NO120284B - - Google Patents

Download PDF

Info

Publication number
NO120284B
NO120284B NO16969467A NO16969467A NO120284B NO 120284 B NO120284 B NO 120284B NO 16969467 A NO16969467 A NO 16969467A NO 16969467 A NO16969467 A NO 16969467A NO 120284 B NO120284 B NO 120284B
Authority
NO
Norway
Prior art keywords
metal
alkali metal
halide
molten
reaction
Prior art date
Application number
NO16969467A
Other languages
Norwegian (no)
Inventor
K Andersen
Original Assignee
Topsoe H
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topsoe H filed Critical Topsoe H
Publication of NO120284B publication Critical patent/NO120284B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/26Fuel gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Fremgangsmåte for fremstilling av titan, zirkonium, Process for the production of titanium, zirconium,

vanadium, hafnium, tantal eller niob. vanadium, hafnium, tantalum or niobium.

Denne oppfinnelse går ut på en fremgangsmåte for fremstilling av titan, zirkonium, vanadium, hafnium, tantal eller niob. This invention concerns a method for the production of titanium, zirconium, vanadium, hafnium, tantalum or niobium.

Fremstilling av disse metaller har lenge Production of these metals has long

frembudt mange vanskeligheter. De mest lo-vende metoder har vært basert på reduksjon av et halogenid av metallet ved hjelp av et av alkalimetallene. Det er blitt foreslått mange metoder for utførelse av denne grunnleggende reaksjon, og noen er blitt anvendt i halvtek-nisk målestokk, men ingen av metodene har vist seg å være uten utførelsesvanskeligheter eller fare. Reduksjonsreaksjonen er av ekso-termisk art, hvorfor reaksjonsdeltakerne må føres sammen under nøyaktig regulerte for-hold, hvis tilfredsstillende resultater skal opp-nås. Blant de vanskeligheter som møtes i den tidligere teknikk for fremstilling av metaller som f. eks. titan er den at reaksjonsdeltaker-nes fordampning må nedsettes til et minimum. Reaksjoner i dampfase fører til at det på munnstykker og andre deler av utstyret av-settes produkter som gjør det vanskelig å styre reaksjonen og å fjerne reaksjonsproduk-tene. Omrøring av reaksjonsdeltakerne kom-pliseres ved at det dannes faste produkter som hindrer mekaniske røreres virksomhet. presented many difficulties. The most promising methods have been based on the reduction of a halide of the metal using one of the alkali metals. Many methods have been proposed for carrying out this basic reaction, and some have been used on a semi-technical scale, but none of the methods has proven to be without difficulties in execution or danger. The reduction reaction is of an exothermic nature, which is why the reaction participants must be brought together under precisely regulated conditions, if satisfactory results are to be achieved. Among the difficulties encountered in the prior art for the production of metals such as e.g. titanium is that the evaporation of the reaction participants must be reduced to a minimum. Reactions in the vapor phase lead to products being deposited on nozzles and other parts of the equipment which make it difficult to control the reaction and to remove the reaction products. Stirring of the reaction participants is complicated by the formation of solid products which hinder the operation of mechanical stirrers.

Formålet med den foreliggende oppfinnelse er å skaffe en hensiktsmessig fremgangsmåte til fremstilling av disse metaller, samt å- fremstille dem, særlig titan, med en høy grad av renhet. The purpose of the present invention is to provide a suitable method for the production of these metals, as well as to produce them, particularly titanium, with a high degree of purity.

Fremgangsmåten ifølge oppfinnelsens mål The method according to the object of the invention

er av den art hvor man i to trinn reduserer et halogenid av det metall som skal frem-stilles. I det første trinn reduseres halogenidet til et subhalogenid ved hjelp av et smeltet is of the kind where a halide of the metal to be produced is reduced in two stages. In the first step, the halide is reduced to a subhalide by means of a fused

reduserende metall. I det annet trinn blir sub-halogenidene redusert til metall ved videre tilsetning av smeltet reduserende metall i en mengde som er tilstrekkelig til å skaffe den støkiometrisk nødvendige mengde reduserende metall til å reagere med halogenidet. Under reduksjonen opprettholdes det en ikke forurensende atmosfære. reducing metal. In the second step, the sub-halides are reduced to metal by further addition of molten reducing metal in an amount sufficient to provide the stoichiometrically necessary amount of reducing metal to react with the halide. During the reduction, a non-polluting atmosphere is maintained.

I henhold til oppfinnelsen er fremgangsmåten karakterisert ved at man i en reaksjonsbeholder hvori befinner seg et smeltet bad av alkaliemetallet først på i og for seg kjent måte sprøyter inn vedkommende halogenid i en mengde som er i overskudd til den som kreves for fullstendig reaksjon med alkalimetallet, slik at det dannes delvis reduserte sub-halogenider av metallet, hvoretter man i reaksjonsbeholderen med det smeltede According to the invention, the method is characterized by the fact that in a reaction container in which there is a molten bath of the alkali metal, the halide in question is first injected in a manner known per se in an amount that is in excess of that required for complete reaction with the alkali metal, so that partially reduced sub-halides of the metal are formed, after which in the reaction vessel with the molten

bad av sub-halogenider sprøyter inn ekstra bath of sub-halides inject extra

smeltet alkalimetall i en mengde som er nød-vendig for fullstendig reaksjon med det delvis reduserte sub-halogenid, hvoretter man utvinner det reduserte metall fra saltblandingen. molten alkali metal in an amount necessary for complete reaction with the partially reduced sub-halide, after which the reduced metal is recovered from the salt mixture.

I henhold til et videre trekk ved oppfinnelsen blir det ekstra alkalimetall innført i badet under dettes overflate. According to a further feature of the invention, the additional alkali metal is introduced into the bath below its surface.

Den vedføyede tegning viser skjematisk et apparat i hvilket fremgangsmåten i henhold til oppfinnelsen kan utføres. The attached drawing schematically shows an apparatus in which the method according to the invention can be carried out.

Et av metall bestående reaksjonskammer 1 er oventil forsynt med en tilførselsledning 2 A reaction chamber 1 made of metal is provided at the top with a supply line 2

som ender i et munnstykke 3. I den nedre del av kammeret finnes det en tilførselsledning 4 for smeltet metall som ender med et munnstykke 5. Alternativt kan ledningen 4 strekke seg nedover fra toppen av kammeret, og eventuelt kunne dykkes ned i reaksjonsdeltakerne, which ends in a nozzle 3. In the lower part of the chamber there is a supply line 4 for molten metal which ends in a nozzle 5. Alternatively, the line 4 can extend downwards from the top of the chamber, and possibly be immersed in the reaction participants,

hvis det ønskes. De smeltede klorider kan tap- if desired. The molten chlorides can lose

pes ut gjennom ledningen 6. pesed out through the line 6.

Som et eksempel på utførelse av frem- As an example of the execution of the

gangsmåten i henhold til oppfinnelsen skal det nå beskrives redusering av titantetraklorid ved hjelp av natrium. Reaktoren 1 spyles ren for luft og fylles med en ikke forurensende gass, f. eks. argon. Deretter innføres det en viss mengde smeltet natrium gjennom lednin- the procedure according to the invention, the reduction of titanium tetrachloride by means of sodium will now be described. Reactor 1 is purged of air and filled with a non-polluting gas, e.g. argon. A certain amount of molten sodium is then introduced through the lead

gen 4 og munnstykket 5. Gjennom ledningen 2 og munnstykket 3 ledes det med stor hastig- gene 4 and the nozzle 5. Through the wire 2 and the nozzle 3 it is conducted at high speed

het inn omtrent den dobbelt støkiometriske mengde titantetraklorid, så det dannes en blanding av titansubklorider og natriumklorid. heat in approximately twice the stoichiometric amount of titanium tetrachloride, so a mixture of titanium subchlorides and sodium chloride is formed.

Det antas at titansubkloridet er enten prak- It is believed that the titanium subchloride is either prac-

tisk talt bare TiCb eller titansubklorider som er oppløst i alkalikloridet, eller klomplekser av disse subklorider og av alkalikloridet. I et hvert tilfelle blir badets fluiditet ikke nedsatt, technically only TiCb or titanium subchlorides which are dissolved in the alkali chloride, or clumps of these subchlorides and of the alkali chloride. In each case, the fluidity of the bath is not reduced,

og blandingens smeltepunkt ligger lavere enn rent natriumklorids smeltepunkt. and the melting point of the mixture is lower than the melting point of pure sodium chloride.

Etter at innsprøytingen av titantetraklo- After the injection of titanium tetrachloro-

ridet er avsluttet innføres det resterende na- the ride is finished, the remaining na-

trium i en mengde som er tilstrekkelig til full- trium in an amount sufficient to fully

stendig reaksjon med den i reaktoren 1 til- continuous reaction with it in reactor 1 to

stedeværende mengde klorid, for eksempel gjennom et i badet neddykket munnstykke 5. amount of chloride present, for example through a nozzle immersed in the bath 5.

Den største del av det resulterende natrium- The major part of the resulting sodium

klorid kan deretter tappes ut av reaktoren. chloride can then be drained from the reactor.

Eventuelt tilbakeblivende natriumklorid kan Any remaining sodium chloride can

fjernes fra det i reaktoren dannede titanme- is removed from the titanium metal formed in the reactor

tall ved vanlige metoder, f. eks. ved utlutning eller destillasjon i vakuum. numbers by usual methods, e.g. by leaching or distillation in vacuum.

Det er blitt funnet at innsprøytingshas- It has been found that injection has-

tigheten av halogenidet av det tungtsmelten- ity of the halide of the low-melting

de metall kan ligge mellom 0,03 og 60 m/sek, de metal can lie between 0.03 and 60 m/sec,

og at innsprøytingshastigheten av det smelte- and that the injection rate of the molten

de alkalimetall i det annet trinn av reduksjo- the alkali metals in the second step of the reduction

nen kan ligge mellom 0,003 og 45 m/sek. Det foretrekkes forholdsvis store hastigheter, da disse befordrer omrøring av reaksjonsdeltakerne. nen can lie between 0.003 and 45 m/sec. Relatively high speeds are preferred, as these promote stirring of the reaction participants.

De følgende eksempler er typiske utførel- The following examples are typical implementations

sesformer for oppfinnelsen. embodiments of the invention.

Eksempel 1. Example 1.

Ca. 44 kg smeltet natriummetall ble an- About. 44 kg of molten sodium metal was

brakt i en reaktor hvis atmosfære bestod av praktisk talt rent argon. Metallbadet blev opphetet til ca. 400° C. Deretter blev det i metallbadet ledet nnn 189 kg titantetraklorid brought into a reactor whose atmosphere consisted of practically pure argon. The metal bath was heated to approx. 400° C. Next, 189 kg of titanium tetrachloride were introduced into the metal bath

— ca. det dobbelte av den mengde som be- - about. twice the amount that be-

høves for støkiometrisk reaksjon med natri- be prepared for stoichiometric reaction with sodium

ummetallet for dannelse av titan — med en hastighet av 1—7 m/sek gjennom et munn- re-metalled to form titanium — at a speed of 1-7 m/sec through a mouth-

stykke i reaktorens lokk. I denne periode steg reaksjonsbadets temperatur langsomt og opp- piece in the reactor lid. During this period, the temperature of the reaction bath rose slowly and up-

hetet reaktorens vegger til ca. 850° C. Etter at tilførselen av titantetraklorid var ferdig, the reactor walls were heated to approx. 850° C. After the supply of titanium tetrachloride was finished,

blev det i blandingen innført 47,7 kg flytende natrium, nemlig den mengde som behøvdes for støkiometrisk reaksjon med titanforbindel- 47.7 kg of liquid sodium were introduced into the mixture, namely the amount required for stoichiometric reaction with titanium compounds

sene. Denne mengden blev innført gjennom en ledning hvis utløp befant seg under badets overflate. Natriumet ble tilført med en hastig- tendon. This quantity was introduced through a line whose outlet was below the surface of the bath. The sodium was added at a rapid

het av ca. 2 m/sek, og reaktorens vegger blev holdt på en temperatur mellom ca. 850° og 950° C. Deretter blev reaktorens innhold holdt på en temperatur mellom ca. 900° og 950° heated by approx. 2 m/sec, and the walls of the reactor were kept at a temperature between approx. 850° and 950° C. The reactor's contents were then kept at a temperature between approx. 900° and 950°

C i to timer, for at reaksjonene skulle C for two hours, for the reactions to take place

bli fullstendige. En hel del av det smeltede natriumklorid ble tappet ut, så det i reakto- become complete. A whole portion of the molten sodium chloride was drained off, so that in the reactor

ren blev tilbake en masse bestående av titan- pure remained a mass consisting of titanium

svamp og noe natriumklorid. Resten av na- sponge and some sodium chloride. The rest of the na-

triumkloridet blev fjernet ved utlutning. Ti- the trium chloride was removed by leaching. Ten-

tanmetallet viste seg å være meget rent, idet det inneholdt mindre enn 0,15 % surstoff, the tan metal turned out to be very pure, containing less than 0.15% oxygen,

0,03 % kvelstoff og 0.10 % klor. 0.03% nitrogen and 0.10% chlorine.

Eksempel 2. Example 2.

3,15 kg metallisk natrium og 7,94 kg na- 3.15 kg metallic sodium and 7.94 kg na-

triumklorid blev i et med argon fyllt kammer opphetet ved 850° C. I det smeltede bad blev det ledet inn titantetraklorid i en mengde av 12,61 kg med en hastighet av ca. 20 m/sek gjennom et munnstykke i kammerets lokk. trium chloride was heated in a chamber filled with argon at 850° C. Titanium tetrachloride was introduced into the molten bath in an amount of 12.61 kg at a rate of approx. 20 m/sec through a nozzle in the lid of the chamber.

Etter at tilføringen av titantetrakloridet var After the addition of the titanium tetrachloride was

fullført blev 2,88 kg smeltet natriummetall sprøytet inn i blandingen av de smeltede klo- completed, 2.88 kg of molten sodium metal was injected into the mixture of the molten claws

rider gjennom en annen ledning over badets overflate, og dette med en hastighet av 37,5 m/sek. Når natriumkloridet var blitt skilt fra titanmetallet viste det seg at metallet var av god kvalitet og var meget rent. rides through another wire over the bath's surface, and this at a speed of 37.5 m/sec. When the sodium chloride had been separated from the titanium metal, it turned out that the metal was of good quality and was very clean.

Claims (2)

1. Fremgangsmåten for fremstilling av titan, zirkonium, vanadium, hafnium, tantal eller niob ved reduksjon av et halogenid av vedkommende metall med et alkalimetall i smeltet tilstand under en inert atmosfære, ved hvilken man i et første arbeidstrinn anvender et overskudd av vedkommende metallhaloge-1. The process for the production of titanium, zirconium, vanadium, hafnium, tantalum or niobium by reducing a halide of the metal in question with an alkali metal in a molten state under an inert atmosphere, in which an excess of the metal halide in question is used in a first working step nid så det dannes subhalogenider, som omset-tes videre i et annet trinn ved tilsetning av ytterligere mengder alkalimetall, karakterisert ved at man i en reaksjonsbeholder hvor befinner seg et smeltet bad av alkalimetallet først på i og for seg kjent måte sprøyter inn vedkommende halogenid i en mengde som er i overskudd til den som kreves for fullstendig reaksjon med alkalimetallet, slik at det dannes delvis reduserte sub-halogenider av metallet, hvoretter man i reaksjonsbeholderen med det smeltede bad av sub-halogenider sprøyter inn ekstra smeltet alkalimetall i en mengde som er nødvendig for fullstendig reaksjon med det delvis reduserte sub-halogenid, hvoretter man utvinner det reduserte metall fra saltblandingen. then subhalides are formed, which are further reacted in another step by the addition of further amounts of alkali metal, characterized by the fact that in a reaction container where there is a molten bath of the alkali metal, the relevant halide is first injected in a manner known per se an amount in excess of that required for complete reaction with the alkali metal, so that partially reduced sub-halides of the metal are formed, after which additional molten alkali metal is injected into the reaction vessel with the molten bath of sub-halides in an amount which is necessary for complete reaction with the partially reduced sub-halide, after which the reduced metal is recovered from the salt mixture. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved, at det ekstra alkalimetall inn-føres i badet under dettes overflate.2. Method according to claim 1, characterized in that the additional alkali metal is introduced into the bath below its surface.
NO16969467A 1966-09-12 1967-09-11 NO120284B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK469466A DK115861B (en) 1966-09-12 1966-09-12 Process for the production of gas mixtures with a high calorific value.

Publications (1)

Publication Number Publication Date
NO120284B true NO120284B (en) 1970-09-28

Family

ID=8135855

Family Applications (1)

Application Number Title Priority Date Filing Date
NO16969467A NO120284B (en) 1966-09-12 1967-09-11

Country Status (7)

Country Link
BE (1) BE703755A (en)
DK (1) DK115861B (en)
ES (1) ES344923A1 (en)
GB (1) GB1198671A (en)
NL (1) NL6712449A (en)
NO (1) NO120284B (en)
SE (1) SE321536B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7908283A (en) * 1979-11-13 1981-06-01 Veg Gasinstituut Nv PROCESS FOR THE PRODUCTION OF SYNTHETIC NATURAL GAS FROM HYDROCARBONS.

Also Published As

Publication number Publication date
NL6712449A (en) 1968-03-13
DK115861B (en) 1969-11-17
SE321536B (en) 1970-03-09
BE703755A (en) 1968-02-01
GB1198671A (en) 1970-07-15
ES344923A1 (en) 1969-01-01

Similar Documents

Publication Publication Date Title
US4820339A (en) Production of metal powders by reduction of metal salts in fused bath
US3847596A (en) Process of obtaining metals from metal halides
US2556763A (en) Production of refractory metals
US2941867A (en) Reduction of metal halides
US4668287A (en) Process for producing high purity zirconium and hafnium
US7559969B2 (en) Methods and apparatuses for producing metallic compositions via reduction of metal halides
NO156495B (en) METHOD AND APPARATUS FOR THE MANUFACTURE OF ALLOY OR UNLOADED METALS REACTIVE METALS SUCH AS TITAN, ZIRCONIUM, TANTAL AND NIOB BY REDUCING THEIR HALOGENIDES
JPH059497B2 (en)
US5176741A (en) Producing titanium particulates from in situ titanium-zinc intermetallic
US2997385A (en) Method of producing refractory metal
US2760858A (en) Process for producing metals in purified form
US3113017A (en) Method for reacting titanic chloride with an alkali metal
US3715205A (en) Method for reducing chlorides and a device therefor
US2773760A (en) Production of titanium metal
US2826493A (en) Method of producing titanium
EP0151569A1 (en) Process and apparatus for obtaining silicon from fluosilicic acid.
NO120284B (en)
US4748014A (en) Process and apparatus for obtaining silicon from fluosilicic acid
US2891857A (en) Method of preparing refractory metals
NO127517B (en)
US2847297A (en) Method of producing titanium crystals
CN110343867A (en) A method of titanium or titanium alloy is directly produced using high titanium slag
US2865738A (en) Process of preparation of titanium
US2920952A (en) Process for producing a refractory metal subhalide-alkalinous metal halide salt composition
US3322503A (en) Silicon production process