NL2029744B1 - Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores - Google Patents

Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores Download PDF

Info

Publication number
NL2029744B1
NL2029744B1 NL2029744A NL2029744A NL2029744B1 NL 2029744 B1 NL2029744 B1 NL 2029744B1 NL 2029744 A NL2029744 A NL 2029744A NL 2029744 A NL2029744 A NL 2029744A NL 2029744 B1 NL2029744 B1 NL 2029744B1
Authority
NL
Netherlands
Prior art keywords
photonic crystal
refractive index
type
crystal fiber
pores
Prior art date
Application number
NL2029744A
Other languages
Dutch (nl)
Other versions
NL2029744A (en
Inventor
Huang Hai
Shen Tao
Wang Shaofeng
Wang Dongxing
Chen Jianjiao
Zhang Zhiwen
Liang Han
Original Assignee
Univ Harbin Science & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Harbin Science & Tech filed Critical Univ Harbin Science & Tech
Publication of NL2029744A publication Critical patent/NL2029744A/en
Application granted granted Critical
Publication of NL2029744B1 publication Critical patent/NL2029744B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Described is a device for sensing refractive index of D-type photonic crystal fibre with 5 triangular pores comprises a broadband light source, a polarizer, a flow cell, a D-type photonic crystal fibre, a single-mode fibre, a spectrum analyser and a computer. The fibre refractive index sensor is located in the flow cell, and an inlet and an outlet for controlling a liquid analyte are arranged in the flow cell; and a polished surface of a side surface of the D-type photonic crystal fibre is coated with a silver-doped zinc oxide film, and the single-mode fibre fused with the D-type 10 photonic crystal fibre and the D-type photonic crystal fibre coated with the silver-doped zinc oxide film form a probe of the device. Through use of an SPR sensing mechanism, small change of a refractive index RI of the liquid analyte is converted into a measurable change of a loss peak, which realizes refractive index sensing. The present disclosure has the advantages of high sensitivity, flexible design, compact structure and strong stability, and has wide application values 15 in biochemical analyte detection and water pollution monitoring.

Description

DEVICE AND METHOD FOR SENSING REFRACTIVE INDEX OF D-TYPE PHOTONIC CRYSTAL FIBRE WITH TRIANGULAR PORES
TECHNICAL FIELD The present disclosure belongs to the technical field of optical fibre sensing, and particularly relates to a device and method for sensing refractive index of D-type photonic crystal fibre with triangular pores.
BACKGROUND OF THE PRESENT INVENTION Surface plasmon resonance (SPR) exists between metal and a medium (or air), and surface plasmon polaritons (SPP) are excited by total reflection evanescent waves. The SPR sensing technology has become a multi-functional tool for monitoring refractive indexes of analytes, filtering light with specific frequency and detecting formation of nano-biofilms, because of its high sensitivity, no background interference, no label on samples, no further purification and real-time rapid detection. In recent years, the concept of SPR sensors based on photonic crystal fibre (PCF) has been proposed. The photonic crystal fibre has the characteristic of design flexibility, so dispersion, birefringence, nonlinearity and the like can be customized by different pore arrangements. Because of these aspects, the photonic crystal fibre becomes particularly attractive in many fields, and has been widely used in gas-based nonlinear optics, atomic and particle guidance, ultra-high nonlinearity, rare earth-doped laser and sensing. A PCF-SPR sensor can perfectly match a plasma mode and a fundamental mode, since the effective refractive index of the fundamental mode can be designed to be between zero and the refractive index of core material, and the sensor has high sensitivity and resolution in refractive index detection. The shortcomings of an SPR sensor based on a prism and traditional fibres, such as large volume, high transmission loss and low sensitivity, can be overcome. A side-polished photonic crystal fibre is an optical fibre element that uses the fibre grinding and polishing technology to remove a part of cladding, which not only can keep the advantages of the traditional fibres, but also can make a conduction mode in the fibre leak out through a polishing area for other applications, such as application of evanescent waves in the sensor field. J.J Wu et al. (J.J.Wu, S.G.Li, M.Shi, X.X.Feng, photonic crystal fibre temperature sensor with high sensitivity based on surface plasma on resonance, Optical Fibre technology, 2018, 43: 90-94) proposed a PCF temperature sensor based on SPR, in which metal gold is used as an SPR excitation material, four small pores and one large pore under a solid fibre core are used to generate birefringence, and the measuring temperature range is 10-85°C (with a refractive index range of 1.336-1.3698). N.Chen et al. (N.Chen, M.Chang, X.L.Lu, J.Zhou and X.D.Zhang, Numerical Analysis of Midinfrared D-Shaped Photonic-Crystal-Fibre Sensor based on Surface-Plasmon-Resonance Effect for Environmental Monitoring, Applied Sciences, 2020, 10 (11): 3897) proposed a D-type PCF refractive index sensor based on an SPR effect, which works in a near-infrared band (2.9-3.6um) and is used for environmental monitoring. An analyte is in direct contact with a gold layer and surrounds the whole D-type PCF, instead of just touching a polished surface. A cladding is made of silicon, and three layers of pores in the cladding are arranged according to a hexagonal lattice. M.N.Sakib et al. (M.N.Sakib, M.B.Hossain, K.F.Al-tabatabaie, |. M.Mehedi, M.T.Hasan, M.A. Hossain, |.S.Amiri, High Performance Dual Core D-Shape PCF-SPR Sensor Modeling Employment Gold Coat, Results in physics, 2019, 15: 102788) proposed a D-type PCF-SPR sensor with a gold coating and solid double cores. The refractive index range of an analyte is 1.45-1.48; two solid cores are symmetrical with y axis, and it is difficult to couple energy of the double cores with that of a metal layer, which is narrow in an applicable detection scope. S.Singh et al. (S.Singh, Y.K.Prajapati, Highly sensitive reflective index sensor based on D-shaped PCF with gold-graph layers on the polished surface, Applied Physics A,2019,125:437) proposed a D-type PCF refractive index sensor with gold and graphene layers on a polished surface. Two large pores are placed in x direction of a solid core to study a limited loss spectrum when polarized light in the x direction is coupled. A.A.Rifat et al. (A.A.Rifat, G.A.Mahdiraji, D.M.Chow, Y.G.Shee, R.Ahmed and F.R.M.Adikan, Photonic Crystal Fibre-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core, Sensors, 2015, 15(5):11499-11510) proposed a D-type photonic crystal fibre SPR refractive index sensor. Silver is used as an SPR excitation material, and the maximum wavelength sensitivity in a detection range of 1.46-1.49 is 3000nm/RIU. The sensor not only has a narrow detection range, but also fails to satisfy the requirement of high sensitivity.
SUMMARY OF PRESENT INVENTION Although above-mentioned researchers have made relevant research and improvement on the above-mentioned polished photonic crystal fibres, as pure metal was used as an SPR excitation material, oxidizability of the pure metal in a humid environment is poor, and a very thin metal layer may fall off from a glass fibre. Thus, the ability to limit light is weakened and accuracy of analyte detection is reduced. Even if graphene is added, excitation of an SPR mode will be weakened due to the existence of damping. Therefore, the sensing sensitivity, detection range and practicability are greatly limited. In order to solve defects of the prior art, the present disclosure provides a device and method for sensing refractive index of D-type photonic crystal fibre with triangular pores, with compact structure, high sensitivity and wide detection range.
The technical solution adopted by the present disclosure to solve the technical problems is as follows: A device for sensing refractive index of D-type photonic crystal fibre with triangular pores comprises a broadband light source (1), a polarizer (2), a flow cell (3), a D-type photonic crystal fibre (4), a single-mode fibre (5), a spectrum analyser (6), a computer (7) and a fibre refractive index sensor; the fibre refractive index sensor is located in the flow cell (3); and an inlet (8) and an outlet (9) for controlling a liquid analyte are arranged in the flow cell (3).
A polished surface of a side surface of the D-type photonic crystal fibre (4) is coated with a silver-doped zinc oxide film, and the single-mode fibre (5) fused with the D-type photonic crystal fibre (4) and the D-type photonic crystal fibre (4) coated with the silver-doped zinc oxide film form a probe of the device.
The D-type photonic crystal fibre (4) comprises: a cladding (10) and 25 regular triangular pores in the cladding; a first pore (11) and a second pore (12) are respectively rotated by 20°, 40°, 60° and 79° with an origin as the centre, and then are mirrored to form a first layer of pores anda second layer of pores respectively; a third pore (13) are respectively rotated by 20° and 40° with the origin as the centre, and then mirrored to form a third layer of pores; and an elliptical pores (14) is located at a y-axis (hollow) fibre core.
A preparation method of coating the silver-doped zinc oxide film on the side-polished surface of D-type photonic crystal fibre (4) comprises the following steps: mixing 60ml of zinc acetate absolute ethanol solution (0.015M) and 30ml of sodium hydroxide absolute ethanol solution (0.0225M) in a beaker and stirring for 2 hours to prepare a seed solution; mixing a seed solution of pure zinc oxide with 300ml of zinc nitrate solution (0.03M) and 300ml of hexamethylenetetramine solution (0.03M) and stirring; and mixing and stirring 150 ml of zinc nitrate (0.008M, 0.0076M, 0.0072M, 0.0068M, 0.0064M and 0.006M) aqueous solution, 150ml of silver nitrate (0.024M, 0.0248M, 0.0256M, 0.0264M, 0.0272M and 0.028M) aqueous solution and 300 ml of hexamethylenetetramine solution (0.03M) to obtain silver-doped zinc oxide (60%-70%) nano-materials with different concentrations.
Further, according to the D-type photonic crystal fibre (4), a cladding pore pitch Ais 10-12 Hm, a cladding diameter D is 100 um, and distances h4, hz and hs from apexes of the pores (11), pores (12) and pores (13) to the centre are 4.275-4.725 um, 3.325-3.625 um and 2.375-
2.625 um respectively; and a minor axis a and a major axis b of the elliptical pores (14) are 3 Mm and 7 um respectively.
Further, the cladding material of the D-type photonic crystal fibre (4) is fused quartz, and a refractive index thereof is defined by a Sellmeier formula.
Further, the liquid analyte is obtained by mixing anhydrous ethanol and deionized water with different mass ratios, and measured by an Abbe refractometer.
A method for preparing the device for sensing refractive index of D-type photonic crystal fibre with triangular pores is provided. A photonic crystal fibre is prepared by a stacking-drawing technology, and then polished in a V-shaped groove to form a D-type photonic crystal fibre (4); and the D-type photonic crystal fibre (4) coated with a silver-doped zinc oxide film can be obtained by a radio frequency magnetron sputtering method.
The stacking-drawing technology is as follows: firstly, pre-treating a quartz sleeve, drawing to produce a capillary according to parameters in an ultra-clean environment at a drawing temperature of 1900-2000°C, then tapering and sealing two ends of the capillary with an oxyhydrogen flame, stacking the capillaries in the quartz sleeve to form a required structure according to design requirements, filling gaps with a pure quartz rod, sintering the quartz sleeve and the capillaries together by the oxyacetylene flame, and then producing a photonic crystal fibre by using the drawing technology twice on a drawing tower.
According to the D-type photonic crystal fibre refractive index sensor device and method with the triangular pores, a transmission path is as follows: the broadband light source (1) becomes y-polarized light through the polarizer (2), which is transmitted to the D-type photonic crystal fibre (4) through the flow cell (3), output from the D-type photonic crystal fibre (4) and then input to the spectrum analyser (6) through the single-mode fibre (5); and an output end of the spectrum analyser (6) is connected to the computer (7), wherein A wave vector of a plasma wave excited on the surface of the silver-doped zinc oxide film and a wave vector of an incident light field reach phase matching within a specific wavelength range and are coupled, and a resonant loss peak occurs; surface plasmon resonance (SPR) is very sensitive to a medium environment, and a change of an refractive index RI of a liquid analyte changes resonance conditions, leading to obvious changes of the resonance loss peak, thereby realizing high-sensitivity and real-time detection. Structure invention: the D-type photonic crystal fibre refractive index sensor device and method based on SPR.
Compared with the prior art, the patent of the present disclosure has the following beneficial effects:
1. In the present disclosure, the elliptical pores (14) on the cladding of the D-type photonic crystal fibre are located at the y-axis (hollow) fibre core, which greatly increases birefringence characteristics and dispersion characteristics, is beneficial to maintaining a polarization state, and can be widely used in fields of polarization control, precision fibre sensing and the like.
2. According to the D-type photonic crystal fibre refractive index sensor device and the method with the triangular pores disclosed by the present disclosure, silver-doped zinc oxide is used as the SPR excitation material, with the maximum sensitivity of 6000nm/RIU and the resolution of 1.667x 105 RIU within the refractive index RI of the liquid analyte of 1.37-1.41; and the present disclosure can be widely used in sample detection in the fields of life science research, biochemistry and environmental monitoring.
DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram of a D-type photonic crystal fibre refractive index sensor device with triangular pores provided by the present disclosure; and Fig. 2 is a two-dimensional sectional view of a D-type photonic crystal fibre with triangular pores provided by the present disclosure.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The specific embodiments of a device and method for sensing refractive index of D-type photonic crystal fibre with triangular pores proposed by the present disclosure will be described below with reference to the accompanying drawings. 5 Fig. 1 is a diagram of the D-type photonic crystal fibre refractive index sensor device with triangular pores.
The device comprises a broadband light source {1}, a polarizer (2), a flow cell (3), a D-type photonic crystal fibre (4), a single-mode fibre (5), a spectrum analyser (6) and a computer (7). The fibre refractive index sensor is located in the flow cell, and an inlet (8) and an outlet (9) for controlling a liquid analyte are arranged in the flow cell; a polished surface of a side surface of the D-type photonic crystal fibre (4) is coated with a silver-doped zinc oxide film, and the single-mode fibre (5) fused with the D-type photonic crystal fibre (4) and the D-type photonic crystal fibre (4) coated with the silver-doped zinc oxide film form a probe of the device; the broadband light source (1) becomes y-polarized light through the polarizer (2), which is transmitted to the D-type photonic crystal fibre (4) through the flow cell (3), output from the D- type photonic crystal fibre (4) and then input to the spectrum analyser (6) through the single- mode fibre (5); and an output end of the spectrum analyser (6) is connected to the computer (7). Fig. 2 is a two-dimensional sectional view of a D-type photonic crystal fibre with triangular pores.
The D-type photonic crystal fibre comprises: a cladding (10) and 25 regular triangular pores in the cladding, wherein the pores (11) and the pores (12) are respectively rotated by 20°, 40°, 60° and 79° with an origin as the centre, and then are mirrored to form a first layer of pores and a second layer of pores; the pores (13) are respectively rotated by 20° and 40° with the origin as the centre, and then are mirrored to form a third layer of pores; and the elliptical pores (14) are located at a y-axis (hollow) fibre core; a cladding pore pitch Ais 10-12 um and a cladding diameter D is 100 um, and distances hs, hz and hs from apexes of the pores (11), pores (12) and pores (13) to the centre are 4.275-4.725 um, 3.325-3.625 um and 2.375-2.625 Um respectively; and a minor axis a and a major axis b of the elliptical pores (14) are 3 um and 7 Hm respectively.
The sensitivity of the refractive index RI of a liquid analyte is detected by a D-type photonic crystal fibre refractive index sensor with triangular pores.
The refractive index RI of the liquid analyte is adjusted by mixing sucrose and deionized water with different mass ratios, and the refractive indexes RI of the liquid analyte of 1.37, 1.38, 1.39, 1.40 and 1.41 are used sequentially for measurement by the D-type photonic crystal fibre refractive index sensor device based on SPR provided by the present disclosure.
The change of the refractive indexes RI of the liquid analyte changes the resonance conditions, leading to obvious changes of a resonance loss peak, thereby realizing high-sensitivity and real-time detection.

Claims (5)

CONCLUSIESCONCLUSIONS 1. Een inrichting voor de meten van de brekingsindex van een fotonische kristalvezel van het D-type met driehoekige poriën, welke inrichting omvat: een breedbandlichtbron (1), een polarisator (2), een stromingscel (3), een fotonische kristalvezel van het D-type (4), een enkele-modus vezel (5), een spectrumanalysator (6), een computer (7) en een sensor voor de brekingsindex van de vezel, waarbij de sensor voor de brekingsindex van de vezel zich in de stromingscel (3) bevindt en een inlaat (8) en een uitlaat (9) voor het beheersen van de vloeibare analyt in de stromingscel (3) zijn aangebracht, waarbij — een gepolijst oppervlak van een zijde van de fotonische kristalvezel van het type D (4) is bekleed met een zilver-gedoteerde zinkoxide film, waarbij de enkele-modus vezel (5) die gefuseerd is met de fotonische kristalvezel van het D-type (4) en de fotonische kristalvezel van het D-type (4) die bekleed is met de zilver-gedoteerde zinkoxide film een sonde van de inrichting vormen; — de fotonische kristalvezel van het D-type (4) omvat: een bekleding (10) en 25 regelmatige driehoekige poriën in de bekleding, waarbij een eerste porie (11) en een tweede porie (12) respectievelijk 20°, 40°, 60° en 79° gedraaid zijn met een oorsprong als middelpunt, en vervolgens gespiegeld zijn om respectievelijk een eerste laag poriën en een tweede laag poriën te vormen, waarbij een derde porie (13) respectievelijk 20° en 40° gedraaid zijn met de oorsprong als middelpunt, en vervolgens gespiegeld om een derde laag poriën te vormen, en waarbij een elliptische porie (14) zich in een (holle) vezelkern op de y-as bevindt; — de bereidingsmethode voor het coaten van de zilvergedoopte zinkoxidelaag op het zijdelings gepolijste oppervlak van de fotonische kristalvezel van het D-type (4) de volgende stappen omvat: mengen van 60 ml zinkacetaat oplossing in absolute ethanol (0,015M) en 30 ml natriumhydroxide oplossing in absolute ethanol (0,0225M) in een bekerglas en roeren gedurende 2 uur om een zaai-oplossing te bereiden; mengen van een zaai-oplossing van zuiver zinkoxide met 300 ml zinknitraatoplossing (0.03M) en 300 ml hexamethyleentetra-amineoplossing (0,03M) en roeren; en mengen en roeren van 150 ml zinknitraat oplossing in water (0,008M, 0,0076M, 0,0072M, 0,0068M, 0,0064M en 0,006M), 150 ml zilvernitraat oplossing in water (0,024M, 0,0248M, 0,0256M, 0,0264M,A device for measuring the refractive index of a D-type photonic crystal fiber with triangular pores, the device comprising: a broadband light source (1), a polarizer (2), a flow cell (3), a photonic crystal fiber of the D-type (4), a single mode fiber (5), a spectrum analyzer (6), a computer (7) and a fiber refractive index sensor, where the fiber refractive index sensor is located in the flow cell (3) and an inlet (8) and an outlet (9) for controlling the liquid analyte are provided in the flow cell (3), wherein — a polished surface of one side of the type D photonic crystal fiber (4 ) is coated with a silver-doped zinc oxide film, with the single-mode fiber (5) fused to the D-type photonic crystal fiber (4) and the D-type photonic crystal fiber (4) coated forming a probe of the device with the silver-doped zinc oxide film; - the D-type photonic crystal fiber (4) comprises: a cladding (10) and 25 regular triangular pores in the cladding, wherein a first pore (11) and a second pore (12) are respectively 20°, 40°, 60 ° and 79° rotated centered on an origin, then mirrored to form a first layer of pores and a second layer of pores, respectively, with a third pore (13) rotated 20° and 40° respectively, centered on the origin , and then mirrored to form a third layer of pores, and wherein an elliptical pore (14) is located in a (hollow) fiber core on the y-axis; — the preparation method for coating the silver-doped zinc oxide layer on the side-polished surface of the D-type photonic crystal fiber (4) includes the following steps: mixing 60 ml of zinc acetate solution in absolute ethanol (0,015M) and 30 ml of sodium hydroxide solution in absolute ethanol (0.0225M) in a beaker and stirring for 2 hours to prepare a seeding solution; mixing a seed solution of pure zinc oxide with 300 ml of zinc nitrate solution (0.03M) and 300 ml of hexamethylenetetraamine solution (0.03M) and stirring; and mixing and stirring 150 ml of zinc nitrate solution in water (0.008M, 0.0076M, 0.0072M, 0.0068M, 0.0064M and 0.006M), 150 ml of silver nitrate solution in water (0.024M, 0.0248M, 0 .0256M, 0.0264M, 0.0272M en 0,028M) en 300 ml hexamethyleentetramine oplossing (0.03M) om zilver- gedoteerd zinkoxide (80%-70%) nano-materialen met verschillende concentraties te verkrijgen.0.0272M and 0.028M) and 300 ml hexamethylenetetramine solution (0.03M) to obtain silver-doped zinc oxide (80%-70%) nanomaterials with different concentrations. 2. De inrichting volgens conclusie 1, waarbij voor de fotonische kristalvezel van het D-type (4) de afstand tussen de bekledingsporién A 10 - 12 um bedraagt, de bekledingsdiameter D 100 pm bedraagt en de afstanden hy, hz en hz van de uiteinden van de eerste porie (11), tweede porie (12) en derde porie (13) tot het centrum respectievelijk 4,275 - 4,725 um, 3,325 - 3,625 um en 2,375 - 2,625 um bedragen; en de korte as a en de lange as b van de elliptische porie (14) respectievelijk 3 um en 7 um bedragen.The device according to claim 1, wherein for the D-type photonic crystal fiber (4), the distance between the cladding pores A is 10 - 12 µm, the cladding diameter D is 100 µm, and the distances hy, hz and hz from the ends are from the first pore (11), second pore (12) and third pore (13) to the center are 4.275 - 4.725 µm, 3.325 - 3.625 µm and 2.375 - 2.625 µm, respectively; and the minor axis a and the major axis b of the elliptical pore (14) are 3 µm and 7 µm, respectively. 3. De inrichting volgens conclusie 1, waarbij het bekledingsmateriaal van de fotonische kristalvezel van het D-type (4) gesmolten kwarts is, en de brekingsindex daarvan wordt gedefinieerd door de Sellmeier-formule.The device according to claim 1, wherein the cladding material of the D-type photonic crystal fiber (4) is fused quartz, and its refractive index is defined by the Sellmeier formula. 4. De inrichting volgens conclusie 1, waarbij de vloeibare analyt wordt verkregen door het mengen van watervrije ethanol en gedeïoniseerd water in verschillende massaverhoudingen, en gemeten wordt met een Abbe refractometer.The device of claim 1, wherein the liquid analyte is obtained by mixing anhydrous ethanol and deionized water in different mass ratios, and measured with an Abbe refractometer. 5. Een werkwijze voor het vervaardigen van een inrichting voor het meten van de brekingsindex van fotonische kristalvezels van het type D met driehoekige poriën, waarbij een fotonische kristalvezel wordt vervaardigd met behulp van een stapeltrektechniek en vervolgens wordt gepolijst in een V-vormige groef om een fotonische kristalvezel van het D-type (4) te vormen; en de fotonische kristalvezel van het D-type D (4) gecoat met een zilver-gedoteerde zinkoxide-film kan worden verkregen met behulp van een radiofrequente magnetronsputtermethode; waarbij — de stapel-trek technologie als volgt is: eerst voorbehandelen van een kwartshuls, trekken om een capillair te produceren volgens parameters in een ultra-schone omgeving bij een trektemperatuur van 1900 - 2000°C, vervolgens twee uiteinden van het capillair taps laten toelopen en afdichten met een knalgasvlam, het stapelen van de capillairen in de kwartshuls om een vereiste structuur te vormen volgens de ontwerpvereisten, het opvullen van de openingen met een zuivere kwartsstaaf, het aan elkaar sinteren van de kwartshuls en de capillairen met een zuurstof-acetyleenvlam, en vervolgens het produceren van een fotonische kristalvezel door tweemaal gebruik te maken van de trektechnologie op een trektoren; — in de inrichting voor de meten van de brekingsindex van een fotonische kristalvezel van het D-type en de werkwijze met de driehoekige poriën de transmissieweg als volgt is: de breedbandlichtbron (1) wordt y-gepolariseerd licht door de polarisator (2), dat naar de fotonische kristalvezel van het D-type (4) wordt overgebracht door de stromingscel (3), uitgevoerd van de fotonische kristalvezel van het D-type (4) en vervolgens ingevoerd in de spectrumanalysator (6) door de enkele-modus vezel (5); en een uitgangsuiteinde van de spectrumanalysator (6) verbonden is met de computer (7); — een golfvector van een plasmagolf geëxciteerd op het oppervlak van de zilver-gedoteerde zinkoxidefilm en een golfvector van een invallend lichtveld faseovereenstemming binnen een specifiek golflengtegebied bereiken en gekoppeld worden, en er een resonantieverliespiek op treedt; waarbij oppervlakteplasmonresonantie (SPR) gevoelig is voor een mediumomgeving, en een verandering van de brekingsindex RI van een vloeibare analyt de resonantiecondities verandert, hetgeen leidt tot duidelijke veranderingen van de resonantieverliespiek, waardoor een zeer gevoelige en real-time detectie wordt gerealiseerd.5. A method of manufacturing a device for measuring the refractive index of type D photonic crystal fibers with triangular pores, wherein a photonic crystal fiber is fabricated by a stack drawing technique and then polished in a V-shaped groove to obtain a form D-type photonic crystal fiber (4); and the D-type D photonic crystal fiber (4) coated with a silver-doped zinc oxide film can be obtained by a radio frequency magnetron sputtering method; where — the stack-drawing technology is as follows: first pre-treating a quartz sleeve, drawing to produce a capillary according to parameters in an ultra-clean environment at a drawing temperature of 1900 - 2000°C, then tapering two ends of the capillary and sealing with an oxyhydrogen flame, stacking the capillaries in the quartz sleeve to form a required structure as per the design requirements, filling the gaps with a pure quartz rod, sintering the quartz sleeve and capillaries together with an oxygen-acetylene flame, and then producing a photonic crystal fiber by using the drawing technology twice on a drawing tower; — in the device for measuring the refractive index of a D-type crystal photonic fiber and the triangular pore method, the transmission path is as follows: the broadband light source (1) becomes y-polarized light through the polarizer (2), which to the D-type photonic crystal fiber (4) is transferred by the flow cell (3), output from the D-type photonic crystal fiber (4), and then input to the spectrum analyzer (6) through the single-mode fiber ( 5); and an output end of the spectrum analyzer (6) is connected to the computer (7); - a wave vector of a plasma wave excited on the surface of the silver-doped zinc oxide film and a wave vector of an incident light field reach phase agreement within a specific wavelength region and become coupled, and a resonance loss peak occurs; where surface plasmon resonance (SPR) is sensitive to a medium environment, and a change in the refractive index RI of a liquid analyte changes the resonance conditions, leading to marked changes of the resonance loss peak, realizing highly sensitive and real-time detection.
NL2029744A 2020-11-19 2021-11-13 Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores NL2029744B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011298539.1A CN112432923B (en) 2020-11-19 2020-11-19 D-type photonic crystal fiber refractive index sensor device with triangular air holes and method

Publications (2)

Publication Number Publication Date
NL2029744A NL2029744A (en) 2022-06-28
NL2029744B1 true NL2029744B1 (en) 2022-12-29

Family

ID=74694255

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2029744A NL2029744B1 (en) 2020-11-19 2021-11-13 Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores

Country Status (2)

Country Link
CN (1) CN112432923B (en)
NL (1) NL2029744B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514423B (en) * 2021-06-30 2024-02-06 泰山学院 Cut-hole type D-type photonic crystal fiber-based plasma resonance refractive index sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2698883A1 (en) * 2007-09-04 2009-03-12 The Regents Of The University Of California Liquid core photonic crystal fiber biosensors using surface enhanced raman scattering and methods for their use
CN203479701U (en) * 2013-07-30 2014-03-12 深圳大学 Optical fiber sensor and measurement system
CN103792212B (en) * 2014-02-18 2017-01-04 深圳大学 A kind of Fiber Optic Sensor Based on Surface Plasmon Resonance, detecting system and method
CN107607217A (en) * 2017-08-22 2018-01-19 哈尔滨工程大学 Temperature, pressure integrated sensing device and measuring method based on high double-refraction photon crystal fiber surface plasma resonance
CN109187440B (en) * 2018-08-06 2021-03-02 天津大学 Single-mode-few-mode/multi-mode fiber SPR sensor based on mode excitation
CN110132322B (en) * 2019-04-08 2021-01-22 东莞理工学院 Ultraviolet radiation enhanced optical fiber sensor and preparation method thereof
CN110441260A (en) * 2019-08-14 2019-11-12 南京邮电大学 Palisade film twin-core D type the interferometric optical fiber sensor of photon crystal optical fibre device based on SPR effect
CN110596051A (en) * 2019-09-01 2019-12-20 桂林电子科技大学 Double-core D-type photonic crystal fiber SPR sensor based on graphene coating
CN112432924B (en) * 2020-11-19 2023-12-22 哈尔滨理工大学 Square hole photonic crystal fiber refractive index sensing device based on SPR
CN112432925B (en) * 2020-11-19 2024-03-15 哈尔滨理工大学 SPR-based D-type photonic crystal fiber refractive index sensor device and method

Also Published As

Publication number Publication date
CN112432923A (en) 2021-03-02
CN112432923B (en) 2024-03-15
NL2029744A (en) 2022-06-28

Similar Documents

Publication Publication Date Title
Wang et al. A highly sensitive SPR sensors based on two parallel PCFs for low refractive index detection
Zhang et al. A refractive index sensor based on a D-shaped photonic crystal fiber with a nanoscale gold belt
CN112432715B (en) SPR (surface plasmon resonance) -based D-type photonic crystal fiber temperature sensing device and method
Yang et al. Highly sensitive refractive index detection based on compact HSC-SPR structure in a microfluidic chip
Bing et al. A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels
Fu et al. Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires
CN112432924B (en) Square hole photonic crystal fiber refractive index sensing device based on SPR
CN112432925B (en) SPR-based D-type photonic crystal fiber refractive index sensor device and method
CN114062309B (en) Double-parameter sensing system based on near-infrared band double-peak PCF concentration and magnetic field
NL2029744B1 (en) Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores
Li et al. Design and characterization of bio-chemical sensor based on photonic crystal fiber with fluorine-doped tin oxides film
CN205656127U (en) Reflective SPR refracting index sensor based on tapered fiber long period grating
Liu et al. Design of methane sensor based on slow light effect in hollow core photonic crystal fiber
Lu et al. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing
Dong et al. Design and analysis of surface plasmon resonance sensor based on multi-core photonic crystal fiber
Gupta et al. Photonic crystal fiber based surface plasmon resonance bio-sensors with bimetallic selectively filled metal layers
CN114062310B (en) Double-parameter sensing system based on near infrared band double-peak PCF concentration and stress
CN114136484B (en) Double-parameter sensing system based on near-infrared band double-peak PCF temperature and stress
CN112433183A (en) SPR-based D-type photonic crystal fiber magnetic field sensitive sensing device and method
Fu et al. A highly sensitive six-conjoined-tube anti-resonance optical fiber temperature sensor based on surface plasmon resonance
CN114111859B (en) Double-parameter sensing system based on near-infrared band double-peak PCF temperature and magnetic field
Yasli et al. Photonic crystal fiber based surface plasmon sensor design and analyze with elliptical air holes
CN114062317B (en) Near-infrared Duan Shuangfeng PCF humidity and magnetic field based double-parameter sensing system
Li et al. High-sensitivity temperature sensor based on surface plasmon resonance photonic crystal fiber
CN114136919B (en) Double-parameter sensing system based on near-infrared band double-peak PCF humidity and stress