NL2028336B1 - Bicycle transmission - Google Patents

Bicycle transmission Download PDF

Info

Publication number
NL2028336B1
NL2028336B1 NL2028336A NL2028336A NL2028336B1 NL 2028336 B1 NL2028336 B1 NL 2028336B1 NL 2028336 A NL2028336 A NL 2028336A NL 2028336 A NL2028336 A NL 2028336A NL 2028336 B1 NL2028336 B1 NL 2028336B1
Authority
NL
Netherlands
Prior art keywords
transmission
ratio
transmission ratio
input
output
Prior art date
Application number
NL2028336A
Other languages
Dutch (nl)
Inventor
Marie Van Druten Roëll
Original Assignee
Classified Cycling Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Classified Cycling Bv filed Critical Classified Cycling Bv
Priority to NL2028336A priority Critical patent/NL2028336B1/en
Priority to PCT/EP2022/060913 priority patent/WO2022248134A1/en
Priority to CN202280053091.8A priority patent/CN117881597A/en
Priority to CN202280053092.2A priority patent/CN117897329A/en
Priority to PCT/EP2022/060915 priority patent/WO2022248135A1/en
Priority to EP22725728.4A priority patent/EP4347372A2/en
Priority to EP22725727.6A priority patent/EP4347373A1/en
Priority to PCT/EP2022/060920 priority patent/WO2022248136A2/en
Priority to EP22725251.7A priority patent/EP4347371A1/en
Application granted granted Critical
Publication of NL2028336B1 publication Critical patent/NL2028336B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/06Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with spur gear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/145Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the bottom bracket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/16Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • F16H37/042Combinations of toothed gearings only change gear transmissions in group arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Disclosed is a transmission system for a vehicle, particularly for a bicycle. The system comprises an input and an output, and a first transmission and a second transmission between the input and the output, wherein the first transmission and the second transmission are connected in series. The first transmission is selectively operable according to a first transmission ratio or a second transmission ratio, and has a first load-shifting clutch for switching the first transmission from the first transmission ratio to the second transmission ratio and/or vice versa. The second transmission is selectively operable according to a third transmission ratio or a fourth transmission ratio, and has a second load-shifting clutch for switching the second transmission from the third transmission ratio to the fourth transmission ratio and/or vice versa.

Description

P130393NL00 Title: Bicycle transmission
FIELD The invention relates to a transmission system for a vehicle, particularly a human powered vehicle, such as a bicycle, e.g. a two-wheeled bicycle.
BACKGROUND TO THE INVENTION Transmission systems for bicycles are known. In bicycles, especially racing bicycles, the transmission system traditionally includes a front derailleur and a rear derailleur for shifting gears of the transmission system. An alternative to derailleurs is formed by gear hubs, where shifting of gears 1s accommodated by a gear shifting mechanism inside the, generally rear, wheel hub. A hybrid form is known where a gear hub torque transmission having at least two selectable gear ratios is coupled between the rear wheel hub and the rear sprocket. Herein the rear sprocket can include a plurality of gear wheels, selectable through a rear derailleur. Here the gear hub can take the place of a front derailleur.
Such gear hub gear shifting mechanisms can include one or more planetary gear sets. The planetary gear includes at least three rotational members, such as a sun gear, a planet carrier and a ring gear. A clutch system can be used for selectively coupling two of the rotational members, e.g. the planet carrier and the ring gear. When coupled, the hub gear shifting mechanism operates according to a first gear ratio. When decoupled, the hub gear shifting mechanism operates according to a second gear ratio.
Also gear hub shifting mechanisms are known wherein mechanisms are included in the gear hub for providing a plurality of different transmission ratios, such as five, seven or fourteen different gear ratios.
Many of these systems have in common that up- and downshifting is not always possible, depending on the riders pedal force. In some systems, it is required that the rider stops pedaling, or at least stops providing torque load to the system to allow up-shifting and/or down-shifting.
SUMMARY It is an object to provide a transmission system, such as for a, e.g. two wheeled, bicycle. Alternatively, or additionally, it is an object to enable, preferably electronically actuated, shifting of gears, wherein up- and downshifting should always be possible, not depending on the riders pedal force and/or electromotor torque. According to an aspect is provided a transmission system for a vehicle, particularly a human powered vehicle such as bicycle, comprising an input and an output, wherein the input is arranged to be connected to a power source, such as a crank and/or an electric motor and/or a user input, and the output 1s arranged to be connected to a load, such as a driven wheel. The transmission system comprises a first transmission and a second transmission between the input and the output, wherein the first transmission and the second transmission are connected in series. The first transmission is selectively operable according to a first transmission ratio or a second transmission ratio, and has a first load-shifting clutch for switching the first transmission from the first transmission ratio to the second transmission ratio and/or vice versa. The second transmission is selectively operable according to a third transmission ratio or a fourth transmission ratio, and has a second load-shifting clutch for switching the second transmission from the third transmission ratio to the fourth transmission ratio and/or vice versa. The transmission system can provide for four different system transmission ratios between the input and the output. The term “system transmission ratio” herein is used to indicate the effective transmission ratio between the input and the output of the transmission system. In other words, the transmission system can act as a four-speed transmission. The first and second load-shifting clutches can be used for shifting between the different system transmission ratios.
The first transmission may have a first input and a first output, wherein the first input can be connected to the system input. The second transmission may have a second input and a second output, wherein the second output can be connected to the system output. The first output may be connected to the second input. Also the first output and the second input may be connected to an intermediate member, such as an intermediate shaft, for transferring torque from the first output to the second input.
Different combinations of one of the first and second transmission ratios with one of the third and fourth transmission ratios of the serially arranged transmissions enable the transmission system to operate according to various distinct system transmission ratios between the input and output of the system.
The transmission system can for example operate according to a first system transmission ratio, when the first transmission operates according to the first transmission ratio and the second transmission operates according to the third transmission ratio. Similarly, the transmission system can for example operate according to a second system transmission ratio, when the first transmission operates according to the second transmission ratio and the second transmission operates according to the third transmission ratio. Also, the transmission system can for example operate according to a third system transmission ratio, when the first transmission operates according to the first transmission ratio and the second transmission operates according to the fourth transmission ratio. The transmission system can for example operate according to a fourth system transmission ratio, when the first transmission operates according to the second transmission ratio and the second transmission operates according to the fourth transmission ratio.
Optionally, each of the load-shifting clutches is a form-closed clutch arranged to transfer torque in at least one rotational direction.
Optionally, each of the load-shifting clutches is arranged for being coupled and/or decoupled under load.
Optionally, the first transmission is arranged to operate according to the first transmission ratio when the first load-shifting clutch is in a first state, and to operate according to the second transmission ratio when the first load-shifting clutch is in a second state. The first load-shifting clutch for instance has a coupled state in which a first clutch input and a first clutch output of the first load-shifting clutch are coupled for transferring torque from the first clutch input to the first clutch output. The first load- shifting clutch may also have a decoupled state in which the first clutch input and the first clutch output are decoupled. The first state of the first load-shifting clutch may correspond to the coupled state, and the second state of the first load-shifting clutch may correspond to the decoupled state, or vice versa.
Optionally, the second transmission 15 arranged to operate according to the third transmission ratio when the second load-shifting clutch is in a first state, and to operate according to the fourth transmission ratio when the second load-shifting clutch is in a second state. The second load-shifting clutch for instance has a coupled state in which a second clutch input and a second clutch output of the second load-shifting clutch are coupled for transferring torque from the second clutch input to the second clutch output. The second load-shifting clutch may also have a decoupled state in which the second clutch input and the second clutch output are decoupled. The first state of the second load-shifting clutch may correspond to the coupled state, and the second state of the second load-shifting clutch may correspond to the decoupled state, or vice versa.
The first load-shifting clutch and the second load-shifting clutch are optionally, at least substantially, identical.
Optionally, the first transmission includes a first transmission path and a second transmission path parallel to the first transmission path, wherein at least one of the first and second transmission paths includes the first load-shifting clutch. Hence, torque can be selectively transmitted 5 through either the first or the second transmission path, using the first load-shifting clutch. For example, in a coupled state of the first load-shifting clutch, torque can be transmitted through the transmission path which include the first load-shifting clutch, e.g. the first transmission path. In an uncoupled state of the first load-shifting clutch, no torque can be transmitted through the transmission path which includes the first load- shifting clutch. Instead, torque can for instance be transmitted through the other, parallel, transmission path, e.g. the second transmission path.
Optionally, the first load-shifting clutch is arranged in the first transmission path, wherein the second transmission path includes a first freewheel clutch.
Optionally, the first transmission path includes a first freewheel clutch.
Optionally, an output of the first freewheel is connected to an input of the first load-shifting clutch. Hence, freewheeling can be allowed also when the first load-shifting clutch is in the coupled state.
Optionally, the second transmission includes a third transmission path and a fourth transmission path parallel to the third transmission path, at least one of the third and fourth transmission paths including the second load-shifting clutch. For example, in a coupled state of the first load-shifting clutch, torque can be transmitted through the transmission path which include the first load-shifting clutch, e.g. the third transmission path. In an uncoupled state of the first load-shifting clutch, no torque can be transmitted through the transmission path which includes the first load- shifting clutch. Instead, torque can for instance be transmitted through the other, parallel, transmission path, e.g. the fourth transmission path.
Optionally, the second load-shifting clutch is arranged in the third transmission path, wherein the fourth transmission path includes a second freewheel clutch.
Optionally, the third transmission path includes a third freewheel clutch.
Optionally, an output of the third freewheel is connected to an input of the second load-shifting clutch.
Optionally, at least one of the first transmission and the second transmission includes a planetary gear set.
Optionally, at least one of the first transmission ratio, the second transmission ratio, the third transmission ratio and the fourth transmission ratio is a 1:1 transmission ratio. Optionally, the smallest transmission ratio of the first, second, third and fourth transmission is a 1:1 transmission ratio. Optionally, the smallest system transmission ratio of the transmission system is a 1:1 transmission ratio. For street or racing bicycles a 1:1 system transmission ratio as smallest system transmission ratio can be desirable. For mountain bikes or all terrain bikes a smallest system transmission ratio of smaller than 1:1 may be desirable.
Optionally, the first transmission ratio or the second transmission ratio is equal or inverse to the third transmission ratio or the fourth transmission ratio.
Optionally, when a ratio of the second transmission ratio and the first transmission ratio is equal to U, a ratio of the fourth transmission ratio and the third transmission ratio is, e.g. within 5%, equal to U2. In other words, the ratio of the fourth transmission ratio and the third transmission ratio is, e.g. within 5%, equal to the square of the ratio of the second transmission ratio and the first transmission ratio. For example, when the second transmission ratio divided by the first transmission ratio is equal to U, a the fourth transmission ratio divided by the third transmission ratio is, e.g. within 5%, equal to UZ.
Optionally, when a ratio of the second transmission ratio and the first transmission ratio is, e.g. within 5%, equal to U, a product of the first transmission ratio and the fourth transmission ratio is, e.g. within 5%, equal to UZ. In other words, the product of the first transmission ratio and the fourth transmission ratio is equal to the ratio of the second transmission ratio and the first transmission ratio. For example, when the second transmission ratio divided by the first transmission ratio is, e.g. within 5%, equal to U, the first transmission ratio times the fourth transmission ratio 1s, e.g. within 5%, equal to U2.
Optionally, a ratio of the second transmission ratio and the first transmission ratio equals, e.g. within 5%, to a product of the second transmission ratio and the third transmission ratio.
Optionally, a ratio of the second transmission ratio and the first transmission ratio is between 1.1 and 1.3, preferably about 1.2. The ratio of the second transmission ratio and the first transmission ratio is for example
1.20 or 1.24. The ratio of the fourth transmission ratio and the third transmission ratio is for example 1.44 or 1.54. For example, the first transmission ratio is 1, the second transmission ratio is 1.2, the third transmission ratio is 1, and the fourth transmission ratio is 1.44.
Optionally, the second or fourth transmission ratio is a speed up transmission ratio. It will be appreciated that a transmission ratio of a transmission is defined as an output speed of an output of the transmission divided by an input speed of an input of the transmission. A speed up transmission ratio thus corresponds to a transmission in which the output speed of the transmission is higher than an input speed of the transmission. The speed-up transmission ratio is thus larger than one. Optionally, the first, second, third or fourth transmission ratio is a reduction transmission ratio. A reduction transmission ratio thus corresponds to a transmission in which the output speed of the transmission is lower than an input speed of the transmission. A reduction transmission ratio is smaller than one.
Optionally, the second transmission ratio is larger than the first transmission ratio. The first load-shifting clutch may particularly be in the transmission path of the first transmission having the largest transmission ratio.
Optionally, the transmission system comprises a third transmission connected in series with the first and second transmissions between the input and the output, the third transmission having a third load-shifting clutch, and the third transmission being operable according to a fifth transmission ratio and a sixth transmission ratio. Hence, the transmission system can provide for eight system transmission ratios between the input and the output. The third load-shifting clutch is optionally a form-closed clutch arranged to transfer torque in at least one rotational direction. The third load-shifting clutch may be arranged for being coupled and/or decoupled under load. It will be appreciated that the third transmission may be similar to the first transmission and/or the second transmission as described herein. Hence, any features described herein in view of the first and/or second transmission apply equally to the third transmission.
Optionally, the third transmission is arranged to operate according to the fifth transmission ratio when the third load-shifting clutch is in a first state, and to operate according to the sixth transmission ratio when the third load-shifting clutch is in a second state. The third load-shifting clutch for instance has a coupled state in which a third clutch input and a third clutch output of the third load-shifting clutch are coupled for transferring torque from the third clutch input to the third clutch output. The third load- shifting clutch may also have a decoupled state in which the third clutch input and the third clutch output are decoupled. The first state of the third load-shifting clutch may correspond to the coupled state, and the second state of the third load-shifting clutch may correspond to the decoupled state, or vice versa.
Optionally, when a ratio of the second transmission ratio and the first transmission ratio is equal to U, a ratio of the fourth transmission ratio and the third transmission ratio is e.g., e.g. within 5%, equal to U2, and a ratio of the sixth transmission ratio and the fifth transmission ratio is, e.g.
within 5%, equal to Ut.
Optionally, the transmission system comprises a bypass transmission path between the input and the output parallel to the first and/or the second transmission, said bypass transmission path including a bypass transmission clutch, such as a freewheel clutch. Hence, the bypass transmission path can provide an additional transmission ratio between the system input and the system output.
Optionally, the transmission system comprises a bypass transmission path between the input and the output parallel to the first and/or the second and/or the third transmission, said bypass transmission path including a bypass clutch, such as a freewheel clutch.
Optionally, a bypass clutch actuator is provided for selectively actuating the bypass clutch between a coupled state in which the bypass clutch couples a bypass clutch input with a bypass clutch output for transferring torque and a decoupled state in which the bypass clutch input and bypass clutch are decoupled.
Optionally, the transmission system comprises an intermediate shaft, wherein the first transmission is operable between the input and the intermediate shaft, and the second transmission is operable between the intermediate shaft and the output. The first output of the first transmission and the second input of the second transmission may be connected or connectable to the intermediate shaft.
Optionally, the transmission system comprises an input shaft associated with the input, and an output shaft associated with the output, wherein the input shaft is connectable to the output shaft via the intermediate shaft.
Optionally, the output shaft extends coaxially to the input shaft. Hence, the input and output shafts can be substantially aligned.
Optionally, the output shaft is offset from the input shaft.
Optionally, each of the load-shifting clutches is a form-closed clutch arranged to transfer torque in at least one rotational direction.
Optionally, each of the load-shifting clutches is arranged for being coupled and/or decoupled under load.
Optionally, each load-shifting clutch has a clutch input, and a clutch output, each clutch including: a first unit connectable to the clutch input or clutch output, including at least one first abutment surface; a second unit connectable to the clutch output or clutch input, respectively, including at least one second abutment surface arranged for selectively engaging the first abutment surface, the first and second abutment surfaces being adapted to each other so as to allow disengaging under load, preferably in two directions; a third unit including at least one retaining member, the third unit being arranged for selectively being in a first mode or a second mode relative to the second unit, wherein the at least one retaining member in the first mode locks the at least one second abutment surface for rotationally coupling the second unit to the first unit, e.g. in two directions, and in the second mode releases the at least one second abutment surface for decoupling the second unit from the first unit. The transmission system including such load-shifting clutch (or clutches) can be manufactured in a small form-factor suitable for integration in a two-wheeled bicycle.
The load-shifting clutches described herein may for example be a clutch as described in WO2018/199757A2, WO2020/085911A2, or WO2021/080431A1 which are hereby incorporated by reference.
Optionally, the transmission system comprises a control unit configured to receive a first shift signal and a second shift signal, and configured to control the first load-shifting clutch and/or the second load- shifting clutch (and/or the third load-shifting clutch) for selectively coupling or decoupling in response to receiving the first and/or second shift signal. The controller allows for simplified operation of the transmission system.
Optionally, the first shift signal is an upshift signal and the second shift signal is a downshift signal, and the controller is configured to selectively control the first and/or second (and/or third) load-shifting clutch for selecting the next higher system transmission ratio in response to receiving the upshift signal, and for selecting the next lower system transmission ratio in response to receiving the downshift signal. Hence, the rider only needs to provide the upshift signal or the downshift signal, e.g. by means of one or more controls, levers, switches or the like. Preferably, the first and second shift signals are electronic signals. The first and/or second and/or third load-shifting clutch can include a first and/or second and/or third actuator, respectively, for electrically actuating the respective clutch to couple or decouple. The controller then controls the first and second (and third) actuators in response to the upshift or downshift signal provided by the rider. Depending on the system transmission ratio used at that point in time, the next higher system transmission ratio can be achieved by actuating the first actuator and/or the second actuator (and/or third actuator). The controller is configured to select and actuate the appropriate actuator. Thus, shifting is simplified for the user.
Optionally, the first shift signal is an upshift signal and the second shift signal is a downshift signal, and the controller is configured to selectively control the first and/or second load-shifting clutch (and/or third load-shifting clutch) for selecting the second next, third next, fourth next higher or lower system transmission ratio in response to receiving a bail-out signal, the bail-out signal e.g. comprising the upshift signal and downshift signal at the same time, or within a specified time-interval, typically smaller than 1s.
According to a further aspect is provided a bicycle comprising a transmission system of any preceding claim.
Optionally, the bicycle comprises a torque transfer system having a torque transfer member, such as a chain or belt or shaft, wherein a crank drives an input of the torque transfer system, and wherein an output of the torque transfer system drives a driven wheel of the bicycle , wherein the transmission system 1s arranged between the crank and the input of the torque transfer system. The first transmission and the second transmission (and the third transmission) may be housed in a common housing placed at the location of the crank.
Optionally, the bicycle comprises a torque transfer system having a torque transfer member, such as a chain or belt or shaft wherein a crank drives an input of the torque transfer system, and wherein an output of the torque transfer system drives a driven wheel of the bicycle, wherein the transmission system is arranged between the output of the torque transfer system and a wheel hub of the driven wheel. The first transmission and the second transmission (and the third transmission) may be housed in a common housing at the wheel axle.
Optionally, the bicycle comprises a torque transfer system having a torque transfer member, such as a chain or belt or shaft wherein a crank drives an input of the torque transfer system, and wherein an output of the torque transfer system drives a driven wheel of the bicycle, wherein the first transmission of the transmission system is arranged between the crank and the input of the torque transfer system, and wherein the second transmission of the transmission system is arranged between the output of the torque transfer system and a wheel hub of the driven wheel. The first transmission may be housed at the location of the crank, and the second transmission may be housed at the wheel axle.
Optionally, the bicycle comprises a torque transfer system having a torque transfer member, such as a chain or belt or shaft wherein a crank drives an input of the torque transfer system, and wherein an output of the torque transfer system drives a driven wheel of the bicycle, wherein the first and second transmission of the transmission system are arranged between the crank and the input of the torque transfer system, and wherein the third transmission of the transmission system is arranged between the output of the torque transfer system and a wheel hub of the driven wheel. The first transmission and the second transmission may be housed in a common housing placed at the location of the crank, and the third transmission may be housed at the wheel axle.
Optionally, the bicycle comprises a continuously variable transmission (CVT) arranged between the first transmission and the second transmission. Optionally, the bicycle comprises a CVT arranged between the second transmission and the third transmission. The CVT can be a ratcheting type of CVT, e.g. using freewheel or one-way drive modules. The CVT can be used for increasing the number of system transmission ratios. The CVT can be controlled to selectively operate at one of two or three (or more) distinct transmission ratios. The CVT can be controlled to operate at a first CVT transmission ratio and a second CVT transmission ratio. A ratio of the second CVT transmission ratio and the first CVT transmission ratio can be chosen to be, e.g. approximately, half of the ratio of the second transmission ratio and the first transmission ratio. The CVT can be controlled to operate at a first CVT transmission ratio, a second CVT transmission ratio and a third CVT transmission ratio. A ratio of the second CVT transmission ratio and the first CVT transmission ratio can be chosen to be, e.g. approximately, one third of the ratio of the second transmission ratio and the first transmission ratio, and a ratio of the third CVT transmission ratio and the first CVT transmission ratio can be chosen to be, e.g. approximately, two third of the ratio of the second transmission ratio and the first transmission ratio.
A transmission ratio of a transmission as described herein, is particularly an output speed of the transmission divided by an input speed of the transmission. It will be appreciated that any one or more of the above aspects, features and options can be combined. It will be appreciated that any one of the options described in view of one of the aspects can be applied equally to any of the other aspects. It will also be clear that all aspects, features and options described in view of the transmissions system apply equally to the bicycle. It will also be clear that all aspects, features and options described in view of the control device and control system apply equally to the transmission system, assembly, and bicycle.
BRIEF DESCRIPTION OF THE DRAWING The invention will further be elucidated on the basis of exemplary embodiments which are represented in a drawing. The exemplary embodiments are given by way of non-limitative illustration. It is noted that the figures are only schematic representations of embodiments of the invention that are given by way of non-limiting example. In the drawing: Fig. 1 shows a schematic example of a transmission system; Figs. 2A-2C show schematics examples of transmission systems; Figs. 3A-3B show a schematic example of a transmission system; Figs. 4A-4B show a schematic example of a transmission system; Fig. 5 shows a schematic example of a transmission system; Fig. 6A-6B shows a schematic example of a transmission system; Figs. 7 show a schematic example of a transmission system.
DETAILED DESCRIPTION Figure 1 shows an example of a transmission system 1, such as for a two wheeled bicycle. The transmission system 1 includes an input I and an output O. The input I can for example be connected to a crank of the bicycle. The output O can for example be connected to a front chain ring of the bicycle. Between the input I and the output O, the system includes a first transmission 100 and a second transmission 200. The first and second transmissions 100, 200 are connected to one another in series. A first input 101 of the first transmission 100 is connected to the system input I. A second output 202 of the second transmission 200 is connected to the system output O. A first output 102 of the first transmission 100 is connected to a second input 201 of the second transmission 200. It will be appreciated that the first output 102 and the second input 201 may be connected to each other via an intermediate member, such as an intermediate shaft.
The first transmission 100 is operable according to a first transmission ratio and a second transmission ratio. Similarly ,the second transmission 200 is operable according to a third transmission ratio and a fourth transmission ratio. The first and second transmissions 100, 200 may include respective gearing, e.g. one or more gears, for providing a reduction or increase transmission ratio between the first input 101 and first output 102, and between the second input 201 and second output 202, respectively. The serial arrangement of the first and second transmissions 100, 200 can thus provide for four distinct system transmission ratios between the system input I and the system output O.
To shift between the first transmission ratio and the second transmission ratio, the first transmission 100 includes a first load-shifting clutch C1. Similarly, the second transmission 100 includes a second load- shifting clutch C2, for selectively shifting between the third transmission ratio and the fourth transmission ratio of the second transmission 200. The first load-shifting clutch C1 and the second load-shifting clutch C2 are thus serially arranged between the system input I and the system output O.
The first transmission 100 has two parallel transmission paths between the first input 101 and first output 102, namely a first transmission path 100A and a second transmission path 100B.
At least one of the first and second transmission paths 100A, 100B includes the first load-shifting clutch C1. Also, at least one of the parallel transmission paths 100A, 100B includes a transmission gearing.
In this example, the first transmission path 100A includes a first gearing R1 arranged for providing the first transmission ratio, and the second transmission path 100B includes a second gearing R2 for providing the second transmission ratio.
Similarly, the second transmission 200 has two parallel transmission paths between the second input 201 and the second output 202, namely a third transmission path 200A and a fourth transmission path 200B. at least one of the third and fourth transmission paths 200A, 200B includes the second load-shifting clutch C2. Also, at least one of the parallel transmission paths 200A, 200B of the second transmission 200 includes a transmission gearing.
In this example, the third transmission path 200A includes a third gearing R3 arranged for providing the third transmission ratio, and the fourth transmission path 200B includes a gearing fourth R4 for providing the fourth transmission ratio.
The load-shifting clutches C1 and C2, can be used to select an appropriate transmission path between the system input I and system output O.
More particular, the first load-shifting clutch C1 can be used to selectively switch between the first 100A and second 100B parallel transmission paths of the first transmission 100, and the second load- shifting clutch C2 can be used to selectively switch between the third 200A and fourth 200B parallel transmission paths of the second transmission 200. Hence, in this example, four different transmission paths can be obtained between the system mput I and system output O, which can be selectively switched using the load-shifting clutches C1, C2. The load-shifting clutches include at least two states, e.g. a coupled state and a decoupled state, wherein the coupled state couples the clutch input with the clutch output to transmit torque through the clutch, and the decoupled state decouples the clutch input from the clutch output to transmit no torque through the clutch. In the decoupled state, the load shifting clutches C1, C2 enable torque to be transmitted through different, parallel, transmission path.
In the coupled state of the first load-shifting clutch C1, torque can be transmitted through the second transmission path 100B from the system input I to the first output 102. In the decoupled state, torque can be transmitted through the first transmission path 100A from the system input I to the first output 102. Similarly, in the coupled state of the second load- shifting clutch C2, torque can be transmitted through the fourth transmission path 200B from the second input 201 to the system output O. In the decoupled state, torque can be transmitted through the third transmission path 200A from the first input 201 to the system output O. In this example, the load-shifting clutches C1, C2 are provided in, respectively, the second transmission path 100B and the fourth transmission path 200B, but it will be appreciated that the first load- shifting clutches C1, C2 can also be provided in, respectively, the first transmission path 100A and the third transmission path 200A. The first load-shifting clutch C1 is here provided between the first input 101 and the second gearing R2, but the first load-shifting clutch C1 can also be provided between the second gearing R2 and the first output 102. Similarly, the second load-shifting clutch C2 is here provided between the second input 201 and the fourth gearing R4, but the second load-shifting clutch C2 can also be provided between the fourth gearing R4 and the second output 202. Here, the first transmission path 100A includes a first freewheel clutch V1. The first freewheel clutch V1 can be overrun, e.g. when torque is transmitted through the second transmission path 100B, e.g. when the first output 102 rotates faster than the first input 101. Here, the third transmission path 200A includes a second freewheel clutch V2. The second freewheel clutch V2 can be overrun, e.g. when torque is transmitted through the fourth transmission path 200B, e.g. when the second output 202 rotates faster than the second input 201. The freewheel clutches V1, V2 are preferably low friction when overrun to reduce losses.
Here the freewheel clutches V1, V2 are connected to an input of respective first and third gearing R1, R3, but it will be appreciated that the freewheel clutches V1, V2 can also be connected to an output of the respective first and third gearing R1, R3.
The load-shifting clutches C1, C2 are, at least in this example, particularly arranged to be coupled and decoupled under load, 1.e. while torque is transferred through the load-shifting clutch. The load-shifting clutches C1, C2 are for instance form-closed clutches. It will be appreciated that any of the load-shifting clutches may also be force-closed clutches, arranged to transfer torque in at least one rotational direction.
Figures 2A-2C show different schematic layouts of a transmission system 1, in particular the transmission system as shown in figure 1. The reference numbers in figures 2A-2C correspond to those in figure 1, as explained in view of figure 1. Figures 2A-2C show different layouts in which the input I and the output O are connected via an intermediate member, here an intermediate shaft 400. The first transmission 100 acts between the input I and the intermediate shaft 400, and the second transmission 200 acts between the intermediate shaft and the output O.
Figures 2A and 2B show layouts of the transmission 1 in which the input I is associated with an input shaft, and the output O with an output shaft, and wherein the input shaft and the output shaft are coaxially arranged. Figure 2C shows a layout of the transmission 1 in which the output shaft is offset from the input shaft. The first gearing R1 of the first transmission path 100A is in this example formed by gears 100A1 and 100A2. The second gearing R2 of the second transmission path 100B is formed by gears 100B1 and 100B2. The third gearing R3 of the third transmission path 200A is formed by gears 200A1 and 200A2. The fourth gearing R4 of the fourth transmission path 200B is formed by gears 200B1 and 200B2. The gears of each gearing R1-R4 can interact in such a way, e.g. mesh, to establish a transmission ratio between an input of the gearing and an output of the gearing. A desired transmission ratio of each of the gearings R1-R4 can for example be obtained selecting appropriate (relative) dimensions of the gears of each of the gearings R1-R4. For example, a transmission ratio of the first gearing R1 can be determined by a ratio of the number of teeth of gear 100A1 with respect to the gear 100A2.
Figure 2B particularly shows a layout in which the first and second load-shifting clutches C1, C2, and the first and second freewheel clutches V1, V2 are arranged on the intermediate shaft 400.
The transmission system 1 as shown in Figures 3A-3B is similar to those as shown in Figure 1 and 2A-2C. Here, the first transmission 100 and the second transmission 200 each comprise a further clutch. In this example, the first transmission 100 comprises a first further freewheel clutch VB1, and the second transmission 200 comprises a second further freewheel clutch VB2. The further freewheel clutches VB1, VB2 are, here, connected to the respective inputs of the load-shifting clutches C1, C2, but it will be appreciated that the further freewheel clutches VB1 and VB2 can also be connected to the respective outputs of the load-shifting clutches C1, C2. It may be preferred to connect the further freewheel clutches VB1, VB2 to the respective inputs of the load-shifting clutches C1, C2, so that the outputs of the load shifting clutches C1, C2 can keep rotating even without inputting any torque their the inputs. This may facilitate coupling and/or decoupling of the load-shifting clutches C1, C2. The further clutches VB1 and VB2 can be particularly arranged to allow for a reverse rotation direction of the output O, i.e. opposite a driving rotation direction, relative to the input I. Figure 3B shows an exemplary (coaxial) layout of the transmission system 1 of figure 3A.
Two different examples of transmission ratios of the first, second, third and fourth gearings R1, R2, R3, R4, and the obtainable resultant system transmission ratios from the input I to the output O are given in table 1 and table 2. The system transmission ratios of the transmission system 1 are resultant from a multiplication of the transmission ratio of the first transmission (the first or second transmission ratio) and the transmission of the second transmission (the third or fourth transmission ratio). It will be appreciated that the given exemplary transmission ratios are given as decimal numbers, and can thus be approximations as the number of teeth of gears are discrete.
Table 1 In the example of table 1, a substantially constant transmission step size of the transmission system 1 is obtained of, at least approximately, 1,20. Table 2 In the example of table 2, a substantially constant transmission step size of the transmission system 1 is obtained of, at least approximately, 1,24 Figures 4A-4B shows another example of a transmission system 1. Here, a bypass transmission path 402 is provided between the input I and the output O parallel to the first 100 transmission and the second transmission 200. The bypass transmission path 402 includes a bypass clutch V3, here embodied as an actuatable freewheel clutch having an open state and a closed state. It will be appreciated that the bypass transmission path 402 may also only bypass the first transmission 100 or the second transmission 200. In this example, the bypass transmission path 402 provides a direct coupling between the input I and the output O. The bypass transmission path 402 may include a gearing, but in this example it does not. Hence, in this example, the bypass transmission path 402 provides a 1:1 transmission between the input I and the output O. Figure 4B shows an exemplary (coaxial) layout of the transmission system of figure 4A.
The bypass transmission path 402 can provide an additional transmission ratio from the input I to the output O, i.e. in addition to transmission ratios obtainable by the serially connected first and second transmissions 100, 200. An example of system transmission ratios that are obtainable by the transmission system as shown in figures 4A-4B is given in table 3. V3 C1 C2 System transmission core Bypass = closed (De)coupled | (De)coupled | 1,00 ee ee ee Table 3 A five speed transmission system 1 is provided with the transmission system as shown in figures 4A-4B. Further, in this example a substantially constant transmission step size of about 1.24 is obtained for the transmission system 1 as shown in figures 4A-4B.
Figure 5 shows an schematic example of transmission system 1, having a third transmission 300 connected in series with the first and second transmissions 100, 200. The third transmission 300 is selectively operable according to a fifth transmission ratio or a sixth transmission ratio, and has a third load-shifting clutch C3 for switching the third transmission from the fifth transmission ratio to the sixth transmission ratio and/or vice versa. The third transmission 300 includes a fifth transmission path 300A and a sixth transmission path 300B parallel to the fifth transmission path 300A. At least one of the fifth and sixth transmission paths 300A, 300B includes the third load-shifting clutch C3. Here, the sixth 300B transmission path includes the third load-shifting clutch C3. Each of the fifth and sixth transmission paths 300A, 300B may include a gearing. In this example, the fifth transmission path 300A includes gearing R5 for providing the fifth transmission ratio, and the sixth transmission path 300B includes gearing R6 for providing the sixth transmission ratio. It will be appreciated that the transmission may be extended with additional transmissions, such as a fourth transmission, connected in series with the first and second transmissions 100, 200 and/or the third transmission 300. It will also be appreciated that the order in which the transmissions are serially connected from the input to the output can be altered. The transmission system 1 as shown in figure 5 is operable according to 8 transmission ratios. The transmission system 1 may also include a bypass transmission path, as described in view of figures 4A-4B, parallel to any one or more of the first, second and third transmissions 100, 200, 300.
An example of system transmission ratios that are obtainable by the transmission system 1 as shown in figure 5 is given in table 4.
Coupled | Coupled 3,58 (R2*R4*R6) Table 4 Hence, an eight-speed transmission system 1 is provided with the transmission system 1 as shown in figure 5, having a substantially constant transmission step size of about 1.2.
Any one of the transmissions described herein may include a planetary gear set. For example the gearing of any one of the transmission paths described herein, may include a planetary gear set. Such planetary gear set may include at least three rotational members, such as a sun gear S, a planet carrier C and a ring gear R. Figures 6A-6B show an example of a transmission system 1 in which gearing R4 of the second transmission 200 includes a planetary gear set. A clutch or brake system may be arranged for braking at least one of the rotational members or coupling at least two rotational members to each other. Figure 6B shows an exemplary (coaxial) layout of the transmission system 1 as shown in Figure 6A, being very compact.
Figure 7 shows a transmission system 1, comprising a continuously variable transmission (CVT) 403. The continuously variable transmission 403 in this example is particularly a ratcheting-type CVT including one or more freewheel clutches and/or one way drives. The CVT is, in this example, provided between the second transmission 200 and the third transmission
300. It will be appreciated that the CVT may additionally or alternative be provided between the first transmission 100 and the second transmission
200. The CVT is operable according to at least a seventh transmission ratio and a eighth transmission ratio. This way, an 16-speed transmission system 1 can be obtained. The CVT can additionally be operable according to a ninth transmission ratio, to obtain a 24-speed transmission system 1. In the example of figure 7, the first and second transmission 100, 200 are arranged between the crank of a bicycle and an input of a torque transfer system, such as a chain, belt or shaft. The first and second transmission 100, 200 are e.g. housed in a common housing at the crank. The third transmission 300 of the transmission system 1 is arranged between an output of the torque transfer system and a wheel hub of a driven wheel of the bicycle. The third transmission 300 is e.g. housed in a wheel axle assembly. The torque transfer member may comprise the CVT. Two examples of system transmission ratios that are obtainable by the transmission system 1 as shown in figure 7 are given in tables 5 and 6. The example in tables 5 shows an eight-speed transmission system 1 with a substantially constant transmission step size of about 1.2. The example in tables 5 shows an eight-speed transmission system 1 with a substantially constant transmission step size of about 1.24. Each example includes a reduction system transmission ratio, indicated by a transmission ratio or less than 1.
Coupled | Coupled 2,48 (R2*R4*R5) Table 5 c Coupled | Decoupled 1,24 (R2*R3*R5) Decoupled | 1,90 (R2*R4*R6) Coupled | Coupled Table 6 When using the CVT operable according to the seventh transmission ratio R7 and the eighth transmission ratio R8, a ratio of the eighth transmission ratio R8 divided by the seventh transmission ratio R7 may be half of the ratio of the second transmission ratio R2 divided by the first transmission ratio R1. When R2/R1 is about 1.2, R8/R7 can be about
1.1. Alternatively, when R8/R7 is about 1.2, R2/R1 can be about 1.44. When using the CVT operable according to the seventh transmission ratio R7, the eighth transmission ratio R8 and the ninth transmission ratio R9 a ratio of the eighth transmission ratio R8 divided by the seventh transmission ratio
R7 may be a third of the ratio of the second transmission ratio R2 divided by the first transmission ratio R1 and a ratio of the ninth transmission ratio R9 divided by the seventh transmission ratio R7 may be two thirds of the ratio of the second transmission ratio R2 divided by the first transmission ratio RI.
Each of the examples shown in the figures may include a control unit configured to receive a first shift signal and a second shift signal, and configured to control the first load-shifting clutch and/or the second load- shifting clutch and/or the third load-shifting clutch for selectively coupling or decoupling in response to receiving the first and/or second shift signal.
The first shift signal can be an upshift signal and the second shift signal can be a downshift signal. The control unit can be configured to selectively control the first and/or second and/or third load-shifting clutch (and optionally the CVT) for selecting the next higher system transmission ratio in response to receiving the upshift signal, and for selecting the next lower system transmission ratio in response to receiving the downshift signal. The controller can also be configured to selectively control the first and/or second and/or third load-shifting clutch for selecting the second next, third next, fourth next, fifth next, sixth next, seventh next, eighth next higher or lower system transmission ratio in response to receiving a bail-out signal. The bail-out signal may for instance include the upshift signal and downshift signal at the same time, or within a specified time-interval.
Herein, the invention is described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein, without departing from the essence of the invention. For the purpose of clarity and a concise description features are described herein as part of the same or separate embodiments, however, alternative embodiments having combinations of all or some of the features described in these separate embodiments are also envisaged.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim.
The word ‘comprising’ does not exclude the presence of other features or steps than those listed in a claim.
Furthermore, the words ‘a’ and ‘an’ shall not be construed as limited to ‘only one’, but instead are used to mean ‘at least one’, and do not exclude a plurality.
The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to an advantage.

Claims (52)

ConclusiesConclusions 1. Een transmissie systeem voor een voertuig, in het bijzonder een mens-aangedreven voertuig zoals een fiets, omvattende een ingang en een uitgang, waarbij de ingang ingericht is om te worden verbonden met een vermogensbron, en de witgang ingericht is om te worden verbonden met een last, een eerste transmissie en een tweede transmissie tussen de ingang en de uitgang, waarbij de eerste transmissie en de tweede transmissie in serie verbonden zijn, waarbij de eerste transmissie selectief operabel is volgens een eerste transmissieratio of een tweede transmissieratio, en een eerste lastschakelkoppeling heeft voor het schakelen van de eerste transmissie van de eerste transmissieratio naar de tweede transmissieratio en/of vice versa; en waarbij de tweede transmissie selectief operabel is volgens een derde transmissieratio of een vierde transmissieratio, en een tweede lastschakelkoppeling heeft voor het schakelen van de tweede transmissie van de derde transmissieratio naar de vierde transmissieratio en/of vice versa.A transmission system for a vehicle, in particular a human-powered vehicle such as a bicycle, comprising an input and an output, the input being adapted to be connected to a power source, and the white gear being adapted to be connected with a load, a first transmission and a second transmission between the input and the output, the first transmission and the second transmission being connected in series, the first transmission being selectively operable according to a first transmission ratio or a second transmission ratio, and a first has a load shift clutch for shifting the first transmission from the first transmission ratio to the second transmission ratio and/or vice versa; and wherein the second transmission is selectively operable according to a third transmission ratio or a fourth transmission ratio, and has a second load shift clutch for shifting the second transmission from the third transmission ratio to the fourth transmission ratio and/or vice versa. 2. Het systeem volgens conclusie 1, waarbij de eerste transmissie ingericht is om volgens de eerste transmissieratio te opereren wanneer de eerste lastschakelkoppeling in een eerste toestand is, en om volgens de tweede transmissieratio te opereren wanneer de eerste lastschakelkoppeling in een tweede toestand 1s.The system of claim 1, wherein the first transmission is arranged to operate according to the first transmission ratio when the first load shift clutch is in a first state, and to operate according to the second transmission ratio when the first load shift clutch is in a second state. 3. Het systeem volgens conclusie 1 of 2, waarbij de tweede transmissie ingericht is om volgens de derde transmissieratio te opereren wanneer de tweede lastschakelkoppeling in een eerste toestand is, en om volgens de vierde transmissieratio te opereren wanneer de tweede lastschakelkoppeling 1n een tweede toestand is.The system according to claim 1 or 2, wherein the second transmission is arranged to operate according to the third transmission ratio when the second load shift clutch is in a first state, and to operate according to the fourth transmission ratio when the second load shift clutch 1n is a second state . 4. Het systeem volgens een der voorgaande conclusies, waarbij de eerste transmissie een eerste transmissiepad omvat voor het voorzien van de eerste transmissieratio en een tweede transmissiepad, parallel aan het eerste transmissiepad, voor het voorzien van de tweede transmissieratio, waarbij ten minste één van de eerste en tweede transmissiepaden de eerste lastschakelkoppeling omvat.The system of any preceding claim, wherein the first transmission comprises a first transmission path for providing the first transmission ratio and a second transmission path, parallel to the first transmission path, for providing the second transmission ratio, wherein at least one of the first and second transmission paths includes the first load shift clutch. 5. Het systeem volgens conclusie 4, waarbij de eerste lastschakelkoppeling in het tweede transmissiepad 1s voorzien.The system of claim 4, wherein the first load shift clutch is provided in the second transmission path 1s. 6. Het systeem volgens conclusie 5, waarbij het eerste transmissiepad een eerste vrijloopkoppeling omvat.The system of claim 5, wherein the first transmission path includes a first overrunning clutch. 7. Het systeem volgens conclusie 5 of 6, waarbij het tweede transmissiepad een tweede vrijloopkoppeling omvat.The system of claim 5 or 6, wherein the second transmission path comprises a second overrunning clutch. 8. Het systeem volgens conclusie 7, waarbij een uitgang van de tweede vrijloop verbonden is met een ingang van de eerste lastschakelkoppeling.The system of claim 7, wherein an output of the second freewheel is connected to an input of the first load switch clutch. 9. Het systeem volgens een der voorgaande conclusies, waarbij de tweede transmissie een derde transmissiepad omvat voor het voorzien van de derde transmissieratio en een vierde transmissiepad, parallel aan het derde transmissiepad, voor het vooorzien van de vierde transmissieratio, warbij ten minste één van de derde en vierde transmissiepaden de tweede lastschakelkoppeling omvat.The system of any preceding claim, wherein the second transmission comprises a third transmission path for providing the third transmission ratio and a fourth transmission path, parallel to the third transmission path, for providing the fourth transmission ratio, wherein at least one of the third and fourth transmission paths includes the second load shift clutch. 10. Het systeem volgens conclusie 9, waarbij de tweede lastschakelkoppeling in het vierde transmissiepad is voorzien.The system of claim 9, wherein the second load shift clutch is provided in the fourth transmission path. 11. Het systeem volgens conclusie 10, waarbij het derde transmissiepad een derde vrijloopkoppeling omvat.The system of claim 10, wherein the third transmission path includes a third overrunning clutch. 12. Het systeem volgens conclusie 10 of 11, waarbij het vierde transmissiepad een vierde vrijloopkoppeling omvat.The system of claim 10 or 11, wherein the fourth transmission path comprises a fourth overrunning clutch. 13. Het systeem volgens conclusie 12, waarbij een uitgang van de vierde vrijloop is verbonden met een ingang van de tweede lastschakelende koppeling.The system of claim 12, wherein an output of the fourth idler is connected to an input of the second load shifting clutch. 14. Het systeem volgens een der voorgaande conclusies, waarbij ten minste één van de eerste transmissie en de tweede transmissie een planetaire tandwielset omvat.The system of any preceding claim, wherein at least one of the first transmission and the second transmission comprises a planetary gear set. 15. Het systeem volgens conclusie 14, waarbij de planetaire tandwielset een reductietransmissieratio vormt.The system of claim 14, wherein the planetary gear set forms a reduction gear ratio. 16. Het systeem volgens een van de voorgaande conclusies, waarbij ten minste één van de eerste transmissieratio, de tweede transmissieratio, de derde transmissieratio en de vierde transmissieratio een 1:1 tarnsmissieratio is.The system of any preceding claim, wherein at least one of the first transmission ratio, the second transmission ratio, the third transmission ratio, and the fourth transmission ratio is a 1:1 transmission ratio. 17. Het systeem volgens een der voorgaande conclusies, waarbij de eerste transmissieratio of de tweede transmissieratio gelijk is aan of invers is aan de derde transmissieratio of de vierde transmissieratio.The system of any preceding claim, wherein the first transmission ratio or the second transmission ratio is equal to or inverse of the third transmission ratio or the fourth transmission ratio. 18. Het systeem volgens een der voorgaande conclusies, waarbij wanneer een ratio van de tweede transmissieratio en de eerste transmissieratio gelijk 1s aan U, een ratio van de vierde transmissieratio en de derde transmissieratio gelijk is aan UZThe system according to any one of the preceding claims, wherein when a ratio of the second transmission ratio and the first transmission ratio equals 1s to U, a ratio of the fourth transmission ratio and the third transmission ratio equals UZ 19. Het systeem volgens een van de voorgaande conclusies, waarbij wanneer een ratio van de tweede transmissieratio en de eerste transmissieratio gelijk is aan U, een product van de eerste transmissieratio en de vierde transmissieratio gelijk is aan UZ.The system of any preceding claim, wherein when a ratio of the second transmission ratio and the first transmission ratio equals U, a product of the first transmission ratio and the fourth transmission ratio equals UZ. 20. Het systeem volgens een der voorgaande conclusies, waarbij een ratio van de tweede transmissieratio en de eerste transmissieratio gelijk is aan een product van de tweede transmissieratio en de derde transmissieratio.The system of any preceding claim, wherein a ratio of the second transmission ratio and the first transmission ratio is equal to a product of the second transmission ratio and the third transmission ratio. 21. Het systeem volgens een der voorgaande conclusies, waarbij een ratio van de tweede transmissieratio en de eerste transmissieratio tussen 1,1 en 1,3 ligt, bij voorkeur ongeveer 1,2 is.The system according to any one of the preceding claims, wherein a ratio of the second transmission ratio and the first transmission ratio is between 1.1 and 1.3, preferably about 1.2. 22. Het systeem volgens een der voorgaande conclusies, waarbij de tweede of vierde transmissieratio een versnellende transmissieratio is.The system of any preceding claim, wherein the second or fourth transmission ratio is an accelerating transmission ratio. 23. Het systeem volgens ten minste conclusie 5, waarbij de tweede transmissieratio groter is dan de eerste transmissieratio.The system of at least claim 5, wherein the second transmission ratio is greater than the first transmission ratio. 24. Het systeem volgens een der voorgaande conclusies, omvattende een derde transmissie die in serie is verbonden met de eerste en tweede transmissies tussen de ingang en de uitgang, waarbij de derde transmissie een derde lastschakelkoppeling heeft, en de derde transmissie operabel is volgens een vijfde transmissieratio en een zesde transmissieratio.The system of any preceding claim, comprising a third transmission connected in series with the first and second transmissions between the input and the output, the third transmission having a third load switching clutch, and the third transmission being operable according to a fifth transmission ratio and a sixth transmission ratio. 25. Het systeem volgens conclusie 24, waarbij wanneer een ratio van de tweede transmissieratio en de eerste transmissieratio gelijk is aan U, een ratio van de zesde transmissieratio en de vijfde transmissieratio gelijk is aan U4The system of claim 24, wherein when a ratio of the second transmission ratio and the first transmission ratio equals U, a ratio of the sixth transmission ratio and the fifth transmission ratio equals U4 26. Het systeem volgens conclusie 24 of 25, waarbij wanneer een ratio van de tweede transmissieratio en de eerste transmissieratio gelijk is aan U een product van de vierde transmissieratio en de vijfde transmissieratio gelijk is aan U2.The system of claim 24 or 25, wherein when a ratio of the second transmission ratio and the first transmission ratio equals U, a product of the fourth transmission ratio and the fifth transmission ratio equals U2. 27. Het systeem volgens een van de voorgaande conclusies, omvattende een bypass-transmissiepad tussen de ingang en de uitgang parallel aan de eerste en/of tweede en/of derde transmissie, waarbij het bypass- transmissiepad een bypass-koppeling omvat, zoals een vrijloopkoppeling.The system according to any of the preceding claims, comprising a bypass transmission path between the input and the output parallel to the first and/or second and/or third transmission, the bypass transmission path comprising a bypass coupling, such as an overrunning clutch . 28. Het systeem volgens een der voorgaande conclusies, omvattende een tussen-as, en waarbij de eerste transmissie operabel is tussen de ingang en de tussen-as, en de tweede transmissie operabel is tussen de tussen-as en de uitgang.The system of any preceding claim, comprising an intermediate shaft, and wherein the first transmission is operable between the input and the intermediate shaft, and the second transmission is operable between the intermediate shaft and the output. 29. Het systeem volgens conclusie 28, omvattende een bij de ingang behorende ingaande as en een bij de uitgang behorende uitgaande as, waarbij de ingaande as via de tussen-as met de uitgaande as verbindbaar 1s.29. The system according to claim 28, comprising an input shaft associated with the input and an output shaft associated with the output, the input shaft being connectable to the output shaft via the intermediate shaft. 30. Het systeem volgens conclusie 29, waarbij de uitgaande as zich coaxiaal aan de ingaande as uitstrekt.The system of claim 29, wherein the output shaft extends coaxially with the input shaft. 31. Het systeem volgens conclusie 29, waarbij de witgaande as offset van de ingaande as is.The system of claim 29, wherein the white going axis is offset from the input axis. 32. Het systeem volgens een der voorgaande conclusies, waarbij één of meer, bijvoorbeeld elk, van de lastschakelkoppelingen vormgesloten koppelingen zijn die ingericht zijn om koppel over te dragen in ten minste één rotatierichting.The system according to any of the preceding claims, wherein one or more, e.g. each, of the load shift couplings are positive-lock couplings adapted to transmit torque in at least one direction of rotation. 33. Het systeem volgens een der voorgaande conclusies, waarbij elk van de lastschakelkoppelingen is ingericht om onder last te worden gekoppeld en/of ontkoppeld.The system according to any one of the preceding claims, wherein each of the load shift couplings is adapted to be engaged and/or disengaged under load. 34. Het systeem volgens een van de voorgaande conclusies, waarbij elke lastschakelkoppeling een koppelingsingang en een koppelingsuitgang heeft, elke koppeling omvattende: een eerste eenheid die met de koppelingsingang of koppelingsuitgang verbindbaar is, omvattende ten minste één eerste aanlegvlak; een tweede eenheid die respectievelijk met de koppelingsuitgang of koppelingsingang verbindbaar is, omvattende ten minste één tweede aanlegvlak dat is ingericht om selectief aan te grijpen op het eerste aanlegvlak, waarbij de eerste en tweede aanlegvlakken op elkaar zijn aangepast om ontkoppeling onder last mogelijk te maken, bij voorkeur in twee richtingen; een derde eenheid omvattende ten minste één vasthoudelement, waarbij de derde eenheid is ingericht om selectief in een eerste modus of een tweede modus te zijn ten opzichte van de tweede eenheid, waarbij het ten minste ene vasthoudelement in de eerste modus het ten minste ene tweede aanlegvlak vergrendelt voor het rotationeel koppelen van de tweede eenheid aan de eerste eenheid, bijvoorbeeld in twee richtingen, en in de tweede modus het ten minste ene tweede aanlegvlak vrijgeeft voor het ontkoppelen van de tweede eenheid van de eerste eenheid.The system of any preceding claim, wherein each load switching coupling has a coupling input and a coupling output, each coupling comprising: a first unit connectable to the coupling input or coupling output comprising at least one first landing pad; a second unit connectable to the clutch output or clutch input, respectively, comprising at least one second landing surface adapted to selectively engage the first landing surface, the first and second landing surfaces being matched to allow decoupling under load, preferably in two directions; a third unit comprising at least one retaining element, the third unit being configured to be selectively in a first mode or a second mode relative to the second unit, the at least one retaining element in the first mode being the at least one second landing face locks for rotationally coupling the second unit to the first unit, e.g. in two directions, and in the second mode releases the at least one second landing face for decoupling the second unit from the first unit. 35. Het systeem volgens een der voorgaande conclusies, omvattende een regeleenheid die geconfigureerd is om een eerste schakelsignaal en een tweede schakelsignaal te ontvangen, en is geconfigureerd om de eerste lastschakelkoppeling en/of de tweede lastschakelkoppeling en/of de derde lastschakelkoppeling te regelen voor het selectief koppelen of ontkoppelen in respons op het ontvangen van het eerste en/of tweede schakelsignaal.The system of any one of the preceding claims, comprising a control unit configured to receive a first shift signal and a second shift signal and configured to control the first load shift clutch and/or the second load shift clutch and/or the third load shift clutch for selectively engage or disengage in response to receiving the first and/or second switching signal. 36. Het systeem volgens conclusie 35, waarbij het eerste schakelsignaal een opschakelsignaal is en het tweede schakelsignaal een afschakelsignaal is, en waarbij de regelaar geconfigureerd is om selectief de eerste en/of tweede en/of derde lastschakelkoppeling te regelen voor het selecteren van de eerstvolgende hogere systeemtransmissieratio in respons op het ontvangen van het opschakelsignaal, en voor het selecteren van de eerstvolgende lagere systeemtransmissieratio in reactie op het ontvangen van het afschakelsignaal.The system of claim 35, wherein the first shift signal is an upshift signal and the second shift signal is a downshift signal, and wherein the controller is configured to selectively control the first and/or second and/or third load shift clutch to select the next next higher system transmission rate in response to receiving the upshift signal, and for selecting the next lower system transmission rate in response to receiving the downshift signal. 37. Het systeem volgens conclusie 35 of 36, waarbij het eerste schakelsignaal een opschakelsignaal is en het tweede schakelsignaal een afschakelsignaal is, en waarbij de regelaar geconfigureerd is om selectief de eerste en/of tweede en/of derde lastschakelkoppeling te voor het selecteren van de tweede-volgende, derde-volgende, vierde-volgende hogere of lagere systeemtransmissieratio in respons op het ontvangen van een bail-out- signaal, het bail-out-signaal bijvoorbeeld omvattende het opschakelsignaal en het terugschakelsignaal tegelijkertijd, of binnen een gespecificeerd tijdsinterval, typisch kleiner dan 1s.The system of claim 35 or 36, wherein the first shift signal is an upshift signal and the second shift signal is a downshift signal, and wherein the controller is configured to selectively control the first and/or second and/or third load shift clutch to select the second-next, third-next, fourth-next higher or lower system transmission rate in response to receiving a bail-out signal, e.g. the bail-out signal comprising the upshift signal and the downshift signal simultaneously, or within a specified time interval, typically smaller than 1s. 38. Het systeem volgens een der conclusies 35-37, waarbij de eerste en tweede schakelsignalen draadloze signalen zijn, en waarbij de regeleenheid is ingericht om de draadloze schakelsignalen te ontvangen.The system of any one of claims 35-37, wherein the first and second switching signals are wireless signals, and wherein the control unit is configured to receive the wireless switching signals. 39. Het systeem volgens een der voorgaande conclusies, omvattende één of meer actuatoren, in het bijzonder één of meer elektrische actuatoren, ingericht voor het bedienen van de lastschakelkoppelingen.39. The system according to any one of the preceding claims, comprising one or more actuators, in particular one or more electric actuators, adapted to operate the load switching couplings. 40. Het systeem volgens een der conclusies 35-38 en conclusie 39, waarbij de één of meer actuatoren werkzaam met de regeleenheid verbonden zijn.The system of any one of claims 35-38 and claim 39, wherein the one or more actuators are operatively connected to the control unit. 41. Het systeem volgens conclusie 40, waarbij de regeleenheid en de één of meer actuatoren ingericht zijn om draadloos te communiceren.The system of claim 40, wherein the control unit and the one or more actuators are arranged to communicate wirelessly. 42. Het systeem volgens een van der conclusies 35-41, omvattende een koppelsensor voor het meten van een ingangskoppel bij de ingang, waarbij de koppelsensor werkzaam met de regeleenheid verbonden is.The system according to any one of claims 35-41, comprising a torque sensor for measuring an input torque at the input, the torque sensor being operatively connected to the control unit. 43. Het systeem volgens conclusie 42, waarbij de koppelsensor in het transmissiesysteem geïntegreerd is.The system of claim 42, wherein the torque sensor is integrated into the transmission system. 44. Het systeem volgens een der voorgaande conclusies, omvattende een elektrische motor voor het aandrijven, of het ondersteunen van het aandrijven, van het voertuig, waarbij de elektrische motor met de ingang, de uitgang, of een tussenorgaan verbonden is.The system of any one of the preceding claims, comprising an electric motor for driving, or assisting in driving, the vehicle, the electric motor being connected to the input, output, or intermediate means. 45. Het systeem volgens conclusie 44, omvattende een accu die ingericht is voor het voeden van de elektrische motor, en verder ingericht is voor het voeden van de een of meer actuatoren.The system of claim 44, including a battery configured to power the electric motor, and further configured to power the one or more actuators. 46. Fiets omvattende een transmissiesysteem volgens een der voorgaande conclusies.A bicycle comprising a transmission system according to any one of the preceding claims. 47. Fiets volgens conclusie 46, omvattende een koppeloverdrachtsysteem met een koppeloverdrachtselement, zoals een ketting of riem of as, waarbij een crank een ingang van het koppeloverdrachtsysteem aandrijft, en waarbij een uitgang van het koppeloverdrachtsysteem een aangedreven wiel van de fiets aandrijft, waarbij het transmissiesysteem tussen de crank en de ingang van het koppeloverdrachtsysteem voorzien is.The bicycle of claim 46, comprising a torque transmission system having a torque transmission element, such as a chain or belt or axle, wherein a crank drives an input of the torque transmission system, and an output of the torque transmission system drives a drive wheel of the bicycle, the transmission system between the crank and the input of the torque transmission system. 48. Fiets volgens conclusie 46, omvattende een koppeloverdrachtsysteem met een koppeloverdrachtelement, zoals een ketting of riem of as, waarbij een crank een ingang van het koppeloverdrachtsysteem aandrijft, en waarbij een uitgang van het koppeloverdrachtsysteem een aangedreven wiel van de fiets aandrijft, waarbij het transmissiesysteem tussen de uitgang van het koppeloverdrachtsysteem en een wielnaaf van het aangedreven wiel voorzien Is.The bicycle of claim 46, comprising a torque transmission system having a torque transmission element, such as a chain or belt or axle, wherein a crank drives an input of the torque transmission system, and an output of the torque transmission system drives a drive wheel of the bicycle, the transmission system between the output of the torque transmission system and a wheel hub of the driven wheel Is provided. 49. Fiets volgens conclusie 46, omvattende een koppeloverdrachtsysteem met een koppeloverdrachtelement, zoals een ketting of riem of as, waarbij een crank een ingang van het koppeloverdrachtsysteem aandrijft, en waarbij een uitgang van het koppeloverdrachtsysteem een aangedreven wiel van de fiets aandrijft, waarbij de eerste transmissie van het transmissiesysteem tussen de crank-as en de ingang van het koppeloverdrachtsysteem voorzien is, en waarbij de tweede transmissie van het transmissiesysteem tussen de uitgang van het koppeloverdrachtsysteem en een wielnaaf van het aangedreven wiel voorzien is.A bicycle according to claim 46, comprising a torque transmission system having a torque transmission element, such as a chain or belt or axle, wherein a crank drives an input of the torque transmission system, and an output of the torque transmission system drives a drive wheel of the bicycle, the first transmission of the transmission system is provided between the crank shaft and the input of the torque transmission system, and wherein the second transmission of the transmission system is provided between the output of the torque transmission system and a wheel hub of the driven wheel. 50. Fiets volgens conclusie 46 en 24, omvattende een koppeloverdrachtsysteem met een koppeloverdrachtelement, zoals een ketting of riem of as, waarbij een crank een ingang van het koppeloverdrachtsysteem aandrijft, en waarbij een uitgang van het koppeloverdrachtsysteem aangedreven wiel van de fiets aandrijft, waarbij de eerste en tweede transmissie van het transmissiesysteem tussen de crank en de mgang van het koppeloverdrachtsysteem voorzien zijn, en waarbij de derde transmissie van het transmissiesysteem tussen de uitgang van de koppeloverdrachtsysteem en een wielnaaf van het aangedreven wiel voorzien IS.A bicycle according to claims 46 and 24, comprising a torque transmission system having a torque transmission element, such as a chain or belt or axle, wherein a crank drives an input of the torque transmission system, and wherein an output of the torque transmission system drives a driven wheel of the bicycle, the first and second transmissions of the transmission system are provided between the crank and the hub of the torque transmission system, and wherein the third transmission of the transmission system is provided between the output of the torque transmission system and a wheel hub of the driven wheel. 51. Fiets volgens conclusie 49, omvattende een continu variabele transmissie tussen de crank en de ingang van het koppeloverdrachtsysteem, of tussen de eerste transmissie en de tweede transmissie voorzien.The bicycle of claim 49, including a continuously variable transmission provided between the crank and the input of the torque transmission system, or between the first transmission and the second transmission. 52. Fiets volgens conclusie 50 of 51, omvattende een continu variabele transmissie tussen de ingang van het koppeloverdrachtsysteem en het aangedreven wiel voorzien, in het bijzonder tussen de tweede transmissie en de derde transmissie.A bicycle according to claim 50 or 51, comprising a continuously variable transmission provided between the input of the torque transmission system and the driven wheel, in particular between the second transmission and the third transmission.
NL2028336A 2021-05-28 2021-05-28 Bicycle transmission NL2028336B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NL2028336A NL2028336B1 (en) 2021-05-28 2021-05-28 Bicycle transmission
PCT/EP2022/060913 WO2022248134A1 (en) 2021-05-28 2022-04-25 Transmission system for a vehicle, preferably a bicycle
CN202280053091.8A CN117881597A (en) 2021-05-28 2022-04-25 Transmission system for a vehicle, in particular a human powered vehicle such as a bicycle
CN202280053092.2A CN117897329A (en) 2021-05-28 2022-04-25 Continuously variable transmission unit, such as for bicycles
PCT/EP2022/060915 WO2022248135A1 (en) 2021-05-28 2022-04-25 Transmission system for a vehicle, preferably a bicycle
EP22725728.4A EP4347372A2 (en) 2021-05-28 2022-04-25 Continuously variable transmission unit, preferably for a bicycle
EP22725727.6A EP4347373A1 (en) 2021-05-28 2022-04-25 Transmission system for a vehicle, preferably a bicycle
PCT/EP2022/060920 WO2022248136A2 (en) 2021-05-28 2022-04-25 Continuously variable transmission unit, such as for a bicycle
EP22725251.7A EP4347371A1 (en) 2021-05-28 2022-04-25 Transmission system for a vehicle, preferably a bicycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2028336A NL2028336B1 (en) 2021-05-28 2021-05-28 Bicycle transmission

Publications (1)

Publication Number Publication Date
NL2028336B1 true NL2028336B1 (en) 2022-12-12

Family

ID=77627471

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2028336A NL2028336B1 (en) 2021-05-28 2021-05-28 Bicycle transmission

Country Status (1)

Country Link
NL (1) NL2028336B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028096A1 (en) * 2007-08-23 2009-02-25 Urs Elsasser Multigear epicyclical gear hub
US20110130242A1 (en) * 2009-11-28 2011-06-02 Sram Deutschland Gmbh Multi-Speed Internal Gear Hub for a Bicycle
US20170248212A1 (en) * 2016-02-25 2017-08-31 GM Global Technology Operations LLC Motor vehicle drivetrain
WO2018199757A2 (en) 2017-04-27 2018-11-01 Advancing Technologies B.V. Clutch system for a torque transmission
NL2020020B1 (en) * 2017-12-05 2019-06-13 Punch Powertrain Nv A transmission system for a vehicle, and a method for preselecting, shifting and selecting gear modes
WO2020085911A2 (en) 2018-10-26 2020-04-30 Advancing Technologies B.V. Transmission system
WO2021080431A1 (en) 2019-10-25 2021-04-29 Advatech B.V. Transmission system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028096A1 (en) * 2007-08-23 2009-02-25 Urs Elsasser Multigear epicyclical gear hub
US20110130242A1 (en) * 2009-11-28 2011-06-02 Sram Deutschland Gmbh Multi-Speed Internal Gear Hub for a Bicycle
US20170248212A1 (en) * 2016-02-25 2017-08-31 GM Global Technology Operations LLC Motor vehicle drivetrain
WO2018199757A2 (en) 2017-04-27 2018-11-01 Advancing Technologies B.V. Clutch system for a torque transmission
NL2020020B1 (en) * 2017-12-05 2019-06-13 Punch Powertrain Nv A transmission system for a vehicle, and a method for preselecting, shifting and selecting gear modes
WO2020085911A2 (en) 2018-10-26 2020-04-30 Advancing Technologies B.V. Transmission system
WO2021080431A1 (en) 2019-10-25 2021-04-29 Advatech B.V. Transmission system

Similar Documents

Publication Publication Date Title
CN112203931B (en) Planetary multi-speed transmission for bicycle or electric power-assisted bicycle
US20220402574A1 (en) Transmission system
NL2021891B1 (en) Transmission system
TWI822784B (en) Pedaling bearing transmission in form of planet transmission for a bicycle or pedelec
US11247749B2 (en) Drive assembly and vehicle
US6893373B2 (en) Transmission for vehicle
US4976670A (en) Power transmission
US7857726B2 (en) Eight speed transmission with planetary and layshaft gearing
US5527230A (en) Multi-speed hub for bicycles
CN104033547A (en) Multi-speed transmission
GB2292427A (en) Power train of an automatic transmission including multiple sets of epicyclic gearing
KR20040091351A (en) The moment of aforce transmission apparatus for bicycle
NL2028336B1 (en) Bicycle transmission
US7344471B2 (en) Automatic transmission
JPH1026211A (en) Automatic transmission
CN106763566A (en) Automatic transmission and the vehicle with the automatic transmission
US5823909A (en) Multiple speed automatic transaxle for a motor vehicle
CN105927719A (en) Multi-speed Tranmission
KR101775264B1 (en) Power transmission device for automobiles
WO2022248134A1 (en) Transmission system for a vehicle, preferably a bicycle
CN104214286B (en) Multi-gear speed changer for planetary gear structure
CN112303197A (en) Transmission device for human-powered vehicle and auxiliary system for human-powered vehicle provided with same
JPS60227044A (en) Multistage speed change gear
WO2022248135A1 (en) Transmission system for a vehicle, preferably a bicycle
KR0183079B1 (en) Power train of auto-transmission