NO117382B - - Google Patents

Download PDF

Info

Publication number
NO117382B
NO117382B NO168555A NO16855567A NO117382B NO 117382 B NO117382 B NO 117382B NO 168555 A NO168555 A NO 168555A NO 16855567 A NO16855567 A NO 16855567A NO 117382 B NO117382 B NO 117382B
Authority
NO
Norway
Prior art keywords
bearing
per cent
alloys
alloy
zinc
Prior art date
Application number
NO168555A
Other languages
Norwegian (no)
Inventor
C Schrieber
J Newport
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO117382B publication Critical patent/NO117382B/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/006Alloys based on aluminium containing Hg
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

Lagerlegering. Bearing alloy.

Denne oppfinnelse angår lagerlegeringer, dvs. legeringer som anvendes ved frem-stilling av glidelagre for roterende eller på annen måte i forhold til hverandre beve-gede deler av maskiner og liknende, og for-målet er å skaffe en legering som har bedre fysikalske og mekaniske egenskaper enn antifriksjonslegeringer som er basert på tinn eller bly. This invention relates to bearing alloys, i.e. alloys used in the production of sliding bearings for rotating or otherwise relative to each other moving parts of machines and the like, and the aim is to obtain an alloy which has better physical and mechanical properties than antifriction alloys which are based on tin or lead.

Forholdene i lagrene i moderne maskiner, f. eks. i forbrenningsmotorer, frem-bringer stadig sterkere påkjenninger, og disse hever temperaturen i lagrene. Disse vanskeligere forhold er blitt møtt på to måter. Den førsle er å minske tykkelsen av de lagerlegeringer, som er basert på tinn eller bly, og som danner løpeflaten, inntil de bare har brøkdeler av en mm tykkelse. Den annen metode består i å anvende en annen legeringstype, eller en blanding av metaller, som har større mekanisk styrke ved arbeidstemperaturen, som kobber-bly eller bly-taronse. Disse har kobber som ba-sis, og blyinnholdet kan i visse tilfeller gå opp til ca. 30 pst. The conditions in the bearings in modern machines, e.g. in internal combustion engines, produces ever stronger stresses, and these raise the temperature in the bearings. These more difficult conditions have been met in two ways. The first is to reduce the thickness of the bearing alloys, which are based on tin or lead, and which form the running surface, until they only have fractions of a mm thickness. The second method consists in using another type of alloy, or a mixture of metals, which has greater mechanical strength at the working temperature, such as copper-lead or lead-bronze. These have copper as a base, and the lead content can in certain cases be up to approx. 30 percent

Begge disse løsninger har visse ulem-per. Det er vanskelig å anbringe megel tynne lag av legeringer med tinn- eller blybasis, spesielt hvis lagrene er temmelig store. Når det gjelder maskiner som repa-reres er det ofte nødvendig å minske dia-meteren av veivtapper og akseltapper for å fjerne ovaliteter som er oppstått på grunn av slitasje. Disse minskede diametre må utliknes ved å øke tykkelsen av metallet som danner lagerskålen. Denne tykkere ut-formning tåler ikke de sterke belastninger og lagrenes levetid forkortes derved. Both of these solutions have certain disadvantages. It is difficult to deposit very thin layers of tin- or lead-based alloys, especially if the bearings are rather large. When it comes to machines that are being repaired, it is often necessary to reduce the diameter of crank pins and axle pins in order to remove ovalities that have occurred due to wear. These reduced diameters must be compensated for by increasing the thickness of the metal that forms the bearing cup. This thicker design cannot withstand the strong loads and the life of the bearings is thereby shortened.

Ulempene ved legeringene på kobber-basis er at de har høyt smeltepunkt og der-for blir fremstillingsomkostningene større. Dessuten kan lagerskålene ikke omformes på en pålitelig måte, og det må holdes et slort lager-av ferdige lagre av standard eller understørrelse for overhalingsformål. Når det gjelder store maskiner kan dette bli kostbart. The disadvantages of the copper-based alloys are that they have a high melting point and therefore the production costs are higher. Also, the bearing cups cannot be reliably reshaped, and a sloppy inventory of finished standard or undersized bearings must be kept for overhaul purposes. In the case of large machines, this can be expensive.

Den foreliggende oppfinnelses hoved-formål er å skaffe lagerlegeringer som har de samme fordeler som babbitt-legeringer på tinn- eller iblybasis, og som samtidig har i betydelig grad liknende fysikalske og mekaniske egenskaper som legeringer på kob-berbasis. The main purpose of the present invention is to provide bearing alloys which have the same advantages as tin- or lead-based babbitt alloys, and which at the same time have substantially similar physical and mechanical properties as copper-based alloys.

Legeringer av kadmium og sink og ett eller flere andre metaller har vært fo-reslått for forskjellige formål, men oppfinnerne har funnet, at ved å anvende eutek-tikumet av sink og kadmium, som inneholder 17,5 pst. sink, får man en lagerlegering som har bedre egenskaper enn de hittil anvendte. Dette regnes som det minste sinkinnhold i legeringen og oppfinnerne utnytter det faktum at med en proporsjon av sink mellom 17,5 pst. og 90 pst. opptrer det en dupleks-struktur. Den ene bestanddel av denne struktur består av sinkrike primære dendriter, og denne bestanddel er intimt blandet mekanisk med den annen bestanddel, som er en eutektisk grunnmas-se av sinkrikt og kadmiumrikt metall. Alloys of cadmium and zinc and one or more other metals have been proposed for various purposes, but the inventors have found that by using the eutectic of zinc and cadmium, which contains 17.5 percent zinc, a bearing alloy is obtained which have better properties than those previously used. This is considered the minimum zinc content in the alloy and the inventors take advantage of the fact that with a proportion of zinc between 17.5% and 90%, a duplex structure appears. One component of this structure consists of zinc-rich primary dendrites, and this component is intimately mixed mechanically with the other component, which is a eutectic base mass of zinc-rich and cadmium-rich metal.

Oppfinnerne har også funnet, at lageregenskapene hos de nesten rene sink-den-dritiske bestanddeler blir bedre hvis en «fast oppløsning» av dette metall erstattes med et annet metallisk element. Hertil har sølv vist ség rriest egnet, av grunner som angis nedenfor. Denne modifikasjon mot-virker ikke den gunstige virkning av sink med hensyn til å nedsette kadmiums til-bøyelighet til slaggdannelse. The inventors have also found that the storage properties of the almost pure zinc dendritic components are improved if a "solid solution" of this metal is replaced with another metallic element. For this, silver has proven to be the most suitable, for reasons stated below. This modification does not counteract the beneficial effect of zinc with regard to reducing cadmium's tendency to slag formation.

Ved oppfinnernes forsøk ble det under-søkt mange forskjellige metaller og det ble funnet to, nemlig kobber og sølv, som i vesentlig grad forbedret legeringens egenskaper som lagermetall. Av disse var sølv best, da det danner en fast oppløsning bå-de med sink og med kadmium, og en viss mengde sølv tilbakeholdes ved atmosfære-temperatur. Én liten mengde av sølv viste seg nødvendig for oppnåelse av en fordelaktig modifisering av lageregenskapene hos de to hovedbestanddeler sink og kadmium. Kobber har nesten ingen evne til å danne en fast oppløsning, da dets oppløselighet er meget liten ved vanlig temperatur. In the inventors' experiments, many different metals were examined and two were found, namely copper and silver, which significantly improved the alloy's properties as a bearing metal. Of these, silver was the best, as it forms a solid solution both with zinc and with cadmium, and a certain amount of silver is retained at atmospheric temperature. One small amount of silver proved necessary to achieve a beneficial modification of the storage properties of the two main constituents zinc and cadmium. Copper has almost no ability to form a solid solution, as its solubility is very small at normal temperature.

Tilsetning av andre metaller, som aluminium, antimon, arsen, kobber, jern, bly, magnesium, mangan og tinn modifiserer legeringens fysikalske og mekaniske egenskaper i mere eller mindre grad, men slike tilsetninger forbedrer ikke legeringens egenskaper som lagermetall. I noen tilfeller nedsetter de slike gode egenskaper som lettvinthet ved innforing i lagre, evne til å tilpasse seg til akseltapper og veivtapper under drift, bibehold av mekaniske egenskaper ved høyere temperaturer, motstand mot korrosjon fra visse tilsetninger til eller forbrenningsprodukter av smøreoljer, og evnen til å bevirke at friksjonsflater slites minst mulig. Tilfeldige forurensninger kan imidlertid tåles i opp til 0,5 pst., samt et samlet innhold på ikke over 4,5 pst. metaller som de ovennevnte. Addition of other metals, such as aluminium, antimony, arsenic, copper, iron, lead, magnesium, manganese and tin modify the alloy's physical and mechanical properties to a greater or lesser extent, but such additions do not improve the alloy's properties as a stock metal. In some cases, they reduce such good properties as ease of insertion into bearings, ability to adapt to axle journals and crank journals during operation, retention of mechanical properties at higher temperatures, resistance to corrosion from certain additives to or combustion products of lubricating oils, and the ability to to cause friction surfaces to wear as little as possible. Random contamination can, however, be tolerated in up to 0.5 per cent, as well as a total content of no more than 4.5 per cent of metals such as those mentioned above.

Nikkel er vel kjent som tilsetning til kadmium for dannelse av en lagerlegering. Oppfinnerne har funnet at små nikkel-mengder, av størrelsesordenen 1 pst. av kadmiumet, kan være fordelaktig. Om nikkel tilsettes skal den samlede mengde av tilsatte metaller allikevel ikke overstige 4,5 pst. og sammen med forurensninger ikke gå over 5 pst. Nickel is well known as an addition to cadmium to form a bearing alloy. The inventors have found that small amounts of nickel, of the order of 1 percent of the cadmium, can be beneficial. If nickel is added, the total amount of added metals must still not exceed 4.5 per cent and, together with impurities, must not exceed 5 per cent.

Metaller som kan være tilstede som Metals that may be present such as

spor i sink og kadmium og som synes å væ-re fordelaktige er gallium, indium og tallium. Hvis de tilsettes med vilje skal de tilsatte mengder være slik at det sammen med dem ikke blir mere enn ialt 4,5 pst. av de forskjellige ovenfor nevnte metaller. traces in zinc and cadmium and which seem to be advantageous are gallium, indium and thallium. If they are added on purpose, the added quantities must be such that, together with them, there is no more than a total of 4.5 per cent of the various metals mentioned above.

En lagerlegering i henhold til oppfinnelsen inneholder kadmium i en mengde av ikke under 60 pst., sølv i en mengde av 0,5—10 pst., ett eller flere av metallene aluminium, antimon, arsen, kobber, jern, bly, magnesium, mangan, nikkel, tinn, gallium, indium eller tallium i en samiet méngdé av ikke over 4,5 pst., forurensninger i en mengde av ikke over 0,5 pst. og resten sink i en mengde av ikke under 17,5 pst. A bearing alloy according to the invention contains cadmium in an amount of not less than 60%, silver in an amount of 0.5-10%, one or more of the metals aluminium, antimony, arsenic, copper, iron, lead, magnesium, manganese, nickel, tin, gallium, indium or thallium in a total amount of not more than 4.5%, impurities in an amount of not more than 0.5% and the remainder zinc in an amount of not less than 17.5%.

De fysikalske og mekaniske egenskaper ved lufttemperatur av lagerlegeringer som faller innenfor de ovennevnte sammenset-ningsgrenser er som følger: The physical and mechanical properties at air temperature of bearing alloys falling within the above composition limits are as follows:

Hårdhet: B. H. N. 40—70 Hardness: B. H. N. 40—70

Kompresjon: flytegrense 1240—1300 kg/cm2 Strekk: bruddgrense 1115—1620 kg/cm-forlengelse ved brudd: 2,1—12 pst. Slag: (Izod) 0,552—0,608 kg/m Utmatningsverdi: 552—608 kg/cm- Compression: yield strength 1240—1300 kg/cm2 Stretch: fracture strength 1115—1620 kg/cm Elongation at break: 2.1—12 percent Impact: (Izod) 0.552—0.608 kg/m Yield value: 552—608 kg/cm

for 20 x 10° omdreininger for 20 x 10° turns

Spesifikk vekt: 7,42—8,17 Varmeledningsevne (Sølv = 100) 24—26 Specific gravity: 7.42—8.17 Thermal conductivity (Silver = 100) 24—26

Et typisk eksempel på en lagerlegering A typical example of a bearing alloy

i henhold til oppfinnelsen er følgende: according to the invention are the following:

De viktigste fysikalske og mekaniske egenskaper hos en slik legering er: The most important physical and mechanical properties of such an alloy are:

Som det vil forstås kan det lages mange spesifikke lagerlegeringer av forskjellige sammensetninger innenfor oppfinnelsens ramme, og at sammensetningen i hvert en-kelt tilfelle velges etter de krav som stilles til vedkommende legering ved bruk i lagre. As will be understood, many specific bearing alloys of different compositions can be made within the scope of the invention, and that the composition in each individual case is chosen according to the requirements placed on the relevant alloy when used in bearings.

Det er funnet, at lagerlegeringer i henhold til oppfinnelsen får en betydelig lengre levetid enn normale lagermetaller på tinnbasis, og at de tåler langt større belastninger enn disse under normale driftsfor-hold. Disse bedre verdier holder seg også ved høyere temperaturer enn de temperaturer som et lagermetall på tinnbasis kan anvendes ved. It has been found that bearing alloys according to the invention have a significantly longer service life than normal tin-based bearing metals, and that they withstand far greater loads than these under normal operating conditions. These better values are also maintained at higher temperatures than the temperatures at which a tin-based bearing metal can be used.

Oppfinnerne har også funnet, at lagerlegeringer i henhold til oppfinnelsen funk-sjonerer godt både ved lave og ved høye belastninger og ved enhver hastighet innenfor det normale område som kreves, og at de også kan anvendes til omforing eller reparering av skadde kobber-bly, bly-bronse- eller aluminiumslegerings-lagre. The inventors have also found that bearing alloys according to the invention function well both at low and at high loads and at any speed within the normal range required, and that they can also be used for lining or repairing damaged copper-lead, lead -bronze or aluminum alloy bearings.

Hvis et lager skulle gå tomt for smøre-olje har lagerlegeringer i henhold til oppfinnelsen vist seg å opptre på samme måte som legeringer på tinn- og blybasis, idet de smelter slik at akselen ikke skjærer seg fast og blir ødelagt. Legeringene kan lett anbringes som foring i lagre av alle slags enten disse siste består av stål elier av I If a bearing were to run out of lubricating oil, bearing alloys according to the invention have been shown to behave in the same way as alloys based on tin and lead, in that they melt so that the shaft does not seize and be destroyed. The alloys can easily be placed as liners in bearings of all kinds, whether the latter consist of steels of I

noen bronse- eller aluminiumlegering, så some bronze or aluminum alloy, so

man kan holde blokker av legeringen på one can keep blocks of the alloy on

lager ferdig til reparering av lagre som warehouse ready for repair of warehouses such as

trenger det ved overhalinger. need it for overhauls.

Oppfinnelsen er ikke begrenset til noen The invention is not limited to anyone

spesiell anvendelsesmåte for legeringene. special application method for the alloys.

De kan smeltes og støpes inn i andre metaller og således danne lagerflåtene; de They can be melted and cast into other metals and thus form the stock rafts; the

kan sprøytes på enten ved å forstøve trå-der av legeringen eller ved å sprøyte på can be sprayed on either by atomizing threads of the alloy or by spraying on

pulver av den, eller ved elektrolyttisk ut-felning, eller annen egnet metode. powder thereof, or by electrolytic precipitation, or other suitable method.

Claims (1)

Lagerlegering som inneholder kad- |Bearing alloy containing cad- | mium i en mengde av ikke under 60 pst., sølv i en mengde av 0,5—10 pst., ett eller flere av metallene aluminium, antimon, arsen, kobber, jern, bly, magnesium, mangan, nikkel, tinn, gallium, indium eller tallium i en samlet mengde av ikke over 4,5 pst., forurensninger i en mengde av ikke over 0,5 pst. og resten sink i en mengde av ikke under 17,5 pst.mium in an amount of not less than 60 per cent, silver in an amount of 0.5-10 per cent, one or more of the metals aluminium, antimony, arsenic, copper, iron, lead, magnesium, manganese, nickel, tin, gallium , indium or thallium in a total quantity of not more than 4.5 per cent, impurities in a quantity of not more than 0.5 per cent and the rest zinc in a quantity of not less than 17.5 per cent.
NO168555A 1966-06-13 1967-06-12 NO117382B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US556877A US3415305A (en) 1966-06-13 1966-06-13 Process for preparing aluminum alloys

Publications (1)

Publication Number Publication Date
NO117382B true NO117382B (en) 1969-08-04

Family

ID=24223190

Family Applications (1)

Application Number Title Priority Date Filing Date
NO168555A NO117382B (en) 1966-06-13 1967-06-12

Country Status (7)

Country Link
US (1) US3415305A (en)
BE (1) BE699831A (en)
DK (1) DK113535B (en)
GB (1) GB1195552A (en)
NL (1) NL6708179A (en)
NO (1) NO117382B (en)
SE (1) SE301032B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146678A (en) * 1976-06-24 1979-03-27 Swiss Aluminium Ltd. Primary electric cell of the dry cell type
US6261390B1 (en) * 2000-05-15 2001-07-17 Hsien-Yang Yeh Process for nodulizing silicon in casting aluminum silicon alloys

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB938565A (en) * 1958-11-17 1963-10-02 Soc Gen Magnesium Alloys of aluminium and mercury
FR1399752A (en) * 1964-04-04 1965-05-21 Soc Gen Magnesium New alloy based on aluminum and mercury and its application to the production of anodes
US3318692A (en) * 1966-04-07 1967-05-09 Soc Gen Magnesium Method for preparation of aluminum-mercury alloys

Also Published As

Publication number Publication date
DK113535B (en) 1969-03-31
SE301032B (en) 1968-05-20
NL6708179A (en) 1967-12-14
GB1195552A (en) 1970-06-17
BE699831A (en) 1967-12-13
US3415305A (en) 1968-12-10

Similar Documents

Publication Publication Date Title
US9885382B2 (en) Zinc-free spray powder, copper-containing thermal spray layer, as well as method of manufacturing a copper-containing thermal spray layer
US4153756A (en) Aluminum-base bearing alloy and composite
US20130330227A1 (en) Copper-Zinc Alloy for a Valve Guide
NO117382B (en)
US2238399A (en) Bearing alloy
US2870008A (en) Zinc-aluminium alloys and the method for producing same
US2770031A (en) Bearing
CN103468359B (en) Cold rolling lubricating agent for lead and lead alloy sheet strip
CN112522548B (en) Wear-resistant Mg-containing aluminum-tin bearing bush alloy
US2852365A (en) Aluminum base bearing
US2807540A (en) Aluminum base bearing
US2101759A (en) Bearing
US3031298A (en) Bearing alloys
US2754202A (en) Aluminum base bearing
US2215445A (en) Aluminum alloy as bearing metal
US6060179A (en) Cu-Pb alloy bearing and producing method therefor
US2181947A (en) Method of making thin walled plated pistons for internal combustion engines
US2763546A (en) Aluminum base bearing
US2074848A (en) Method of tinning and tinned articles
US2831764A (en) Bearing
US2752240A (en) Aluminum base alloy bearing
US2264251A (en) Lead alloy bearing metal
US3161502A (en) Aluminum base alloy casting
US3950164A (en) Aluminium-based alloy
US2752239A (en) Aluminum base bearing