Number Publication Date
NO122493B true NO122493B (en) 1971-07-05

Family

ID=27412183

Family Applications (1)

Application Number Title Priority Date Filing Date
NO167488A NO122493B (en) 1965-03-29 1967-03-29

Country Status (9)

Country Link
US (2) US3409551A (en)
BE (1) BE705624A (en)
DE (2) DE1594398A1 (en)
ES (1) ES335836A1 (en)
FR (1) FR1514458A (en)
GB (2) GB1118224A (en)
NL (1) NL6701434A (en)
NO (1) NO122493B (en)
SE (1) SE342471B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758537A (en) * 1969-11-05 1971-05-05 Dow Chemical Co METHOD FOR FILTRATION OF CLEANING AGENTS BASED ON ALKALINE METALS
GB1325851A (en) * 1971-01-13 1973-08-08 Alcan Res & Dev Process for control of lubricants in an aluminium rolling mill
US3756052A (en) * 1971-12-27 1973-09-04 Dow Corning Metal working lubricant
US3750847A (en) * 1972-05-03 1973-08-07 Master Chemical Corp Method of supplying an aqueous cutting fluid to machine tools
ZA741228B (en) * 1973-03-02 1975-01-29 Ici Ltd Filtration
US3846319A (en) * 1973-03-27 1974-11-05 Chevron Res Dioxan-containing aluminum lubricant
US4027512A (en) * 1976-05-04 1977-06-07 The Dow Chemical Company Lubricant-coolant emulsion additive for metal working operations
BE857770A (en) * 1976-09-01 1978-02-13 Nat Res Lab STABILIZED COMPOSITION OF FLUID FOR WORKING WITH METALS AND ITS OBTAINING
DE2732142C3 (en) * 1977-07-15 1982-03-25 The Dow Chemical Co., 48640 Midland, Mich. A method of adding a fatty acid type lubricant to the oil phase of an oil-in-water lubricant-coolant emulsion
DE2736874C2 (en) * 1977-08-16 1987-03-26 Metallgesellschaft Ag, 6000 Frankfurt Processes to facilitate cold forming of metals
US4202193A (en) * 1978-10-03 1980-05-13 National Steel Corporation Apparatus for controlling the concentration and stability of an emulsion
JPS5841083B2 (en) * 1978-10-05 1983-09-09 日産自動車株式会社 How to recycle water-soluble cutting fluid
US4377487A (en) * 1978-10-31 1983-03-22 Occidental Chemical Corporation Metal coating process and compositions
DE2965713D1 (en) * 1979-05-23 1983-07-28 Glyco Chemicals Inc Antimicrobial compositions, method of inhibiting the growth of microorganisms and metal working fluid compositions containing these antimicrobial compositions
DE3247426A1 (en) * 1982-12-22 1984-06-28 Merck Patent Gmbh, 6100 Darmstadt CUTTING OIL FOR THE BARBING PROCESSING OF COLORED METALS
DE3447346A1 (en) * 1984-12-24 1986-06-26 Dow Corning GmbH, 8000 München LUBRICANT FOR WATER FITTINGS LIKE TAPS AND THE LIKE
ES2034291T3 (en) * 1988-03-17 1993-04-01 Societe Des Ceramiques Techniques PROCEDURE FOR THE TREATMENT OF EMULSIONS OR MICROEMULSIONS OF OIL IN CONTAMINATED WATER.
FR2628749B1 (en) * 1988-03-17 1993-10-22 Cgee Alsthom PROCESS FOR THE TREATMENT OF POLLUTED WATER EMULSIONS OR MICROEMULSIONS
US5415490A (en) * 1993-07-13 1995-05-16 Flory; John F. Rope termination with constant-cross-section, divided-cavity potted socket
US5795400A (en) * 1994-05-16 1998-08-18 Berger; Mitchell H. Method for recycling coolant for a cutting machine
US6275512B1 (en) 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
US7569526B2 (en) * 2003-04-08 2009-08-04 Crompton Corporation Anti-oxidants in soluble oil base for metal working fluids
JP4746300B2 (en) * 2004-10-01 2011-08-10 株式会社ニクニ Filtration method and filtration device
US20070048343A1 (en) * 2005-08-26 2007-03-01 Honeywell International Inc. Biocidal premixtures
WO2011117892A2 (en) 2010-03-25 2011-09-29 Indian Oil Corporation Ltd. Composition of oil for high speed thin and thick gauge steel sheet rolling in tandem mills
DE102011090098A1 (en) * 2011-12-29 2013-07-04 Sms Siemag Ag Method and device for rolling rolling stock and use of a cooling lubricant
CN109201757A (en) * 2018-09-30 2019-01-15 泰安市国士环保科技有限公司 A kind of useless oil treatment process of steel rolling
CN110257154B (en) * 2019-05-30 2022-08-02 山西太钢不锈钢股份有限公司 Preparation method of rolling lubricating liquid base oil

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802788A (en) * 1957-08-13 Cleaning composition for automotive
USRE23905E (en) * 1954-12-14 Substituted poly aralkyl alkylene poly
US2264103A (en) * 1936-06-06 1941-11-25 Procter & Gamble Process and product for softening hard water
US2432784A (en) * 1945-12-07 1947-12-16 Harold F Miller Lubricating and cooling compound for cold reducing mills
US2631978A (en) * 1949-05-13 1953-03-17 Frederick C Bersworth Metalworking lubricant solution
US2663704A (en) * 1950-04-19 1953-12-22 American Viscose Corp Process and composition for producing improved viscose
US2770597A (en) * 1952-11-13 1956-11-13 Sun Oil Co Soluble oil
US2780598A (en) * 1954-03-30 1957-02-05 Standard Oil Co Metal working and liquid coolants therefor
US2794000A (en) * 1954-11-15 1957-05-28 Nopco Chem Co Emulsifiable oil composition
US2959547A (en) * 1957-01-31 1960-11-08 Ray S Pyle Aqueous coolant for metal working machines
US3301783A (en) * 1960-08-04 1967-01-31 Petrolite Corp Lubricating composition

Also Published As

Publication number Publication date
DE1594412C3 (en) 1979-05-10
FR1514458A (en) 1968-02-23
GB1118224A (en) 1968-06-26
DE1594412A1 (en) 1970-11-05
ES335836A1 (en) 1968-03-16
DE1594412B2 (en) 1973-06-20
BE705624A (en) 1968-04-25
SE342471B (en) 1972-02-07
NL6701434A (en) 1968-04-29
US3408843A (en) 1968-11-05
DE1594398A1 (en) 1970-08-06
GB1154303A (en) 1969-06-04
US3409551A (en) 1968-11-05

Similar Documents

Publication Publication Date Title
NO122493B (en)
US3750847A (en) Method of supplying an aqueous cutting fluid to machine tools
US3618707A (en) Method of lubricating machine tools
El Baradie Cutting fluids: Part II. Recycling and clean machining
Silliman Cutting and grinding fluids: selection and application
US2252385A (en) Method of machining articles and solution therefor
US3793184A (en) Reconditioning oil used in cold working metal
US7338605B2 (en) Filter aid and method of using same for reclaiming water-based fluids used in metal working processes
US5137654A (en) Process for reclaiming oil/water emulsion
US4027512A (en) Lubricant-coolant emulsion additive for metal working operations
NO167488B (en) ELECTRONIC SECURITY.
US7341668B2 (en) Filter aid and method of using same for reclaiming water-based fluids used in metal working processes
US3568834A (en) Filtering alkaline metal cleaner
US11230476B2 (en) Dissolved air flotation use with cationic metal processing fluids
AT271691B (en) Lubricant-coolant emulsion for metal forming
JPH10314805A (en) Method for cold-rolling aluminum
JPS5930417A (en) Supplying method of cold rolling oil
Burke et al. Recycling of Metalworking Fluids
DE1594398C (en)
US20230348812A1 (en) Systems and Methods for Removing Micro-Particles from a Metalworking Fluid
CA1067480A (en) Lubricant-coolant emulsion additive
US20050098505A1 (en) Filter aid and method of using same for reclaiming water-based fluids used in metal working processes
Nachtman Metal cutting and grinding fluids
Brown et al. Metalworking fluids
DE1594398B (en) Process for rolling aluminum and aluminum alloys