NL2030586A - Comprehensive safety test system and method of vehicle power battery box based on temperature control - Google Patents

Comprehensive safety test system and method of vehicle power battery box based on temperature control Download PDF

Info

Publication number
NL2030586A
NL2030586A NL2030586A NL2030586A NL2030586A NL 2030586 A NL2030586 A NL 2030586A NL 2030586 A NL2030586 A NL 2030586A NL 2030586 A NL2030586 A NL 2030586A NL 2030586 A NL2030586 A NL 2030586A
Authority
NL
Netherlands
Prior art keywords
impact
contact
battery pack
rigid
video
Prior art date
Application number
NL2030586A
Other languages
Dutch (nl)
Other versions
NL2030586B1 (en
Inventor
Zhao Wenzhuo
Tao Zhongliang
Original Assignee
Jilin Inst Chemical Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Inst Chemical Tech filed Critical Jilin Inst Chemical Tech
Publication of NL2030586A publication Critical patent/NL2030586A/en
Application granted granted Critical
Publication of NL2030586B1 publication Critical patent/NL2030586B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/0078Shock-testing of vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Disclosed is a comprehensive safety test system for vehicle power battery box based on 5 temperature control, which comprises a speed device, a content module, a protective device, a rigid body, a temperature control system and a safety analysis system. Temperature control system is used to realize module temperature and box wall temperature; the rigid body is used to make impact contact with the battery box, and the content module is used to simulate the power battery; the speed device is used to make the battery box collide with the rigid body; the protective 10 device is used to protect the battery box from damage; safety analysis system is used to establish the corresponding relationship between collision data and collision conditions in the process of collision; the test steps include collision preparation process, collision process and data analysis process. The invention fully considers the influence of temperature and the function of protective devices, establishes the corresponding relationship between collision data and collision 15 conditions, generates the change of collision data in the video, and the data is comprehensive and accurate, which provides data support for the later safety improvement of battery boxes, and also provides comparison templates for the safety analysis of other battery boxes.

Description

Comprehensive safety test system and method of vehicle power battery box based on temperature control
TECHNICAL FIELD The invention belongs to the field of vehicle safety testing, and particularly relates to a comprehensive safety testing system and method of a vehicle power battery box based on temperature control.
BACKGROUND With the improvement of people's living standards, the number of vehicles is increasing, which brings about environmental damage. Therefore, electric vehicles are born. Compared with traditional vehicles using internal combustion engines, pure electric vehicles have many convenient advantages, such as zero emission and energy saving, and are considered as a key research field by automobile manufacturers.
With more and more electric vehicles participating in traffic safety, vehicles will inevitably collide.
For electric vehicles, the battery pack is the key component that affects the safety performance of electric vehicles. As the carrier of the battery pack, the battery case should have high design requirements in terms of strength, rigidity, heat dissipation, waterproof, etc. In the actual design process, not only the space limitation should be considered, but also its own safety should be fully considered. When the electric vehicle is collided, the requirement for the rigidity of the battery box is that the deformation of the battery module and the battery unit must be within the acceptable range. Therefore, the collision safety of battery pack case should attract extensive attention of the electric vehicle manufacturing industry, so that the electric vehicle industry can get better development.
At present, there are mainly two kinds of research on the safety of battery cases. One is direct collision test of battery cases with reference to vehicle collision test methods, but each collision test needs a new battery case, so the cost is very high. Secondly, this kind of collision mode is single, which can not fully generate the safety data in line with the actual complex working conditions. The second is to establish the simulation collision test based solely on the physical properties of the battery case material, but this test method belongs to pure physical calculation and an idealized test, and the reference value of the test data obtained is average. In addition, the above two methods only test the rigidity of the battery case, and both lack the safety analysis when the battery case comes into contact with the battery assembly.
In view of the safety problems caused by the battery's vulnerability to collision, impact and extrusion, it is urgent to establish a complete test system for comprehensive safety analysis of battery case, so as to meet the environmental requirements of various working conditions and provide accurate data guidance for improving the safety of battery case.
SUMMARY The temperature control-based comprehensive safety t system for vehicle power battery box provide by that invention obtains contact data between battery box and rigid body, battery box and power battery in collision contact through collision test of vehicle pow battery box based on temperature control, comprehensively reflects the comprehensive protection performance of battery box to power battery, and the collected contact data is true and comprehensive, which can provide comprehensive and accurate data guidance for continuously improving the safety of battery box.
To achieve the above objective, the invention provides the following scheme: The comprehensive safety test system of vehicle power battery box based on temperature control includes: speed device, content module, protective device, rigid body, temperature control system and safety analysis system; The temperature control system is used to make the temperature of the content module reach the pre-set module temperature and the outer wall temperature of the battery box reach the pre-set box wall temperature; The rigid body is used for generating impact contact with the battery box, and comprises a fixed rigid body, a movable rigid body and a rigid impact body; the fixed rigid body is used for bearing the impact contact of the battery box; the movable rigid body is used for colliding with the battery box according to a pre-set moving impact speed and a pre-set moving impact area; the rigid impact body is used to make impact contact with the predetermined impact area of the battery box according to the predetermined impact speed and continuously apply impact force according to the pre-set impact pressure; The content module is located inside the battery box and used for simulating the pre- installed power battery; The speed device is used to make the battery box reach the pre-set fixed impact speed and make the battery box collide with the fixed rigid body according to the pre-set fixed impact speed and the pre-set fixed impact area; The protective device is located in the fixed impact area and used for preventing the battery box from deforming due to impact; The safety analysis system is used for recording the contact process of the battery box with the rigid body and the content module respectively, generating contact video, contact data and acceleration data, establishing the corresponding relationship between the contact data and acceleration data and collision conditions, and obtaining a collision test report; Generating change animation of contact data and acceleration data in contact video, the collision conditions include collision speed, module temperature, box wall temperature, mechanical properties of battery box material, battery box structure and fixing device of battery box to content module.
Preferably, the speed device is load-bearing connected with the battery box, so that the battery box is in impact contact with the fixed rigid body according to the fixed impact speed and the fixed impact area.
Preferably, the physical properties of the content module are the same as those of the pre- installed power battery; the fixing way of the battery box and the content module is the same as that of the battery box and the pre-installed power battery.
Preferably, the structure of the protection device is the same as that of the pre-set vehicle protection device for the battery box.
Preferably, the fixed rigid body includes a fixed rigid full wall, a fixed rigid incomplete wall and a fixed rigid column, and the movable rigid body includes a movable rigid full wall, a movable rigid incomplete wall and a movable rigid column; The width of the fixed rigid full wall is greater than the width of the fixed impact area; The width of the fixed rigid incomplete wall is not more than half of the width of the fixed impact area; The maximum distance between any two points on the cross section of the fixed rigid column is not greater than the width of the fixed impact area; The width of the movable rigid wall is greater than the width of the moving impact area; The width of the movable rigid incomplete wall is not more than half of the width of the moving impact area; The maximum distance between any two points on the cross section of the movable rigid column is not greater than the width of the moving impact area; The maximum distance between any two points on the cross section of the rigid impact body is not greater than the width of the impact area.
Preferably, the security analysis system comprises a data analysis unit and a video analysis unit; The data analysis unit is used for collecting contact signals and acceleration signals generated by contact areas, generating the contact data and acceleration data of each contact area, obtaining a crash test report, and establishing the corresponding relationship between the contact data and acceleration data and the crash conditions; The video analysis unit is used for collecting video signals of the contact process of the contact areas and the deformation process of the battery box, generating contact videos of each contact area, and generating change animations of the contact data and the acceleration data in the contact videos.
The contact area includes the fixed impact area, the moving impact area, the impact area and the inner wall of the battery box.
Preferably, the data analysis unit comprises a contact matrix, an acceleration sensor and a data server;
The contact matrix and the acceleration sensor are respectively connected with the data server; The contact matrix covers each of the contact areas and is used for generating contact signals; The acceleration sensor is arranged on the content module, and is used for obtaining the acceleration signal generated by the content module due to inertia in the collision contact process; The data server is used for receiving the contact signal and the acceleration signal and generating contact data and acceleration data generated by the contact area.
Preferably, the video analysis unit comprises an external video collector, an internal video collector and a video server; The external video collector and the internal video collector are respectively connected with the video server; The external video collector and the internal video collector are used for collecting video signals of the contact process of the contact area; The video server is used for receiving the video signals of the external video collector and the internal video collector and generating contact video; Receiving the corresponding relationship generated by the data analysis unit, and generating the change animation of the contact data and the acceleration data in the contact video.
The invention also discloses a comprehensive safety test method of vehicle power battery box based on temperature control, which includes the following steps: collision preparation process, collision process and data analysis process; The collision preparation process includes: Through the temperature control system, the temperature of the content module reaches the module temperature, and the outer wall of the battery box reaches the box wall temperature; Placing the content module in the box body of the battery box and fixing it; the fixing mode of the content module and the battery box is the same as that of the pre-installed power battery and the battery box; Completing the bearing connection between the speed device and the battery box; Install the protective device, and the connection mode between the protective device and the battery box is the same as that of the pre-set vehicle to the battery box; Set up components of safety analysis system; The collision process includes: Setting the moving speed and direction of the speed device to make the battery box carried by the speed device collide with the fixed rigid body according to the fixed collision speed and the fixed collision area;
Setting the moving speed and moving direction of the movable rigid body to make the movable rigid body collide with the battery box according to the moving collision speed and the moving collision area; Setting the impact speed, the impact angle and the impact pressure of the rigid impact 5 body, so that the rigid impact body makes impact contact with the impact area according to the impact speed and the impact angle, and continuously applies impact force according to the impact pressure; The data analysis process includes: Collecting video signals of the contact process between the battery box and the rigid body, and the inner wall of the battery box and the content module, as well as contact signals and acceleration signals generated in the contact process, and generating contact videos, contact data and acceleration data.
Establishing the corresponding relationship between contact data, acceleration data and collision conditions, and obtaining a collision test report; And generate contact data change and acceleration data change animation in the collision process in the contact video; the collision conditions include collision speed, module temperature, box wall temperature, mechanical properties of battery box material, battery box structure and fixing device of battery box to content module.
The invention has the beneficial effects that: The invention discloses a comprehensive safety test system and method for a vehicle power battery box based on temperature control, which comprehensively considers the collision damage that the vehicle power battery box may suffer under working conditions. Add the temperature control system to truly simulate the working environment of the battery box under actual working conditions, and then fully reflect the physical safety of the battery box at different ambient temperatures; the contact video and contact data between the inner wall of the battery box and the content module are collected. By considering the fixation and security protection of the battery box to the content module, the security state of the power battery inside the battery box is fully and truly reflected. The collected data is close to the real working condition, true and comprehensive, and provides effective data support for continuously improving the comprehensive security performance of the battery box.
BRIEF DESCRIPTION OF THE FIGURES In order to explain the technical scheme of the invention more clearly, the drawings needed in the embodiments are briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the invention. For ordinary technicians in the field, other drawings can be obtained according to these drawings without paying creative effort.
Fig. 1 is a schematic diagram of the impact test of a fixed rigid body in an embodiment of the invention;
Fig. 2 is a schematic diagram of testing rigid impact body in the embodiment of the invention; Fig. 3 is a schematic diagram of local pressure test of the battery case against small rigid objects in the embodiment of the invention; Fig. 4 is a schematic test diagram of adding a secondary impact rigid body in this embodiment; Fig. 5 is a schematic diagram of the structure of the protective device in this embodiment; Fig. 8 is a schematic diagram of a safety analysis system in this embodiment; Fig. 7 is a schematic diagram of the contact matrix structure in the embodiment; Fig. 8 is a schematic diagram of the comprehensive safety test flow of the vehicle power battery box in this embodiment.
DESCRIPTION OF THE INVENTION Next, the technical solutions in the embodiments of the invention will be clearly and completely described with reference to the drawings in the embodiments of the invention. Obviously, the described embodiments are only part of the embodiments of the invention, not all of them. Based on the embodiments in the invention, all other embodiments obtained by ordinary technicians in the field without creative work are within the scope of the invention.
In order to make the above-mentioned objects, features and advantages of the invention more obvious and easy to understand, the invention will be described in further detail below with reference to the drawings and detailed description.
The comprehensive safety test system of vehicle power battery box based on temperature control includes: speed device, content module, protective device, rigid body, temperature control system and safety analysis system; Temperature control is used to make the temperature of the content module reach the pre- set module temperature and the outer wall temperature of the battery box reach the pre-set box wall temperature; The power battery pack will generate a lot of heat during discharge, and the inside of the battery box is a high temperature environment. However, the external ambient temperature changes with the change of natural temperature. In summer, the surface temperature may exceed 500C, and the low temperature in winter in Northeast China may even be as low as-300 C. At this time, the battery case is in an environment of ice and fire, which will have a great influence on the yield strength performance of any kind of case material. Therefore, the influence of temperature on the yield strength performance of battery case material is taken as an important judging basis to comprehensively test the safety of battery case under different temperature environments.
In this embodiment, the ternary lithium battery is used as the power battery, and the temperature control system can use heatable equipment to heat the content module to 2000C,
and use refrigeration equipment to reduce the temperature of the battery box to 00C, which is the temperature environment of this embodiment.
The rigid body is used to make impact contact with the battery box. The rigid body includes a fixed rigid body, a movable rigid body and a rigid impact body. In this embodiment, high- strength alloy steel is used as the rigid body.
The fixed body is used for bearing the impact contact of the battery box, Fig. 1 is a schematic diagram of the fixed rigid body bearing the impact in this embodiment. The speed device carries the battery box, and hits the fixed rigid body at a predetermined fixed impact speed and fixed impact area, so that the battery box comes into impact contact with the rigid body through the protective device.
The fixed rigid body includes fixed rigid whole wall, fixed rigid incomplete wall and fixed rigid column. The width of the fixed rigid full wall is greater than the width of the fixed impact area, that is, greater than the width of the protective device; the width of the fixed rigid non-full wall is not more than half of the width of the fixed impact area, that is, not more than half of the width of the protective device. In this embodiment, 40% and 25% of the width of the protective device are used to detect the safety of the battery case in the face of 40% and 25% offset collisions, but the width of the non-full wall is not limited to 40% and 25%. In this embodiment, the thickness of both the fixed rigid full wall and the non-full wall exceeds 30cm. The maximum distance between any two points on the cross section of the fixed rigid column is not greater than the width of the fixed impact area, that is, it is not greater than the width of the protective device, and it can have any cross-sectional shape. In this embodiment, the cylindrical rigid column is adopted, and its diameter is 1/5 of the width of the protective device.
The movable rigid body is used for colliding with other outer wall surfaces of the battery box without protective devices according to the pre-set moving impact speed and pre-set moving impact area, and the movable rigid body comprises a movable rigid full wall, a movable rigid incomplete wall and a movable rigid column. In this embodiment, the width, thickness and diameter of various movable rigid bodies refer to the fixed rigid bodies.
The rigid impact body is used for making impact contact with the predetermined impact area of the battery box according to the predetermined impact speed and continuously applying impact force according to the pre-set impact pressure; stiffness is used to test the safety of the outer wall of the battery case in the face of small-area impact. According to the physical pressure theory, the smaller the contact area, the greater the pressure generated. Small-area impact can effectively consider the local bending strength of the battery case material.
The maximum distance between any two points on the cross section of the rigid impact body is not greater than the width of the impact area, and the cross section shape and the top surface shape of the impact body are not limited. As shown in fig. 2, in this embodiment, a rigid cylinder is selected as the impactor, and the top of the cylinder is a plane.
Optionally, as shown in fig. 3, a small rigid object is placed between the bottom wall surface of the battery case and the rigid plane, so that the bottom surface of the battery case cannot be attached to the rigid plane. At this time, impact speed and impact pressure are applied to the upper wall surface of the battery case, so as to detect the safety of the battery case in the face of local small-scale stress.
Optionally, as shown in Figure 4, a secondary impact rigid body is placed above the pulley and behind the battery case. After the battery case collides with the fixed rigid body, the speed of the battery case will suddenly drop to zero. At this time, the second impact rigid body behind the battery case will continue to move forward behind the installed battery case under the inertia force, and it has great acceleration. According to Newton's second law of physics, the second impact rigid body will have a strong impact on the rear of the battery case. The second impact rigid body is to test the safety of the battery case against the rear second impact.
The speed device is used to make the battery box reach the pre-set fixed impact speed, and make the battery box collide with the fixed rigid body according to the pre-set fixed impact speed and pre-set fixed impact area; In this embodiment, the speed device is a pulley, and the battery box is directly placed on the pulley, and the pulley carries the battery box to move toward the rigid body, so that the battery box finally comes into impact contact with the fixed rigid body according to the predetermined fixed impact speed and predetermined fixed impact area.
Optionally, the speed device is an ejection device, which makes the battery box move to the rigid body by ejection, and finally makes the battery box collide with the fixed rigid body according to the predetermined fixed impact speed and predetermined fixed impact area.
The protection device is located in the fixed impact area and used for preventing the battery box from deforming due to impact; Its protective width is greater than that of the battery case.
In real life, the battery box is usually installed in the middle of the vehicle chassis or under the rear seats, even for electric freight vehicles, it will only hang under the cargo box, and the battery box of no vehicle is directly exposed in front of the vehicle body to meet the direct impact. Therefore, at present, all the tests on the collision of battery boxes are not in line with the actual installation method. At the same time, because the vehicle still absorbs a large amount of impact force during the collision process, the impact force transmitted to the battery box has been much smaller. In order to reduce the larger impact force caused by direct impact on the battery box, the current battery box collision test adopts the collision at extremely low speed, which is usually less than 20km/h. Obviously, this speed will not have a significant impact on the battery box. At present, all the battery box collision tests, whether direct collision test or computer simulation test, can not accurately reflect the actual damage suffered by the battery box, nor can they accurately reflect the safety of the battery box, which lacks guiding significance.
As shown in fig. 5, in this embodiment, the protection device includes a protection beam and collapse pieces, and there are two collapse pieces, which are located at both ends of the protection beam respectively. The protective device is connected with the battery box in the same way as the vehicle and the battery box. In this embodiment, the battery box is directly connected with the collapse piece.
Optionally, the collapse member is connected with the battery case through the connecting unit, which can be connected from the front or from both sides, but not limited to the above connection mode.
The content module is located inside the battery box and used to simulate the pre-installed power battery; the physical properties of the content module are the same as those of the pre- installed power battery, including but not limited to shape, size, weight and distribution structure. The battery box fixes the content module in the same way as the battery box fixes the pre- installed power battery, so as to detect whether the power battery inside the battery box will fall off or even collide with the inner wall of the battery box when the battery box collides. At the same time, the content module will increase the overall weight of the battery box, which will generate greater impact force during the movement of the battery box, and put forward higher and more reasonable requirements for the safety of the battery box.
The safety analysis system is used to record the contact process of the battery box with the rigid body and the content module respectively, generate contact video, contact data and acceleration data, establish the corresponding relationship between the contact data and acceleration data and the collision conditions, and obtain the collision test report; And generating a change animation of the contact data and the acceleration data in the contact video. The collision conditions in this embodiment include, but are not limited to, collision speed, module temperature, box wall temperature, mechanical properties of battery box material, battery box structure and fixing device of battery box to content module.
As shown in fig. 6, in this embodiment, the security analysis system includes a data analysis unit and a video analysis unit; The data analysis unit is used for collecting contact signals and acceleration signals generated by contact areas, generating contact data and acceleration data of each contact area, establishing the corresponding relationship between contact data and acceleration data and collision conditions, and obtaining a collision test report; The data analysis unit comprises a contact matrix, an acceleration sensor and a data server; the contact matrix and the acceleration sensor are respectively connected with the data server; Fig. 7 is a schematic diagram of contact matrix. The contact matrix covers each contact area. In this embodiment, when the contact matrix is squeezed, the contact points in the contact matrix generate pressure contact signals, and the corresponding pins on the matrix arithmetic unit receive the pressure contact signals. According to the contact signals, contact data of the contact points are obtained, including pressure value and pressure change process, contact duration and contact point position.
The acceleration sensor is arranged on the content module and used for obtaining the acceleration signal generated by inertia of the content module in the collision contact process; A strong acceleration signal means that the inertia of the content module is strong due to the inertia, and it is easy for the content module to be separated from the fixing device of the battery box, which leads to contact or even collision between the power battery and the inner wall of the battery box, thus causing danger.
The data server is used for receiving contact signals and acceleration signals and generating contact data and acceleration data generated by contact areas. The contact data can intuitively reflect the impact force on the impact contact area, and the acceleration data can intuitively reflect the fixing effect of the battery box on the power battery.
The video analysis unit is used for collecting the video signals of the contact process of the contact areas and the video signals of the deformation process of the battery box, and generating the contact videos of each contact area; Receiving the corresponding relationship generated by the data analysis unit, and generating the change animation of the contact data and the acceleration data in the contact video.
The contact areas include: fixed impact area, moving impact area, impact area and inner wall of battery box.
The video analysis unit includes an external video collector, an internal video collector and a video server; The external video collector and the internal video collector are respectively connected with the video server; The external video collector and the internal video collector are used for collecting video signals of the contact process of the contact area; In this embodiment, the external video collector uses a full HD infrared camera, which is installed on the rigid body and can collect the video of the collision and contact process without hindrance. The internal video collector uses a miniature full HD infrared camera, which is installed on the content module to collect the images in the battery box during the collision.
The video server is used for receiving the video signals of the external video collector and the internal video collector and generating contact video; Receiving the corresponding relationship generated by the data analysis unit, and generating the change animation of the contact data and the acceleration data in the contact video. In this embodiment, the model animation is further generated, and the collision contact process and the deformation process of the battery case can be watched frame by frame.
The invention also provides a comprehensive safety test method of vehicle power battery box based on temperature control, which includes the following steps: collision preparation process, collision process and data analysis process;
Among them, the collision preparation process includes: Through the temperature control system, the temperature of the content module reaches the module temperature, and the outer wall of the battery box reaches the box wall temperature; the temperature control step is set before each test to detect the safety of the battery box in different temperature environments; The content module is placed in the box body of the battery box and fixed; the content module and battery box are fixed in the same way as the pre-installed power battery and battery box; Complete the bearing connection between the speed device and the battery box; In this embodiment, the battery box is directly placed on the speed device without fixed connection; Install the protective device, and the connection mode between the protective device and the battery box is the same as that of the pre-set vehicle to the battery box; In this embodiment, the protective device is directly placed in front of the fixed collision area of the battery box; Set up safety analysis system components, including internal camera, external camera, acceleration sensor and contact matrix; The collision process includes: Setting the moving speed and direction of the speed device to make the battery box carried by the speed device collide with the fixed rigid body according to the fixed collision speed and the fixed collision area; In this embodiment, the fixed rigid body adopts full-wall collision, 40% and 25% offset collision and rigid column collision; Setting the moving speed and moving direction of the movable rigid body to make the movable rigid body collide with the battery box according to the moving collision speed and the moving collision area; the movable rigid body refers to the fixed rigid body; Setting the impact speed, impact angle and impact pressure of the rigid impact body, so that the rigid impact body makes impact contact with the impact area according to the impact speed and impact angle, and continuously applies impact force according to the impact pressure; Optionally, a small rigid object is placed between the bottom wall surface of the battery box and the rigid plane, so that the bottom surface of the battery box can't be attached to the rigid plane. At this time, impact speed and impact pressure are applied to the upper wall surface of the battery box, so as to detect the safety of the battery box in the face of local small-scale stress.
Optionally, a secondary impact rigid body is placed above the pulley and behind the battery case. After the battery case collides with the fixed rigid body, the speed of the battery case will suddenly drop to 0. At this time, the secondary installation rigid body behind the battery case will continue to move forward behind the installed battery case under the inertia force. The second impact rigid body is to test the safety of the battery case against the rear second impact.
The data analysis process includes:
Collecting video signals of the contact process between the battery box and the rigid body, and the inner wall of the battery box and the content module, as well as contact signals and acceleration signals generated in the contact process, and generating contact video, contact data and acceleration data.
Establishing the correspondence between contact data, acceleration data and collision conditions, obtaining a collision test report, and generating contact data change and acceleration data change animation in the collision process in the contact video; Collision conditions include impact speed, module temperature, box wall temperature, mechanical properties of battery box material, battery box structure and fixing device of battery box to content module.
The above-mentioned embodiment is only a description of the preferred mode of the invention, and does not limit the scope of the invention. Without departing from the design spirit of the invention, all kinds of modifications and improvements made by ordinary technicians in the field to the technical scheme of the invention should fall within the scope of protection determined by the claims of the invention.

Claims (9)

CONCLUSIESCONCLUSIONS 1. Een uitvoerig veiligheidstestsysteem voor en voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing, welk systeem een snelheidsinrichting, een inhoudsmodule, een beschermingsinrichting, een stijf lichaam, een temperatuurbeheersingssysteem en een systeem van de veiligheidsanalysesysteem omvat, waarbij — het temperatuurbeheersingssysteem wordt gebruikt om de temperatuur van de inhoudsmodule de vooraf ingestelde moduletemperatuur te laten bereiken en om de buitenwandtemperatuur van het batterijpakket de vooraf ingestelde pakketwandtemperatuur te laten bereiken; — het stijve lichaam wordt gebruikt voor het produceren van inslagcontact met het batterijpakket, en omvat een vast stijf lichaam, een beweegbaar stijf lichaam en een stijf inslaglichaam; waarbij het vaste stijve lichaam wordt gebruikt voor het dragen van het inslagcontact van het batterijpakket; het beweegbare stijve lichaam wordt gebruikt voor het botsen met het batterijpakket volgens een vooraf bepaalde bewegende inslagsnelheid en een vooraf bepaald bewegend inslaggebied van het batterijpakket; het stijve effectlichaam wordt gebruikt om inslagcontact met het vooraf bepaalde inslaggebied van het batterijpakket volgens de vooraf bepaalde inslagsnelheid te maken en onophoudelijk inslagkracht volgens een vooraf bepaalde inslagdruk uit te oefenen; — de inhoudsmodule binnen het batterijpakket is gelegen en wordt gebruikt voor het simuleren van de vooraf geïnstalleerde voedingsbatterij; — de snelheidsinrichting wordt gebruikt om het batterijpakket een vooraf bepaalde vaste inslagsnelheid te laten bereiken, en om het batterijpakket met het vaste stijve lichaam volgens de vooraf bepaalde vaste inslagsnelheid en het vooraf bepaalde vaste inslaggebied van het batterijpakket in botsing te laten komen; — de beschermingsinrichting gelegen is in het vaste inslaggebied en wordt gebruikt voor het verhinderen van het vervormen van het batterijpakket als gevolg van de inslag; — het systeem van de veiligheidsanalyse wordt gebruikt voor het registreren van het contactproces van het batterijpakket met respectievelijk het stijve lichaam en de inhoudsmodule, het produceren van een contactvideo, contactgegevens en versnellingsgegevens, het vaststellen van de overeenkomstige relatie tussen de contactgegevens en de versnellingsgegevens en de botsingsomstandigheden, het verkrijgen van een verslag van de botsingstest, en het produceren van een veranderingsanimatie van de contactgegevens en de versnellingsgegevens in de contactvideo; waarbij de botsingsomstandigheden botsingssnelheid, moduletemperatuur, de temperatuur van de pakketwand, mechanische eigenschappen van het materiaal van het batterijpakket, van de structuur van het batterijpakket en van de bevestiging van het batterijpakket aan inhoudsmodule omvat.1. A comprehensive safety test system for a vehicle power battery pack based on temperature control, which system includes a speed device, a content module, a protection device, a rigid body, a temperature control system and a safety analysis system system, where — the temperature control system is used to control the temperature of the content module to reach the pre-set module temperature and to allow the battery pack outer wall temperature to reach the pre-set pack wall temperature; - the rigid body is used to produce impact contact with the battery pack, and includes a fixed rigid body, a movable rigid body and a rigid impact body, the solid rigid body being used to support the impact contact of the battery pack; the movable rigid body is used to collide with the battery pack according to a predetermined moving impact speed and a predetermined moving impact area of the battery pack; the rigid impact body is used to make impact contact with the predetermined impact area of the battery pack according to the predetermined impact speed and continuously apply impact force according to a predetermined impact pressure; - the content module is located within the battery pack and is used to simulate the pre-installed supply battery, - the speed device is used to cause the battery pack to reach a predetermined fixed impact velocity, and to collide the battery pack with the rigid body according to the predetermined fixed impact velocity and the predetermined fixed impact area of the battery pack; - the protection device is located in the fixed impact area and is used to prevent deformation of the battery pack due to the impact; — the safety analysis system is used to record the contact process of the battery pack with the rigid body and the content module, respectively, produce a contact video, contact information and acceleration data, establish the corresponding relationship between the contact information and the acceleration data, and crash conditions, obtain a crash test report, and produce a change animation of the contact details and acceleration data in the contact video; wherein the impact conditions include impact speed, module temperature, the temperature of the pack wall, mechanical properties of the material of the battery pack, of the structure of the battery pack, and of the attachment of the battery pack to content module. 2. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1, waarbij de snelheidsinrichting met het batterijpakket is verbonden om het batterijpakket met de vaste inslagsnelheid en het vaste inslaggebied te laten botsen met het vaste stijve lichaam.The exhaustive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the velocity device is connected to the battery pack to cause the battery pack to collide with the fixed rigid body at the fixed impact velocity and the fixed impact area. 3. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1, waarbij de fysieke eigenschappen van de inhoudsmodule dezelfde zijn als die van de vooraf geïnstalleerde voedingsbatterij; waarbij de wijze van bevestigen van het batterijpakket en de inhoudsmodule hetzelfde is als die van het batterijpakket en de vooraf geïnstalleerde voedingsbatterij.The comprehensive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the physical properties of the content module are the same as those of the pre-installed power battery; wherein the manner of mounting the battery pack and the content module is the same as that of the battery pack and the pre-installed power battery. 4. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1, waarbij de structuur van de beschermingsinrichting hetzelfde is als dat van het vooraf geïnstalleerde voertuig beschermingsinrichting voor het batterijpakket.The comprehensive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the structure of the protection device is the same as that of the pre-installed vehicle protection device for the battery pack. 5. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1, waarbij het vaste stijve lichaam een vaste stijve volledige muur, een vaste stijve niet-volledige muur en een vaste stijve kolom omvat, en het beweegbare stijve lichaam een beweegbare stijve volledige muur, een beweegbare stijve niet-volledige muur en een beweegbare stijve kolom omvat, waarbij — de breedte van de vaste stijve volle wand groter is dan de breedte van het vaste inslaggebied; — de breedte van de vaste stijve onvolledige wand is niet groter dan de helft van het vaste inslaggebied; — de maximale afstand tussen twee willekeurige punten op de doorsnede van de vaste stijve kolom is niet groter dan de breedte van het vaste inslaggebied; — de breedte van de beweegbare stijve wand groter is dan de breedte van het beweegbare inslaggebied; — de breedte van de beweegbare stijve onvolledige wand is niet meer dan de helft van de breedte van het bewegende inslaggebied; — de maximale afstand tussen twee willekeurige punten op de doorsnede van de beweegbare stijve kolom is niet groter dan de breedte van het bewegende inslaggebied; — de maximale afstand tussen twee willekeurige punten op de doorsnede van het stijve slaglichaam is niet groter dan de breedte van het inslaggebied.The exhaustive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the fixed rigid body comprises a fixed rigid full wall, a fixed rigid non-complete wall and a fixed rigid column, and the movable rigid body comprises a movable rigid complete wall, a movable rigid incomplete wall and a movable rigid column, where — the width of the fixed rigid solid wall is greater than the width of the fixed impact area; - the width of the rigid rigid incomplete wall does not exceed half of the solid impact area; - the maximum distance between any two points on the cross-section of the rigid column does not exceed the width of the solid impact area, - the width of the movable rigid wall is greater than the width of the movable impact area, - the width of the movable rigid incomplete wall is not more than half the width of the moving impact area, - the maximum distance between any two points on the cross-section of the movable rigid column does not exceed the width of the moving impact area, - the maximum distance between any two points on the cross-section of the rigid impact body does not exceed the width of the impact area. 6. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1,waarbij het veiligheidsanalysesysteem bestaat uit een gegevensanalyse-eenheid en een videoanalyse-eenheid, waarbij — de gegevensanalyse-eenheid wordt gebruikt voor: het verzamelen van contactsignalen en versnellingssignalen die door inslaggebieden worden gegenereerd, het genereren van de contactgegevens en de versnellingsgegevens van elk contactgebied, het vaststellen van het overeenkomstige verband tussen de contactgegevens en de versnellingsgegevens en de botsingsomstandigheden, en het verkrijgen van een botsingstestrapport; — de videoanalyse-eenheid wordt gebruikt voor: het verzamelen van de videosignalen van het contactproces van de contactgebieden en de videosignalen van het vervormingsproces van het batterijpakket, en het genereren van de contactvideo's van elk contactgebied; het ontvangen van de overeenkomstige relatie die door de gegevensanalyse-eenheid wordt gegenereerd, en het genereren van de veranderingsanimatie van de contactgegevens en de versnellingsgegevens in de contactvideo; — het contactgebied het vaste inslaggebied, het bewegende inslaggebied, het inslaggebied en de binnenwand van het batterijpakket omvat.The comprehensive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the safety analysis system consists of a data analysis unit and a video analysis unit, wherein - the data analysis unit is used for: collecting contact signals and acceleration signals generated by impact areas are generated, generating the contact information and acceleration data of each contact area, establishing the corresponding relationship between the contact information and acceleration data and the collision conditions, and obtaining a crash test report; — the video analysis unit is used for: collecting the video signals of the contacting process of the contact areas and the video signals of the deformation process of the battery pack, and generating the contact videos of each contact area; receiving the corresponding relationship generated by the data analysis unit, and generating the change animation of the contact information and the acceleration data in the contact video; - the contact area includes the fixed impact area, the moving impact area, the impact area and the inner wall of the battery pack. 7. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1, waarbij de gegevensanalyse-eenheid een contactmatrix, een versnellingssensor en een gegevensserver omvat; waarbij — de contactmatrix en de versnellingssensor verbonden zijn met de gegevensserver — de contactmatrix elk van de contactgebieden bestrijkt en wordt gebruikt voor het genereren van contactsignalen; — de versnellingssensor is aangebracht op de inhoudsmodule en wordt gebruikt voor het verkrijgen van het door de inhoudsmodule opgewekte versnellingssignaal ten gevolge van de traagheid bij het botsingscontactproces; — de gegevensserver wordt gebruikt voor het ontvangen van het contactsignaal en het versnellingssignaal en het genereren van contactgegevens en versnellingsgegevens die door het contactgebied worden geproduceerd.The comprehensive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the data analysis unit comprises a contact matrix, an acceleration sensor and a data server; wherein - the contact array and the acceleration sensor are connected to the data server - the contact array covers each of the contact areas and is used to generate contact signals; - the acceleration sensor is mounted on the content module and used to obtain the acceleration signal generated by the content module due to the inertia in the impact contact process; — the data server is used to receive the contact signal and acceleration signal and generate contact information and acceleration data produced by the contact area. 8. Het uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens conclusie 1, waarbij de videoanalyse-eenheid een externe video opnemer, een interne video opnemer en een video server omvat; waarbij — de externe video opnemer en de interne video opnemer verbonden zijn met de video server;The comprehensive safety test system for a vehicle power battery pack based on temperature control according to claim 1, wherein the video analysis unit comprises an external video recorder, an internal video recorder and a video server; wherein - the external video recorder and the internal video recorder are connected to the video server; — de externe video opnemer en de interne video opnemer worden gebruikt voor het verzamelen van videosignalen van het contactproces van het contactgebied; — de video server wordt gebruikt voor het ontvangen van de videosignalen van de externe video opnemer en de interne video opnemer en het genereren van een contactvideo; het ontvangen van de overeenkomstige relatie die door de gegevensanalyse-eenheid wordt gegenereerd, en het genereren van de animatie van de verandering van de contactgegevens en de versnellingsgegevens in de contactvideo.- the external video recorder and the internal video recorder are used to collect video signals from the contacting process of the contact area; — the video server is used to receive the video signals from the external video recorder and the internal video recorder and generate a contact video; receiving the corresponding relationship generated by the data analysis unit, and generating the animation of the change of the contact information and the acceleration data in the contact video. 9. Een werkwijze voor het uitvoerig testen met uitvoerige veiligheidstestsysteem voor een voertuigvoeding-batterijpakket gebaseerd op temperatuurbeheersing volgens willekeurig welke van conclusies 1 — 8, welke werkwijze de volgende stappen omvat: een voorbereidingsproces voor botsingen, een botsingsproces en een proces voor gegevensanalyse; waarbij — via het temperatuurregelsysteem de temperatuur van de inhoudsmodule de moduletemperatuur bereikt, en de buitenwand van het batterijpakket de temperatuur van het batterijpakket bereikt; — het plaatsen van de inhoudsmodule in het pakketlichaam van het batterijpakket en het bevestigen ervan; waarbij de bevestigingswijze van de inhoudsmodule en het batterijpakket is dezelfde als die van de vooraf geïnstalleerde voedingsbatterij en het batterijpakket; — het voltooien van de dragende verbinding tussen de snelheidsinrichting en het batterijpakket; — het installeren van de beschermende inrichting, waarbij de verbindingswijze tussen de beschermende inrichting en het batterijpakket hetzelfde is als die van het vooraf geïnstalleerde voertuig aan het batterijpakket; — opstelling componenten van het systeem van de veiligheidsanalyse; — het botsingsproces omvat: — het instellen van de bewegende snelheid en de richting van de snelheidsinrichting om het batterijpakket dat door de snelheidsinrichting wordt gedragen te laten botsen met het vaste stijve lichaam met een vaste botsingssnelheid met het vaste inslaggebied; — het instellen van de bewegingssnelheid en de bewegingsrichting van het beweegbare stijve lichaam om het beweegbare stijve lichaam in botsing te laten komen met het batterijpakket in overeenstemming met de bewegingssnelheid en het bewegende inslaggebied; — het instellen van de botsingssnelheid, de botsinghoek en de botsingdruk van het stijve inslaglichaam, zodat het stijve inslaglichaam botsingcontact maakt met het inslaggebied in overeenstemming met de botsingssnelheid en de botsinghoek, waarbij onophoudelijk botsingskracht volgens de botsingsdruk wordt uitgeoefend;A method of exhaustive testing with a comprehensive safety test system for a vehicle power battery pack based on temperature control according to any one of claims 1 to 8, the method comprising the steps of: a collision preparation process, a collision process and a data analysis process; wherein — through the temperature control system, the temperature of the content module reaches the module temperature, and the outer wall of the battery pack reaches the temperature of the battery pack; - placing the content module in the battery pack body and fixing it; wherein the attachment mode of the content module and battery pack is the same as that of the pre-installed power battery and battery pack; - completing the load bearing connection between the speed device and the battery pack; - installing the protective device, the connection mode between the protective device and the battery pack being the same as that of the pre-installed vehicle to the battery pack; — setup components of the security analysis system; — the impact process includes: — setting the moving speed and direction of the speed device to collide the battery pack carried by the speed device with the fixed rigid body at a fixed impact speed with the fixed impact area; - adjusting the moving speed and the moving direction of the movable rigid body to collide the movable rigid body with the battery pack in accordance with the moving speed and the moving impact area; — setting the impact speed, impact angle and impact pressure of the rigid impact body so that the rigid impact body makes impact contact with the impact area in accordance with the impact speed and impact angle, continuously applying impact force according to the impact pressure; — het proces van de gegevensanalyse omvat:— the data analysis process includes: — het verzamelen van videosignalen van het contactproces tussen het batterijpakket en het stijve lichaam, en de binnenwand van het batterijpakket en de inhoudsmodule, alsmede contactsignalen en versnellingssignalen die in het contactproces worden gegenereerd, en het genereren van contactvideo's, contactgegevens en versnellingsgegevens;— collect video signals of the contact process between the battery pack and the rigid body, and the inner wall of the battery pack and the content module, as well as contact signals and acceleration signals generated in the contact process, and generate contact videos, contact information and acceleration data; — het vaststellen van de overeenkomst tussen contactgegevens, versnellingsgegevens en botsingsomstandigheden, het verkrijgen van een verslag van de botsproef, en het produceren van een animatie van de verandering van contactgegevens en de verandering van versnellingsgegevens in het botsingsproces in de contactvideo; waarbij de botsingsomstandigheden botsingssnelheid, moduletemperatuur, de temperatuur van de pakketwand, mechanische eigenschappen van het materiaal van de batterijdoos, de structuur van et batterijpakket en van de bevestiging van het batterijpakket aan inhoudsmodule omvat.— establishing the correspondence between contact details, acceleration data and collision conditions, obtaining a crash test report, and producing an animation of the change of contact details and the change of acceleration data in the collision process in the contact video; wherein the crash conditions include impact velocity, module temperature, the temperature of the pack wall, mechanical properties of the battery pack material, the structure of the battery pack, and of the attachment of the battery pack to the content module.
NL2030586A 2021-04-28 2022-01-18 Comprehensive safety test system and method of vehicle power battery box based on temperature control NL2030586B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110465115.8A CN113176064B (en) 2021-04-28 2021-04-28 Temperature control-based safety comprehensive test system and method for vehicle power battery box

Publications (2)

Publication Number Publication Date
NL2030586A true NL2030586A (en) 2022-11-04
NL2030586B1 NL2030586B1 (en) 2023-09-11

Family

ID=76926977

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030586A NL2030586B1 (en) 2021-04-28 2022-01-18 Comprehensive safety test system and method of vehicle power battery box based on temperature control

Country Status (2)

Country Link
CN (1) CN113176064B (en)
NL (1) NL2030586B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050369B (en) * 2021-11-11 2022-06-21 吉林化工学院 Temperature control-based lightweight power battery box design method and system and battery box

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444977A (en) * 2015-12-25 2016-03-30 北京长城华冠汽车科技股份有限公司 Automotive battery simulation collision test system and method
KR101949106B1 (en) * 2018-11-20 2019-02-15 영남대학교 산학협력단 Testing Device for secondary Battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655388B (en) * 2015-03-18 2017-03-29 吉林大学 A kind of Vehicular dynamic battery high velocity impact experiment test device
CN105675309B (en) * 2016-03-25 2019-07-09 北京新能源汽车股份有限公司 Power battery collision testing device and method for pure electric vehicle
CN107238799B (en) * 2016-03-28 2023-09-12 新材料与产业技术北京研究院 Battery testing device
US11650256B2 (en) * 2017-09-29 2023-05-16 Daramic, Llc Testing apparatus for testing lead acid batteries and their components, and methods and systems incorporating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444977A (en) * 2015-12-25 2016-03-30 北京长城华冠汽车科技股份有限公司 Automotive battery simulation collision test system and method
KR101949106B1 (en) * 2018-11-20 2019-02-15 영남대학교 산학협력단 Testing Device for secondary Battery

Also Published As

Publication number Publication date
CN113176064B (en) 2021-11-09
CN113176064A (en) 2021-07-27
NL2030586B1 (en) 2023-09-11

Similar Documents

Publication Publication Date Title
Kamal Analysis and simulation of vehicle to barrier impact
Sun et al. Contact forces generated by hailstone impact
NL2030586B1 (en) Comprehensive safety test system and method of vehicle power battery box based on temperature control
WO2021212496A1 (en) Battery detection method and apparatus
CN105808857B (en) The prediction technique of automobile active safety system validity based on collision deformation depth
CN109002642A (en) The quick design optimization method of vehicle body of railway vehicle chassis front end endergonic structure
CN105203964A (en) Impact test device for battery cell
CN106596008B (en) A kind of on-vehicle fuel vibration experiment of the practical driving cycles of simulation
CN105828029A (en) Vehicle collision monitoring system, method and apparatus
Von Riesemann et al. Full-scale aircraft impact test for evaluation of impact forces: Part 1, Test plan, test method, and test results
CN112051042B (en) Hub extrusion test device and hub extrusion simulation analysis method
CN207095870U (en) A kind of crash tests equipment
Dixit et al. Comparative investigation for the performance of steel and carbon fiber composite front bumper crush-can (FBCC) structures in quarter-point impact crash tests
CN111649959A (en) Throttle control device for vehicle performance test development
CN114050369B (en) Temperature control-based lightweight power battery box design method and system and battery box
Chen et al. Damage assessment method of battery pack of electric vehicle in undercarriage collision
Tang et al. Analysis of space debris impact source localization based on PVDF piezoelectric film
JP2021110564A (en) Collision test device
CN208254807U (en) A kind of carriage device for simulated crash and monitoring data
Kaleto et al. An Innovative Approach to Component Testing Using an Impact Sled
CN117284506B (en) Microgravity impact dynamics test platform and test method for aerospace adsorption mechanism
CN111122353B (en) Method for evaluating collision performance of energy absorption pad for automobile battery based on drop hammer test method
Zhang et al. Modelling and simulation of high-and low-speed impact damage of lithium batteries for light and small UAVs
Yoon et al. Measurement of roof deformation caused by vehicle rollover
CN216846910U (en) Experimental energy-absorbing device of platform truck and high G value platform truck system that slows down