NO117741B - - Google Patents

Download PDF

Info

Publication number
NO117741B
NO117741B NO16767767A NO16767767A NO117741B NO 117741 B NO117741 B NO 117741B NO 16767767 A NO16767767 A NO 16767767A NO 16767767 A NO16767767 A NO 16767767A NO 117741 B NO117741 B NO 117741B
Authority
NO
Norway
Prior art keywords
electrodes
accumulator
gas
negative electrodes
positive
Prior art date
Application number
NO16767767A
Other languages
Norwegian (no)
Inventor
M Oystn
J Taillardat
Original Assignee
Exxon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Co filed Critical Exxon Co
Publication of NO117741B publication Critical patent/NO117741B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Secondary Cells (AREA)

Description

Permanent gass- og væsketett lukket akkumulator, fortrinnsvis med alkalisk elektrolytt, og fremgangsmåte til fremstilling av en slik akkumulator. Permanent gas- and liquid-tight closed accumulator, preferably with alkaline electrolyte, and method for producing such an accumulator.

Luft-og væsketett lukkede akkumulatorer, særlig med alkalisk elektrolytt, er Air- and liquid-tight sealed accumulators, especially with alkaline electrolyte, are

kjent. De er oppbygget på den måte at de known. They are structured in such a way that they

negative elektroder har en større kapasitet enn de positive elektroder, og de er lukket ved en slik ladningstilstand mellom de negative electrodes have a greater capacity than the positive electrodes, and they are closed at such a state of charge between them

positive og negative elektroder, at de negative elektroders evne til å oppmagasi-nere elektrisk energi under innvirkning positive and negative electrodes, that the ability of the negative electrodes to store electrical energy under impact

av ladestrøm er større enn den tilsvarende of charging current is greater than the corresponding one

evne hos de positive elektroder. ability of the positive electrodes.

Ved de negative elektroders høyere At the higher of the negative electrodes

oppladningsevne skal oppnås at en vannstoffutvikling ved de negative elektroder charging capacity must be achieved that a hydrogen evolution at the negative electrodes

under akkumulatorens oppladning i lufttett lukket tilstand helt undertrykkes, og during the accumulator's charging in an airtight closed state is completely suppressed, and

at der bare uttrer surstoff som ved be-røring med den aktive masse i de negative elektroder blir helt bundet. that only oxygen emerges which is completely bound by contact with the active mass in the negative electrodes.

For å lette surstoffets adgang til de To facilitate oxygen's access to them

negative elektroder har man ytterligere, you have additional negative electrodes,

foreslått å anvende en separator av spesiell proposed to use a separator of special

konstruksjon. Separatoren skal nemlig construction. Namely, the separator must

inneholde hulrom, i hvilke den utviklede contain cavities, in which it developed

gass kan samles og deretter komme i be-røring med de negative elektroder. Det har gas can collect and then come into contact with the negative electrodes. It has

vist seg at selv om disse akkumulatorer under normal oppladning arbeider pålitelig, proved that although these accumulators work reliably during normal charging,

så er dog beheftet med den feil at der ved it is, however, subject to the error that there

en dyptgående utladning og den dermed a profound discharge and the thus

forbundne polomkobling av elektrodene connected pole connection of the electrodes

uunngåelig oppstår en vannstoffutvikling. inevitably a hydrogen evolution occurs.

Det er kjent at denne vannstof f ballast It is known that this water f ballast

ikke kan unngåes ved hjelp av de midler cannot be avoided by means of those means

som forefinnes i de kjente lufttette akkumulatorer. Dette betyr en utpreget ulempe which are found in the known airtight accumulators. This means a distinct disadvantage

ved akkumulatorer i henhold til dette in the case of accumulators in accordance with this

kjente forslag. known suggestions.

For å unngå en vannstoffutvikling ved polomkobling av lufttette akkumulatorer har det videre vært foreslått at den negative elektrode i det øyeblikk da den lufttette lukning foretas, er gitt en større utladningsevne enn den positive elektrode. Denne utladningsevne kan eventuelt kom-bineres med en allerede kjent større oppladningsevne hos den negative elektrode. Denne spesielle innstilling av utladningsreserven og oppladningsreserven kan oppnås ved en tilsvarende utførelse av opp-ladningsprosessen. In order to avoid the evolution of hydrogen when connecting the poles of airtight accumulators, it has further been proposed that the negative electrode, at the moment when the airtight closure is made, is given a greater discharge capacity than the positive electrode. This discharge capability can optionally be combined with an already known greater charging capability of the negative electrode. This special setting of the discharge reserve and the charging reserve can be achieved by a corresponding implementation of the charging process.

En akkumulator i henhold til dette forslag er likeledes beheftet med vesentlige ulemper. Såfremt de negative elektroder ikke har større oppladningsevne enn de positive elektroder, inntrer der ved en langvarig oppladning tvangsmessig en skadelig vannstoffutvikling. På den annen side vil disse akkumulatorer ved tilstede-værelsen av en utladningsreserve i de negative elektroder ved dyp utladning utvise en vannstoffutvikling på de positive elektroder. Som allerede nevnt kan denne ska-delige vannstoffballast ikke unngås ved hjelp av de tidligere kjente midler. An accumulator according to this proposal is also subject to significant disadvantages. If the negative electrodes do not have a greater charging capacity than the positive electrodes, a long-term charging inevitably leads to harmful hydrogen evolution. On the other hand, due to the presence of a discharge reserve in the negative electrodes, these accumulators will exhibit hydrogen evolution on the positive electrodes during deep discharge. As already mentioned, this harmful hydrogen ballast cannot be avoided using the previously known means.

Med hensyn til de ovenfor benyttede uttrykk utladningsreserven resp. oppladningsreserven skal bemerkes at oppladningsreserven, f. eks. ved den negative elektrode, betyr at den negative elektrode alltid har et overskudd av uladede partikler, f. eks. av kadmiumhydroksyd i forhold til den positive elektrode. En utladningsreserve, f. eks. ved den positive elektrode, betyr at den positive elektrode alltid har flere ladede utladbare partikler, f. eks. NiOOH eller Ni(OH)3> enn den negative elektrode. With regard to the expressions used above, the discharge reserve or the charging reserve should be noted that the charging reserve, e.g. at the negative electrode, means that the negative electrode always has an excess of uncharged particles, e.g. of cadmium hydroxide relative to the positive electrode. A discharge reserve, e.g. at the positive electrode, means that the positive electrode always has several charged dischargeable particles, e.g. NiOOH or Ni(OH)3> than the negative electrode.

Foreliggende oppfinnelse vedrører en permanent gass- og væsketett lukket akkumulator, fortrinnsvis med alkalisk elektrolytt som hovedsakelig fastholdes bare i elektrodenes og separatorenes porer ved kapillarkraft og hvis positive og negative elektroder har storflatede overflatedeler som for gassforbruket står i berøring med et gassrom og som har en separator som driftsmessig er ugjennomtrengelig for de på elektrodeoverflatene oppstående gassblærer. Hensikten med oppfinnelsen er å unngå at der hverken ved oppladning eller utladning kommer til å utvikles fritt vannstoff i skadelig utstrekning. The present invention relates to a permanently gas- and liquid-tight closed accumulator, preferably with an alkaline electrolyte which is mainly retained only in the pores of the electrodes and separators by capillary force and whose positive and negative electrodes have large surface parts which for gas consumption are in contact with a gas space and which have a separator which is operationally impermeable to the gas bubbles arising on the electrode surfaces. The purpose of the invention is to avoid free water being developed to a harmful extent either during charging or discharging.

Dette oppnås i henhold til oppfinnelsen ved at de positive elektroder inneholder en større mengde av reversibel oppladbar og utladbar aktiv masse, regnet i elektrokjemiske ekvivalenter, enn de negative elektroder, og at de positive elektroder i det øyeblikk akkumulatoren lukkes, inneholder opplagret en større mengde elektrisk ladning enn de negative elektroder. Det har vist seg at der i en således luft-tet lukket akkumulator innstiller seg slike forhold at der hverken ved oppladning eller utladning frigjøres vannstoff, hverken ved den negative eller ved den positive elektrode. This is achieved according to the invention by the fact that the positive electrodes contain a larger amount of reversibly chargeable and dischargeable active mass, calculated in electrochemical equivalents, than the negative electrodes, and that the positive electrodes, at the moment the accumulator is closed, store a larger amount of electrical charge than the negative electrodes. It has been shown that in such an air-tight closed accumulator such conditions are established that neither during charging nor discharging hydrogen is released, neither at the negative nor at the positive electrode.

Oppfinnelsen vedrører også en fremgangsmåte til fremstilling av en slik akkumulator. Fremgangsmåten er karakterisert ved at akkumulatoren i åpen tilstand og helt fyllt med elektrolytt lades inntil fullstendig oppladning av elektrodene, hvorpå en utladning av alle elektrodene finner sted, inntil fullstendig utladning av de negative elektroder, og at deretter elektrolytten tømmes og akkumulatoren lukkes gasstett. Oppladningen skal altså ikke alene gjennomføres til den negative elektrode er fullt oppladet, men den skal fort-sette til også den positive elektrode med den større kapasitet er fullt oppladet. Når akkumulatoren deretter utlades, vil de positive og de negative elektroder avgi samme ladningsmengde, og utladningen utføres så langt at de negative elektroder er helt utladet, mens de positive elektroder ennå mangler noe på å være helt utladet. Først deretter uthelles den overflødige elektrolytt som ikke er opptatt i elektrodenes og separatorenes porer, og akkumulatoren lukkes lufttett. The invention also relates to a method for producing such an accumulator. The procedure is characterized by charging the accumulator in an open state and completely filled with electrolyte until the electrodes are fully charged, after which a discharge of all the electrodes takes place, until the negative electrodes are completely discharged, and then the electrolyte is emptied and the accumulator is sealed gas-tight. The charging must therefore not only be carried out until the negative electrode is fully charged, but it must continue until the positive electrode with the larger capacity is also fully charged. When the accumulator is then discharged, the positive and negative electrodes will emit the same amount of charge, and the discharge is carried out so far that the negative electrodes are completely discharged, while the positive electrodes are still a little short of being completely discharged. Only then is the excess electrolyte that is not taken up in the pores of the electrodes and separators poured out, and the accumulator is sealed airtight.

Claims (2)

1. Permanent gass- og væsketett lukket akkumulator, fortrinnsvis med alkalisk elektrolytt som hovedsakelig fastholdes bare i elektrodenes og separatorenes porer ved kapillarkraft og hvis positive og negative elektroder har storflatede overflatedeler som for gassforbruket står i berø-ring med et gassrom, og som har en separator som driftsmessig er ugjennomtrengelig for de på elektrodeoverflatene oppstående gassblærer, karakterisert ved at de positive elektroder inneholder en større mengde reversibel oppladbar og utladbar aktiv masse, regnet i elektrokjemiske ekvivalenter, enn de negative elektroder, og at de positive elektroder i det øyeblikk akkumulatoren lukkes, inneholder opplagret en større mengde elektrisk ladning enn de negative elektroder.1. Permanent gas- and liquid-tight closed accumulator, preferably with alkaline electrolyte which is mainly retained only in the pores of the electrodes and separators by capillary force and whose positive and negative electrodes have large surface parts which for gas consumption are in contact with a gas space, and which have a separator which is operationally impermeable to the gas bubbles arising on the electrode surfaces, characterized by the fact that the positive electrodes contain a greater amount of reversibly chargeable and dischargeable active mass, calculated in electrochemical equivalents, than the negative electrodes, and that the positive electrodes at the moment the accumulator is closed, contains stored a greater amount of electric charge than the negative electrodes. 2. Fremgangsmåte til fremstilling av en akkumulator som angitt i påstand 1, karakterisert ved at akkumulatoren i åpen tilstand og helt fylt med elektrolytt lades inntil fullstendig oppladning av elektrodene, hvorpå en utladning av alle elektrodene finner sted, inntil fullstendig utladning av de negative elektroder, og at deretter elektrolytten tømmes og akkumulatoren lukkes gasstett.2. Method for manufacturing an accumulator as stated in claim 1, characterized in that the accumulator in an open state and completely filled with electrolyte is charged until the electrodes are fully charged, after which a discharge of all the electrodes takes place, until the negative electrodes are completely discharged, and that the electrolyte is then emptied and the accumulator is closed gas-tight.
NO16767767A 1966-04-12 1967-04-11 NO117741B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR57307A FR1482144A (en) 1966-04-12 1966-04-12 Improvement in hydrorefining catalysts

Publications (1)

Publication Number Publication Date
NO117741B true NO117741B (en) 1969-09-22

Family

ID=8606051

Family Applications (1)

Application Number Title Priority Date Filing Date
NO16767767A NO117741B (en) 1966-04-12 1967-04-11

Country Status (4)

Country Link
FR (1) FR1482144A (en)
GB (1) GB1123136A (en)
NL (1) NL6705139A (en)
NO (1) NO117741B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299892A (en) 1975-12-17 1981-11-10 Exxon Research & Engineering Co. Amorphous and sheet dichalcogenides of Group IVb, Vb, molybdenum and tungsten
US4323480A (en) 1975-12-17 1982-04-06 Exxon Research & Engineering Co. Method of preparing di and poly chalcogenides of group IVb, Vb, molybdenum and tungsten transition metals by low temperature precipitation from non-aqueous solution and the product obtained by said method
US4390514A (en) 1977-05-16 1983-06-28 Exxon Research And Engineering Co. Method of preparing chalocogenides of group VIII by low temperature precipitation from nonaqueous solution, the products produced by said method and their use as catalysts
JPS5579043A (en) 1978-12-13 1980-06-14 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil
GB2036582B (en) 1978-10-14 1983-03-02 Chiyoda Chem Eng Construct Co Hydrotreatment of heavy hydrocarbon oils
US4288422A (en) 1979-02-23 1981-09-08 Exxon Research & Engineering Co. Method of preparing chalcogenides of group VIII by low temperature precipitation from monaqueous solution, the products produced by said method and their use as catalysts
FR2553680B1 (en) * 1983-10-25 1987-09-18 Inst Francais Du Petrole CATALYSTS BASED ON GROUP VIII AND GROUP VIB METAL SULFIDES FOR HYDROPROCESSING REACTIONS OF SULFUR-CONTAINING HYDROCARBON CUTS
EP0357873B1 (en) * 1988-08-10 1992-08-26 Jgc Corporation Method for removing mercury from hydrocarbons
CA2605990A1 (en) 2005-04-26 2006-11-02 Shell Internationale Research Maatschappij B.V. A method for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock

Also Published As

Publication number Publication date
NL6705139A (en) 1967-10-13
GB1123136A (en) 1968-08-14
FR1482144A (en) 1967-05-26

Similar Documents

Publication Publication Date Title
US2934581A (en) Electrodes for alkaline accumulators
GB791075A (en) Improvements in or relating to alkaline storage batteries
NO117741B (en)
GB811306A (en) Sealed alkaline electric accumulator
US2594712A (en) Silver and zinc accumulator having an insoluble negative electrode
NO117819B (en)
US4031293A (en) Maintenance free lead storage battery
CN106848413B (en) A kind of lead storage battery pole group
GB778930A (en) Improvements in and relating to electric storage cells
JPH0231462B2 (en)
GB782394A (en) Improvements in or relating to electric accumulators
DK172972B1 (en) Process for preparing a closed electrochemical cell
CN109037819A (en) A kind of battery refresh liquid, regeneration method and application
JPH0737609A (en) Alkaline storage battery
CN207852771U (en) A kind of battery core bracket
GB1445627A (en) Method of recharging a secondary battery
NO165377B (en) DENTAL EFFECTIVE THAT WORKS FOR PLAQUE CREATION.
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
SU57521A1 (en) Galvanic nickel-zinc element with a reverse positive electrode
GB755547A (en) Improvements in gas tight sealed electric accumulators
JPH0246662A (en) Sealed lead-acid battery
GB432775A (en) Improvements in or relating to electric storage cells or batteries
JPH0733377Y2 (en) Sealed lead acid battery
JPH0696796A (en) Sealed secondary battery
JPS63166169A (en) Enclosed type lead battery