NL2029455B1 - a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine - Google Patents

a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine Download PDF

Info

Publication number
NL2029455B1
NL2029455B1 NL2029455A NL2029455A NL2029455B1 NL 2029455 B1 NL2029455 B1 NL 2029455B1 NL 2029455 A NL2029455 A NL 2029455A NL 2029455 A NL2029455 A NL 2029455A NL 2029455 B1 NL2029455 B1 NL 2029455B1
Authority
NL
Netherlands
Prior art keywords
rotor
wind turbine
transverse axis
axis wind
support structure
Prior art date
Application number
NL2029455A
Other languages
Dutch (nl)
Inventor
Maria Hubertus Weckseler Johannes
Original Assignee
Maria Hubertus Weckseler Johannes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maria Hubertus Weckseler Johannes filed Critical Maria Hubertus Weckseler Johannes
Priority to NL2029455A priority Critical patent/NL2029455B1/en
Application granted granted Critical
Publication of NL2029455B1 publication Critical patent/NL2029455B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

A transverse axis wind turbine (1) arranged for being connected to a support structure (3) such as a building or a mast, wherein said transverse axis wind turbine (1) comprises: - a first connecting element (5) arranged for connecting said transverse axis wind turbine (1) to said support structure (3); - a second connecting element (7) arranged for connecting said transverse axis wind turbine (1) to said support structure (3); - a first rotor (9) arranged to be propelled by air flow and provided with first rotor blades (11) and a first rotor axis (13), and rotatably connected, via said first rotor axis (13), at a first side of said first rotor (9), to said first connecting element (5), and at a second side of said first rotor (9), opposite to said first side of said first rotor (9), to said second connecting element (7). An assembly (101) of a support structure (3), such as a building or a mast, and the transverse axis wind turbine (1).

Description

Title: a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine
Description:
According to a first aspect, the present disclosure relates to a transverse axis wind turbine.
According to a second aspect, the present disclosure relates to an assembly comprising the transverse axis wind turbine according the first aspect of the present disclosure.
A transverse axis wind turbine is a type of wind turbine wherein the rotor axis is set transverse to the wind, but not necessarily vertically. Components of a known transverse axis wind turbine such as a generator and, if provided, a gearbox are located at the base of the transverse axis wind turbine. This arrangement allows the generator and gearbox to be located close to the ground, facilitating service and repair.
An advantage of transverse axis wind turbines is that there is no need to point the rotor into the wind, which removes the need for wind-sensing and orientation mechanisms.
The transverse axis wind turbine according to the present disclosure is arranged for being connected to a support structure such as a building or a mast. The transverse axis wind turbine may for example be connected to a facade of the building.
The transverse axis wind turbine comprises: - a first connecting element arranged for connecting said transverse axis wind turbine to said support structure; - a second connecting element arranged for connecting said transverse axis wind turbine to said support structure; - a first rotor arranged to be propelled by air flow and provided with first rotor blades and a first rotor axis, and rotatably connected, via said first rotor axis, at a first side of said first rotor, to said first connecting element, and at a second side of said first rotor, opposite to said first side of said first rotor, to said second connecting element.
By providing the first connecting element and the second connecting element at opposite sides of the first rotor, a relatively robust wind turbine may be realised at relatively low cost while allowing a relatively large power output. The present disclosure relies at least partly on the insight that a known transverse axis wind turbine is supported, by a mast, only at a lower side of the wind turbine. Supporting the wind turbine only at one side may require a relatively robust and costly construction of the wind turbine and the mast to allow for a relatively large power output.
The first and second connecting elements provide for a relatively stable positioning of the first rotor relative to the support structure even for a relatively large first rotor when being propelled by a relatively strong wind. Maintaining the position of the first rotor relatively stable allows for a relatively safe operation of the wind turbine while avoiding or reducing the risk of undesired movements of the first rotor relative to a nominal position of the first rotor relative to the support structure.
Within the present context, undesired movements are to be understood as movements of the first rotor in a direction transverse to the rotor axis such as a bending of the rotor axis caused by the air flow acting on the first rotor.
In an embodiment of the transverse axis wind turbine according to the present invention, said transverse axis wind turbine further comprises: - a first electrical generator arranged for generating electricity, wherein said first rotor axis is coupled to said first electrical generator for generating said electricity upon rotation of said first rotor about said first rotor axis. Preferably, said first electrical generator is provided at a side of said first connecting element facing away from said first rotor.
Coupling the rotor axis to the electrical generator provides the benefit that the aerodynamic forces are translated to rotation of the generator thereby creating electricity.
In another embodiment of the transverse axis wind turbine according to the present invention, said transverse axis wind turbine further comprises: - a third connecting element arranged for further connecting said transverse axis wind turbine to said support structure; - a second rotor arranged to be propelled by air flow and provided with second rotor blades and a second rotor axis, and rotatably connected, via said second rotor axis, at a first side of said second rotor, to said second connecting element, and at a second side of said second rotor, opposite to said first side of said second rotor, to said third connecting element.
This arrangement provides the possibility that the second rotor can be positioned close to the first rotor in a relatively stable position. The second connecting element and third connecting element provide for a relatively stable positioning of the second rotor relative to the support structure even for a relatively large second rotor when being propelled by a relatively strong wind. Maintaining the position of the second rotor relatively stable allows for a relatively safe operation of the wind turbine while avoiding or reducing the risk of undesired movements of the second rotor relative to a nominal position of the second rotor relative to the support structure.
In another embodiment of the transverse axis wind turbine according to the present invention, said second rotor axis and said first rotor axis are connected to each other such that said second rotor axis is coupled, via said first rotor axis, to said first electrical generator for generating said electricity upon rotation of said second rotor about said second rotor axis.
Coupling said second rotor axis to the first rotor axis is beneficial for generating electricity using a first electrical generator capable of a relatively large output power.
Preferably, said second rotor axis and said first rotor axis are releasably connected via a first coupling element, preferably a resilient coupling element arranged for resiliently coupling said first rotor axis to said second rotor axis.
A benefit of releasably coupling the second rotor axis and the first rotor axis is that the second rotor can be easily decoupled (and removed) from the transverse axis wind turbine, for example for maintenance purposes.
In another embodiment of the transverse axis wind turbine according to the present invention, said transverse axis wind turbine further comprises: - a third rotor arranged to be propelled by air flow and provided with third rotor blades and a third rotor axis, and rotatably connected, via said third rotor axis, at a first side of said third rotor, to said first connecting element, and at a second side of said first rotor, opposite to said first side of said third rotor, to said second connecting element.
This arrangement provides the possibility that the third rotor can be positioned close to the first rotor in a relatively stable position. The first connecting element and second connecting element provide for a relatively stable positioning of the third rotor relative to the support structure even for a relatively large first rotor and/or third rotor when being propelled by a relatively strong wind. Maintaining the position of the third rotor relatively stable allows for a relatively safe operation of the wind turbine while avoiding or reducing the risk of undesired movements of the third rotor relative to a nominal position of the third rotor relative to the support structure.
In an embodiment of said transverse axis wind turbine wherein said support structure is formed by a mast, said transverse axis wind turbine is arranged for providing said third rotor and said first rotor at opposite sides of said mast.
Preferably, said transverse axis wind turbine further comprises: - a second electrical generator arranged for generating electricity, wherein said third rotor axis is coupled to said second electrical generator for generating said electricity upon rotation of said third rotor about said third rotor axis. Preferably, said second electrical generator is provided at a side of said first connecting element facing away from said third rotor.
Coupling the third rotor axis to the second electrical generator provides the benefit that the aerodynamic forces are translated to rotation of the second generator thereby creating electricity. 5 In another embodiment of the transverse axis wind turbine according to the present invention, said first connecting element and said second connecting element are spaced apart in the range of 3 meter to 15 meter, preferably are spaced apart in the range of 5 meter to 8 meter.
This allows for placing rotors in between the first connecting element and the second connecting element that may differ in length.
Preferably, a diameter of said first rotor, in a direction perpendicular to said rotor axis, is in the range of 3 meter to 15 meter, more preferably in the range of 5 meter to 8 meter.
The possibility of rotors having different diameters has the benefit that the transverse axis wind turbine can already be used at relatively low wind speeds.
In another embodiment of the transverse axis wind turbine according to the present invention, said transverse axis wind turbine comprises a fourth connecting element arranged for connecting said first electrical generator to said support structure.
The fourth connecting element provides for a relatively stable positioning of the first electrical generator relative to the support structure even for a relatively large first electrical generator. Maintaining the position of the first electrical generator relatively stable allows for a relatively safe operation of the wind turbine while avoiding or reducing the risk of undesired movements of the first electrical generator relative to a nominal position of the first electrical generator relative to the support structure.
In the assembly of the support structure, such as a building or a mast, and said transverse axis wind turbine according to the first aspect of the invention, said transverse axis wind turbine is connected to said support structure via said first connecting element and said second connecting element, preferably, said first rotor axis is vertical.
Preferably, said support structure is a mast having a height in the range of 50 meter to 300 meter, more preferably in the range of 200 meter to 300 meter.
The benefit of a high support structure is that more electricity can be generated, because at higher elevation, there is often more and stronger wind. In case there is a limit to the maximum height of the wind turbine, for example due to regional regulations, a support structure lower in height is also possible.
Embodiments of the transverse axis wind turbine and the assembly according to the present disclosure will next be explained by means of the accompanying schematic figures, wherein:
Fig. 1 shows a transverse axis wind turbine according to the present disclosure;
Fig. 2 shows a first rotor of the transverse axis wind turbine of Fig. 1;
Fig. 3A and Fig. 3B show a bottom view and a top view of the rotor of Fig. 2;
Fig. 4 shows an assembly of a mast and multiple transverse axis wind turbines according to the present disclosure.
A transverse axis wind turbine 1 according to the present disclosure, as shown in Fig. 1, is arranged for being connected to a support structure 3, such as a building or a mast, and comprises a first connecting element 5 arranged for connecting the transverse axis wind turbine 1 to the support structure 3 and a second connecting element 7 arranged for connecting the transverse axis wind turbine 1 to the support structure 3.
The first connecting element 5 and the second connecting element 7 are spaced apart in the range of 3 meter to 15 meter, preferably they are spaced apart in the range of 5 meter to 8 meter.
The transverse axis wind turbine 1 further comprises a first rotor 9 arranged to be propelled by air flow and provided with first rotor blades 11 and a first rotor axis 13.
The first rotor 9 is rotatably connected, via the first rotor axis 13, at a first side of the first rotor 9, to the first connecting element 5, and at a second side of the first rotor 9, opposite to the first side of the first rotor 9, to the second connecting element 7. The first rotor 9, as shown in Fig. 2, 3A and 3B, comprises a diameter d in a direction perpendicular to the first rotor axis 13. The diameter d is in the range of 3 meter to 15 meter, preferably in the range of 5 meter to 8 meter.
The transverse axis wind turbine 1 is connected to the support structure 3 via the first connecting element 5 and the second connecting element 7 and together form an assembly 101, as shown in Fig. 4. In the assembly, the first rotor axis is arranged vertically relative to the ground surface.
The support structure 3 can be a mast having a height h in the range of 50 meter to 300 meter, preferably in the range of 200 meter to 300 meter.
Fig. 4 further shows that the transverse axis wind turbine 1 comprises a first electrical generator 21 arranged for generating electricity, wherein the first rotor axis 13 is coupled to the first electrical generator 21 for generating the electricity upon rotating of the first rotor 9 about the first rotor axis 13. The first electrical generator 21 is provided at a side of the first connecting element 5 facing away from the first rotor 9. The transverse axis wind turbine 1 comprises a fourth connecting element 81 arranged for connecting the first electrical generator 21 to the support structure 3.
The transverse axis wind turbine 1 further comprises a third connecting element 31 arranged for further connecting the transverse axis wind turbine 1 to the support structure 3 and a second rotor 33 arranged to be propelled by air flow and provided with second rotor blades 35 and a second rotor axis 37.
The second connecting element 7 and the third connecting element 31 may be spaced apart differently compared to the first connecting element 5 and the second connecting element 7. Hence, the length of the first rotor 9 may differ from the length of the second rotor 33, as shown in Fig. 4.
The second rotor 33 is rotatably connected, via the second rotor axis 37, at a first side of the second rotor 33, to the second connecting element 7, and at a second side of the second rotor 33, opposite to the first side of the second rotor 33, to the third connecting element 31.
The second rotor axis 37 and the first rotor axis 13 of the transverse axis wind turbine 1 are connected to each other such that the second rotor axis 37 is coupled, via the first rotor axis 13, to the first electrical generator 21 for generating electricity upon rotation of the second rotor 33 about the second rotor axis 37. The second rotor axis 37 and the first rotor axis 13 may be releasably connected via a first coupling element 51, preferably a resilient coupling element arranged for resiliently coupling the first rotor axis 13 to the second rotor axis 37.
The transverse wind turbine 1 further comprises a third rotor 61 to be propelled by air flow and provided with third rotor blades 63 and a third rotor axis 65. The third rotor 61 is rotatably connected, via the third rotor axis 65, at a first side of the third rotor 61, to the first connecting element 5, and at a second side of the third rotor 61, opposite to the first side of the third rotor 61, to the second connecting element 7.
Fig. 4 further shows that the transverse wind turbine 1 further comprises a second electrical generator 71 arranged for generating electricity, wherein the third rotor axis 65 is coupled to the second electrical generator 71 for generating the electricity upon rotation of the third rotor 61 about the third rotor axis 65. The second electrical generator 71 is provided at a side of the first connecting element 5 facing away from the third rotor 61.

Claims (15)

CONCLUSIESCONCLUSIONS 1. Een windturbine met transversale as (1) ingericht om te worden aangesloten op een draagstructuur (3) zoals een gebouw of een mast, waarbij voornoemde windturbine met transversale as (1) omvat: - een eerste aansluitelement (5) ingericht voor het aansluiten van voornoemde windturbine met transversale as (1) op voornoemde draagstructuur (3); - een tweede aansluitelement (7) ingericht voor het aansluiten van voornoemde windturbine met transversale as (1) op voornoemde draagstructuur (3); - een eerste rotor (9) ingericht om door luchtstroom te worden aangedreven en voorzien van eerste rotorbladen (11) en een eerste draai-as (13), en draaibaar aangesloten is, via voornoemde eerste draai-as (13), aan een eerste zijde van voornoemde eerste rotor (9), met voornoemde eerste aansluitelement (5), en aan een tweede zijde van voornoemde eerste rotor (9), tegenover voornoemde eerste zijde van voornoemde eerste rotor (9), met voornoemde tweede aansluitelement (7).A transverse axis wind turbine (1) adapted to be connected to a support structure (3) such as a building or a mast, said transverse axis wind turbine (1) comprising: - a first connection element (5) adapted to connect of said wind turbine with transverse axis (1) on said support structure (3); - a second connection element (7) arranged for connecting said wind turbine with transverse axis (1) to said support structure (3); - a first rotor (9) adapted to be driven by airflow and provided with first rotor blades (11) and a first rotational shaft (13), and is rotatably connected, via said first rotational shaft (13), to a first side of said first rotor (9), with said first connection element (5), and on a second side of said first rotor (9), opposite said first side of said first rotor (9), with said second connection element (7). 2. De windturbine met transversale as (1) volgens conclusie 1, waarbij voornoemde windturbine met transversale as (1) verder omvat: - een eerste elektrische generator (21) ingericht voor het genereren van elektriciteit, waarbij voornoemde eerste draai-as (13) is gekoppeld aan voornoemde eerste elektrische generator (21) voor het generen van voornoemde elektriciteit bij rotatie van voornoemde eerste rotor (9) over voornoemde eerste draai-as (13).The transverse axis wind turbine (1) according to claim 1, wherein said transverse axis wind turbine (1) further comprises: - a first electric generator (21) adapted to generate electricity, said first rotational axis (13) is coupled to said first electric generator (21) for generating said electricity upon rotation of said first rotor (9) about said first rotational axis (13). 3. De windturbine met transversale as (1) volgens conclusie 2, waarbij voornoemde eerste elektrische generator (21) is voorzien aan een zijde van voornoemde eerste aansluitelement (5) die weg is gericht van voornoemde eerste rotor (9).The transverse axis wind turbine (1) according to claim 2, wherein said first electrical generator (21) is provided on a side of said first connection member (5) facing away from said first rotor (9). 4. De windturbine met transversale as (1) volgens een van voorgaande conclusies, waarbij voornoemde windturbine met transversale as (1) verder omvat: - een derde aansluitelement (31) ingericht voor het verder aansluiten van voornoemde windturbine met transversale as (1) op voornoemde draagstructuur (3);The transverse axis wind turbine (1) according to any one of the preceding claims, wherein said transverse axis wind turbine (1) further comprises: - a third connection element (31) arranged for further connecting said transverse axis wind turbine (1) to said support structure (3); - een tweede rotor (33) ingericht om door luchtstroom te worden aangedreven en voorzien van tweede rotorbladen (35) en een tweede draai-as (37), en draaibaar aangesloten, via voornoemde tweede draai-as (37), aan een eerste zijde van voornoemde tweede rotor (33), met voornoemde tweede aansluitelement (7), en aan een tweede zijde van voornoemde tweede rotor (33), tegenover voornoemde eerste zijde van voornoemde tweede rotor (33), met voornoemde derde aansluitelement (31).- a second rotor (33) adapted to be driven by airflow and provided with second rotor blades (35) and a second rotary shaft (37), and rotatably connected, via said second rotary shaft (37), to a first side of said second rotor (33), with said second connection element (7), and on a second side of said second rotor (33), opposite said first side of said second rotor (33), with said third connection element (31). 5. De windturbine met transversale as (1) volgens conclusie 4, waarbij voornoemde tweede draai-as (37) en voornoemde eerste draai-as (13) zijn aangesloten op elkaar zodanig dat voornoemde tweede draai-as (37) is gekoppeld, via voornoemde eerste draai-as (13), aan voornoemde eerste elektrische generator (21) voor het genereren van voornoemde elektriciteit bij rotatie van voornoemde tweede rotor (33) over voornoemde de tweede draai-as (37).The transverse axis wind turbine (1) according to claim 4, wherein said second rotational axis (37) and said first rotational axis (13) are connected to each other such that said second rotational axis (37) is coupled, via said first rotary shaft (13), to said first electric generator (21) for generating said electricity upon rotation of said second rotor (33) about said second rotary shaft (37). 86. De windturbine met transversale as (1) volgens conclusie 5, waarbij voornoemde tweede draai-as (37) en voornoemde eerste draai-as (13) losneembaar zijn aangesloten op elkaar via een eerste koppelelement (51), bij voorkeur een veerkrachtig koppelelement ingericht voor het veerkrachtig koppelen van voornoemde eerste draai-as (13) met voornoemde tweede draai-as (37).The transverse axis wind turbine (1) according to claim 5, wherein said second pivot shaft (37) and said first pivot shaft (13) are releasably connected to each other via a first coupling element (51), preferably a resilient coupling element arranged for resiliently coupling said first pivot shaft (13) to said second pivot shaft (37). 7. De windturbine met transversale as (1) volgens een van voorgaande conclusies, waarbij voornoemde windturbine met transversale as (1) verder omvat: - een derde rotor (61) ingericht om door luchtstroom te worden aangedreven en voorzien van derde rotorbladen (63) en een derde draai-as (65), en draaibaar aangesloten, via voornoemde derde draai-as (65), aan een eerste zijde van voornoemde derde rotor (61), met voornoemde eerste aansluitelement (5), en aan een tweede zijde (69) van voornoemde derde rotor (61), tegenover voornoemde eerste zijde van voornoemde derde rotor (61), met voornoemde tweede aansluitelement (7).The transverse axis wind turbine (1) according to any one of the preceding claims, wherein said transverse axis wind turbine (1) further comprises: - a third rotor (61) arranged to be driven by airflow and provided with third rotor blades (63) and a third rotation shaft (65), and rotatably connected, via said third rotation shaft (65), to a first side of said third rotor (61), with said first connection element (5), and to a second side ( 69) of said third rotor (61), opposite said first side of said third rotor (61), with said second connection element (7). 8. De windturbine met transversale as (1) volgens conclusie 7, waarbij voornoemde windturbine met transversale as 91) verder omvat: - een tweede elektrische generator (71) ingericht voor het genereren van elektriciteit, waarbij voornoemde derde draai-as (65) is gekoppeld aan voornoemde tweede elektrische generator (71) voor het genereren van voornoemde elektriciteit bij rotatie van voornoemde derde rotor (61) over voornoemde derde draai-as (65).The transverse axis wind turbine (1) according to claim 7, wherein said transverse axis wind turbine 91) further comprises: - a second electric generator (71) adapted to generate electricity, said third axis of rotation (65) being coupled to said second electrical generator (71) for generating said electricity upon rotation of said third rotor (61) about said third axis of rotation (65). 9. De windturbine met transversale as (1) volgens conclusie 8, waarbij voornoemde tweede elektrische generator (71) is voorzien aan een zijde van voornoemde eerste aansluitelement (5) die weg is gericht van voornoemde derde rotor (61).The transverse axis wind turbine (1) according to claim 8, wherein said second electric generator (71) is provided on a side of said first connection element (5) facing away from said third rotor (61). 10. De windturbine met transversale as (1) volgens een van voorgaande conclusies, waarbij voornoemde eerste aansluitelement (5) en voornoemde tweede aansluitelement (7) zich op een afstand van elkaar bevinden in het bereik van 3 meter tot 15 meter, bij voorkeur zich op een afstand van elkaar bevinden in het bereik van 5 meter tot 8 meter.The transverse axis wind turbine (1) according to any one of the preceding claims, wherein said first connection element (5) and said second connection element (7) are spaced apart in the range of 3 meters to 15 meters, preferably located are spaced apart in the range of 5 meters to 8 meters. 11. De windturbine met transversale as (1) volgens een van voorgaande conclusies, waarbij een diameter van voornoemde eerste rotor (9), in een richting loodrecht op voornoemde eerste draai-as (13), in het bereik van 3 meter tot 15 meter ligt, bij voorkeur in het bereik van 5 meter tot 8 meter ligt.The transverse axis wind turbine (1) according to any one of the preceding claims, wherein a diameter of said first rotor (9), in a direction perpendicular to said first axis of rotation (13), is in the range of 3 meters to 15 meters is preferably in the range of 5 meters to 8 meters. 12. De windturbine met transversale as (1) volgens een van voorgaande conclusies, waarbij voornoemde windturbine met transversale as (1) een vierde aansluitelement (81) omvat, ingericht voor het aansluiten van voornoemde eerste elektrische generator (21) op voornoemde draagstructuur (3).The transverse axis wind turbine (1) according to any one of the preceding claims, wherein said transverse axis wind turbine (1) comprises a fourth connection element (81) adapted to connect said first electrical generator (21) to said support structure (3 ). 13. Een samenstel (101) van een draagstructuur (3), zoals een gebouw of een mast, en een windturbine met transversale as (1) volgens een van conclusies 1 — 12, waarbij voornoemde windturbine met transversale as (1) is aangesloten op voornoemde draagstructuur (3) via voornoemde eerste aansluitelement (5) en voornoemde tweede aansluitelement (7).An assembly (101) of a supporting structure (3), such as a building or a mast, and a transverse axis wind turbine (1) according to any one of claims 1-12, wherein said transverse axis wind turbine (1) is connected to said support structure (3) via said first connection element (5) and said second connection element (7). 14. Het samenstel (101) volgens conclusie 13, waarbij voornoemde eerste draai- as (13) verticaal is.The assembly (101) of claim 13, wherein said first axis of rotation (13) is vertical. 15. Het samenstel (101) volgens conclusie 13 of 14, waarbij voornoemde draagstructuur (3) een mast is met een hoogte (hj) in het bereik van 50 meter tot 300 meter, bij voorkeur in het bereik van 200 meter tot 300 meter.The assembly (101) according to claim 13 or 14, wherein said support structure (3) is a mast with a height (hj) in the range of 50 meters to 300 meters, preferably in the range of 200 meters to 300 meters.
NL2029455A 2021-10-18 2021-10-18 a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine NL2029455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2029455A NL2029455B1 (en) 2021-10-18 2021-10-18 a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2029455A NL2029455B1 (en) 2021-10-18 2021-10-18 a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine

Publications (1)

Publication Number Publication Date
NL2029455B1 true NL2029455B1 (en) 2023-05-16

Family

ID=79171247

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2029455A NL2029455B1 (en) 2021-10-18 2021-10-18 a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine

Country Status (1)

Country Link
NL (1) NL2029455B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025070A1 (en) * 2009-07-31 2011-02-03 Arnold Price Utility grid vertical axis wind turbine system
KR20130026065A (en) * 2011-09-05 2013-03-13 원인호 Double pillar safety wind turbine
US20130094967A1 (en) * 2011-10-14 2013-04-18 Max Su Vertical axis wind turbine system
KR20160001338U (en) * 2014-10-16 2016-04-26 주식회사 에니텍시스 A generator
US9752556B1 (en) * 2016-11-07 2017-09-05 King Saud University Multi-rotor vertical axis wind turbine
KR102001376B1 (en) * 2018-06-05 2019-07-18 에스씨씨 주식회사 Tower type wind power generator
KR20200056104A (en) * 2018-11-14 2020-05-22 정희주 Stacked Vertical Wind Power Generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025070A1 (en) * 2009-07-31 2011-02-03 Arnold Price Utility grid vertical axis wind turbine system
KR20130026065A (en) * 2011-09-05 2013-03-13 원인호 Double pillar safety wind turbine
US20130094967A1 (en) * 2011-10-14 2013-04-18 Max Su Vertical axis wind turbine system
KR20160001338U (en) * 2014-10-16 2016-04-26 주식회사 에니텍시스 A generator
US9752556B1 (en) * 2016-11-07 2017-09-05 King Saud University Multi-rotor vertical axis wind turbine
KR102001376B1 (en) * 2018-06-05 2019-07-18 에스씨씨 주식회사 Tower type wind power generator
KR20200056104A (en) * 2018-11-14 2020-05-22 정희주 Stacked Vertical Wind Power Generator

Similar Documents

Publication Publication Date Title
CN102639867B (en) Wind Turbine
US9062655B2 (en) Wind turbine generators
AU749851B2 (en) Wind turbine
US20100140950A1 (en) Decorative wind turbine having flame-like appearance
EP2226498A1 (en) A constant direction four quadrant lift type vertical shaft wind power generator
KR101849052B1 (en) Ventilator using wind power induced by direction key and non-powered fan driving system
GB2425153A (en) Wind turbine(s) mounted on a lattice tower
KR20110007118U (en) Wind-powered generator
EP2012007A1 (en) Vertical axis wind turbine
US20020015639A1 (en) Horizontal axis wind turbine
US8754541B2 (en) Linear wind powered electrical generator
EP1971771A1 (en) Horizontal-axis wind generator
US20100215488A1 (en) Fluid flow energy concentrator
US11231007B2 (en) Cascaded wind turbine
US20150361953A1 (en) Horizontally channeled vertical axis wind turbine
CN101368544A (en) Combination type coaxial vertical axis aerogenerator
JPH11294313A (en) Hybrid windmill type power generation system
NL2029455B1 (en) a transverse axis wind turbine and an assembly of a support structure and the transverse axis wind turbine
US20020079705A1 (en) Windpower generating apparatus
EP2459873B1 (en) A wind turbine
US8038400B2 (en) High-efficiency windmill
JP2006077747A (en) Multiple single-blade wind power generator
GB2413367A (en) Wind turbine
JPS62282178A (en) Tower for windmill
CN216044166U (en) Wind energy supercharging horizontal generator