NL2027067B1 - A computer implemented method for selecting a shape of a rocker outsole - Google Patents

A computer implemented method for selecting a shape of a rocker outsole Download PDF

Info

Publication number
NL2027067B1
NL2027067B1 NL2027067A NL2027067A NL2027067B1 NL 2027067 B1 NL2027067 B1 NL 2027067B1 NL 2027067 A NL2027067 A NL 2027067A NL 2027067 A NL2027067 A NL 2027067A NL 2027067 B1 NL2027067 B1 NL 2027067B1
Authority
NL
Netherlands
Prior art keywords
rocker
outsole
shape
user
computer
Prior art date
Application number
NL2027067A
Other languages
Dutch (nl)
Inventor
Markus Hijmans Juha
Van Kouwenhove Laurens
Jacob Verkerke Gijsbertus
Postema Klaas
Original Assignee
Univ Groningen
Academisch Ziekenhuis Groningen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Groningen, Academisch Ziekenhuis Groningen filed Critical Univ Groningen
Priority to NL2027067A priority Critical patent/NL2027067B1/en
Priority to PCT/EP2021/084574 priority patent/WO2022122724A1/en
Priority to EP21836377.8A priority patent/EP4258927A1/en
Application granted granted Critical
Publication of NL2027067B1 publication Critical patent/NL2027067B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/143Soles; Sole-and-heel integral units characterised by the constructive form provided with wedged, concave or convex end portions, e.g. for improving roll-off of the foot
    • A43B13/145Convex portions, e.g. with a bump or projection, e.g. 'Masai' type shoes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D2200/00Machines or methods characterised by special features
    • A43D2200/10Fully automated machines, i.e. machines working without human intervention
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D2200/00Machines or methods characterised by special features
    • A43D2200/60Computer aided manufacture of footwear, e.g. CAD or CAM
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

The invention is related to computer implemented method of selecting an individualized rocker outsole for manufacturing the rocker outsole by a rocker outsole manufacturing device, wherein the shape of the rocker outsole is determined by a set of rocker outsole shape parameters. The invention is further related to a method for manufacturing a rocker outsole with a shape determined by the computer implemented method of the invention. The invention is further related to a rocker outsole with a shape determined by the computer implemented method of the invention. The invention is further related to a rocker shoe having a rocker outsole having a rocker outsole shape determined by the computer implemented invention. The invention is further related to a computer for performing the computer implemented invention.

Description

P34639NL00/WZO Title: A COMPUTER IMPLEMENTED METHOD FOR SELECTING A SHAPE OF A
ROCKER OUTSOLE The invention is related to a computer implemented method of selecting an individualized rocker outsole for manufacturing the rocker outsole by a rocker outsole manufacturing device, wherein data representing the selected rocker outsole is outputted which is suitable for manufacturing the rocker outsole by a rocker outsole manufacturing device, wherein the shape of the rocker outsole is determined by a set of rocker outsole shape parameters. The invention is further related to a method for manufacturing a rocker outsole with a shape determined by the computer implemented method of the invention. The invention is further related to a rocker outsole with a shape determined by the computer implemented method of the invention. The invention is further related to a rocker shoe having a rocker outsole having a rocker outsole shape determined by the computer implemented invention. The invention is further related to a computer for performing the computer implemented invention. Shoe outsoles with added thickness and curvatures at both the heel and forefoot region are called rocker outsoles. Rocker outsoles may be used to influence a gait of a person wearing them. Rocker outsoles may have a number of advantageous properties. Rocker outsoles may influence the gait of the user by offloading some of the pressure on certain areas of the foot during a gait of the user. WO 2016/176351 discloses a rocker shoe with a lower rocker surface extending across the plantar surface of the shoe sole from the heel and terminating short of the toe. The document discloses a rocker shoe construction kit for converting a normal shoe into a rocker shoe. The shape of the rocker sole may be such that no motion is produced at the ankle during the single-limb support phase of walking. A construction kit may comprise outsoles with different profiles so that the medical professional may design the outsole which has the appropriate rocker profile for a specific user. A sole may be selected based on height and desired rocker motion. A downside of this approach is that the rocker shoe and/or the rocker outsole of the art are selected based on a trial and error procedure wherein many rocker outsoles have to be tried by the user before the correct rocker outsole is selected. Additionally, the user of the shoe may not receive an effective rocker shoe because the user receives the rocker outsole based on the knowledge of the professional supplying the shoe and the available rocker outsole shapes. As a result the selection of the rocker shoe for the user is prone to errors. A shape of an individualized rocker outsole made by a craftsman may also not always be selected optimally.
The invention seeks to provide a computer implemented method of selecting an rocker outsole shape. The invention provides a computer implemented method of selecting an individualized rocker outsole according to claim 1.
The computer implemented method of claim 1 selects a rocker outsole shape for a user and outputs data representing this rocker outsole shape for manufacturing the rocker outsole by a rocker outsole manufacturing device. The computer implemented method allows is a repeatable method for selecting a rocker outsole without the need to provide a number of trial rocker outsoles for the user to try. The method further does not rely on craftsmanship or expertise of a professional in selecting the rocker outsole shape. An effect of a rocker shoe having a selected rocker outsole shape on the gait cycle of the user is predicted by the simulation of the gait cycle by the computer.
The shape of the rocker outsole is determined by a set of rocker outsole shape parameters which set of rocker outsole shape parameters comprises at least one of: 0 a rocker outsole thickness; 0 a rocker outsole stiffness, e.g. a longitudinal bending stiffness; 0 a front apex position; Oo a front apex angle; 0 a front rocker radius; 0 a back apex position; 0 a back apex angle; and 0 a back rocker radius.
These shape parameters determine the thickness of the rocker outsole, the longitudinal bending stiffness of the rocker outsole, the front and back apex positions, the front and back apex angles, and the front and back rocker radius.
The rocker outsole thickness is related to the difference between the smallest part of the rocker outsole, e.g. near the toe, and the thickest part of the rocker outsole, e.g. near the middle of the outsole.
The rocker outsole stiffness, e.g. the longitudinal bending stiffness of the rocker outsole, is related to how bendable the rocker outsole is in the longitudinal direction at the location of the forefoot. For example a rocker outsole with a higher stiffness is more difficult to bend than a rocker outsole with a lower stiffness. The rocker outsole stiffness may depend on the location onthe rocker outsole. For example the rocker outsole may be stiffer near the heel and toe and less stiff near the forefoot. This allows the rocker outsole to distribute pressure differently in different parts of the foot.
The apex position is the location on the outsole, e.g. a location along a longitudinal direction of the outsole, where the outsole starts to curve. The outsole may be substantially flat between the front and back apex positions. In front of the front apex position and behind the back apex positions the outsole is curved. For example, the front apex position gives the position near the front of the outsole where the outsole starts curving.
The front and back apex angles are related to the front and back apex positions. As seen from a cross-sectional view of the outsole, e.g. from a top side of the outsole, the outsole may start curving along a line tilted relative to the longitudinal of the outsole. This tilt is the apex angle. The front and back rocker radius are related to the curvature of the rocker outsole from the apex position. A greater rocker radius implies a smaller curvature of the rocker outsole.
The computer implemented method of the invention selects a shape of the rocker outsole by determining distinct sets of rocker outsole shape parameters which comprises at least one of the rocker sole shape parameters. In examples, it is possible that additional parameters are needed to fully determine the shape of the outsole, such as shoe size. In examples, another set of shape parameters may be used to determine the shape of the rocker outsole. The invention is not limited to the eight shape parameters shown in claim 1. The invention also extends to other, possibly equivalent, sets of shape parameters used to determine a shape of the rocker outsole.
Depending on the situation various biomechanical parameters may be measured, however at least a plantar pressure and/or kinetics and kinematics of the gait cycle of the user are measured according to the computer implemented method of the invention.
The method makes use of a computer comprising a processor and a database, wherein the processor is configured to run a gait cycle simulation model for simulating a gait cycle of the user, e.g. based on biomechanical parameters of the user and rocker outsole shape parameters, wherein the processor is configured to access the database for retrieving data stored therein and wherein the processor is configured to access the database for storing data therein.
The method further makes use of one or more measuring devices for measuring the one or more biomechanical parameters.
The measuring device may be a standardized measuring shoe.
One of the measuring devices may further be a system for analysing the gait of the user, e.g. based on a video input and/or based on markers placed on a foot and/or a leg of the user.
Other measuring devices are also possible.
Examples of biomechanical parameters that may be measured include: a pressure on the foot during a gait cycle, static and dynamic balance, a center of pressure trajectory during a gait cycle of the user, an ankle angle of a user during a gait cycle, a foot-to-horizontal angle of a user during a gait cycle, a shank-to-vertical angle during the gait cycle of the user, a ground reaction force during a gait cycle of the user, an ankle moment during the gait cycle of the user, and an ankle moment arm during the gait cycle of the user.
In embodiments of the invention some of these biomechanical parameters may be measured, while others may be inferred from the measured biomechanical parameters, e.g. by the gait cycle simulation model run on the computer.
The method comprises the following steps: - measuring one or more biomechanical parameters of the user by using a measuring device, e.g. a standardized measuring shoe, wherein the measured biomechanical parameters comprise a plantar pressure of a foot of the user during a gait cycle of the user and/or kinetics and kinematics of the gait cycle of the user; - inputting the measured biomechanical parameters into the computer, e.g. by the measuring device, and storing the measured biomechanical parameters in the database; - determining critical values of one or more of the measured biomechanical parameters of the user and storing the critical values in the database; - determining various distinct rocker outsole shapes by choosing distinct sets of rocker outsole shape parameters, wherein the rocker outsole shape parameters are chosen between shape parameter limit values and storing the distinct rocker outsole shapes in the database; - simulating on the computer by the gait cycle simulation model, for each of the distinct rocker outsole shapes, a gait cycle of the user wearing a rocker shoe comprising a rocker outsole according to the corresponding distinct rocker outsole shape, wherein the gait cycle simulation model uses the distinct rocker outsole shapes stored in the database;
- determining, for each of the simulated gait cycles, corresponding simulated biomechanical parameters of the user based on the corresponding simulated gait cycle and storing the simulated biomechanical parameters in the database; - selecting one of the distinct rocker outsole shapes by comparing the corresponding 5 simulated biomechanical parameters of the distinct rocker outsole shapes to the critical values, wherein at least one simulated critical value of the simulated biomechanical parameters is lower than the corresponding critical value of the measured biomechanical parameters; and - outputting data representing the selected rocker outsole shape for manufacturing the individualized rocker outsole by the rocker outsole manufacturing device.
The biomechanical parameters are measured with a measuring device, e.g. a standardized measuring shoe, e.g. for measuring pressure. For example, the shoe may have an instrumented insole in the shoe which measures pressure during a gait cycle of the user. In this way pressure at multiple points, e.g. 99 points per foot, of the foot may be measured.
The kinematics of the user may be measured through motion capture and the kinetics of the gait may be measured by force plates or in shoe pressure, for example by a pressure measuring insole. Additional methods of measuring may be employed.
Thus, the plantar pressure on a foot of the user during a gait cycle may be a pressure at a single point or multiple pressures at multiple points of the foot. Other ways to measure the biomechanical parameters are also possible. For example, the foot and lower leg of the user may be provided with reflective markers. The user may then be filmed during a gait cycle, such that the markers show the location of e.g. joints during the gait cycle. This may provide information, e.g., on the shank-to-vertical angle during the gait cycle.
The measured biomechanical parameters are inputted into the computer. This may be done automatically by the measuring device, e.g. when the measuring device is connected to the database. The measured biomechanical parameters may also be inputted into the computer manually.
The critical values of the biomechanical parameters of the user may be measured. For example, dorsiflexion of the ankle may be measured by pivoting the angle until a maximal angle is achieved. Limitations of peak ankle dorsiflexion has influence on multiple biomechanical parameters, such as the center of pressure trajectory. The critical values may also be determined from examination of the user. The critical values are stored in the database for future reference. Various distinct rocker outsole shapes are determined by choosing distinct sets of rocker outsole shape parameters, wherein the rocker outsole shape parameters are chosen between shape parameter limit values. For example, the front apex position may be chosen between 50% and 70% of the outsole length along a longitudinal axis of the outsole. The shape parameter limit values in this example are the 50% and 70% of the outsole length. These limit values may be determined based on the measured biomechanical parameters and/or the critical values. By setting limit values for one or more shape parameters and choosing values between these parameters several rocker outsole shapes are determined by the sets of rocker outsole shape parameters. For example, an apex position and angle of the rocker outsole may be determined based on the pressure measurements. In another example the front apex position of the rocker outsole may be inferred from an ankle dorsiflexion instant and a center of pressure trajectory. The ankle dorsiflexion instant is the point-in-time along the gait cycle of the user where the ankle has maximal dorsiflexion.
In this example, by fixing one or more of the rocker outsole shape parameters and varying other ones of the rocker outsole shape parameters distinct rocker outsole shapes are determined. For example, when the pressure and center of pressure trajectory are known, an apex position may be determined. Afterwards a outsole thickness may be varied. For example, from 10 mm to 30 mm in thickness.
In another example, the longitudinal bending stiffness of the outsole may be known and apex angles may be changed, for example, from 80 degrees to 100 degrees. In another example, an apex position may be known and a apex angle, outsole thickness and outsole longitudinal bending stiffness may be varied (rigid vs. flexible).
These variations lead to distinct rocker outsole shapes each determined by the rocker outsole shape parameters. For each of the determined distinct rocker outsole shapes, a gait cycle of the user wearing a rocker shoe comprising a rocker outsole according to the corresponding distinct rocker outsole shape is simulated. The simulation is performed by running the gait cycle simulation model on the computer.
The gait cycle simulation model uses the distinct rocker outsole shapes that are stored in the database for simulating the gait cycle of the user.
The method makes use of the gait cycle simulation model for simulating a gait cycle of the user, e.g. based on biomechanical parameters of the user and rocker outsole shape parameters.
By simulation the gait cycle simulated biomechanical parameters are determined.
For example, a simulated biomechanical parameter may be the pressure on the foot of the user.
In another example, ankle moment and ankle moment arm during a gait of the user are simulated for each of the distinct rocker outsole shapes.
One of the distinct rocker outsole shapes is selected by comparing the corresponding simulated biomechanical parameters of the distinct rocker outsole shapes to the critical values, wherein at least one simulated critical value of the simulated biomechanical parameters is lower than the corresponding critical value of the measured biomechanical parameters.
For example, the rocker outsole shape with the lowest peak pressure on the foot of the user is selected.
The selection process may be based on a critical value related to the ankle moment or ankle moment arm.
Data representing the selected rocker outsole shape for manufacturing the individualized rocker outsole is outputted by the computer.
This data may be used to manufacture a rocker outsole or a rocker shoe, e.g. by 3D printing.
A family of rocker outsole shapes is determined by the computer implemented method.
This family of rocker outsole shapes is suitable for the user because they are based on the biomechanical parameters measured from the user.
The method allows to select the appropriate rocker outsole shape for the user by comparing the simulated biomechanical parameter, e.g. a simulated corresponding critical value of the biomechanical parameter, with critical values stored in the database.
This allows the shape of the rocker outsole to have a noticeable and desired effect on the gait cycle of the user without the user having to try a number of rocker shoes and without having to use expertise of a professional in selecting the shape.
Additionally, the method may use stored data in the database to select similar shapes for users with similar biomechanical parameters. The system may potentially use information from past measurements and related rocker outsole shapes to determine optimal rocker outsole shapes for new users. This may be based for example on machine learning principles. It also allows the system to potentially spot errors when a rocker outsole shape deviates from previously obtained rocker outsole shapes. In an embodiment of the method, the gait cycle simulation model uses the measured biomechanical parameters and/or the critical values that are stored in the database when simulating, for each rocker outsole shape, the gait cycle of the user wearing the rocker shoe comprising a rocker outsole according to the corresponding rocker outsole shape. The gait cycle simulation model may use generic models to determine a gait cycle of the user. Advantageously, use is made of the measured biomechanical parameters. In a further embodiment the gait cycle simulation model may simulate the gait of the user based on, possible additionally, the critical values, the shape parameter limit values and/or manual input. This may allow the gait cycle simulation model to provide a more accurate simulation of the gait cycle of the user wearing a rocker shoe.
In an embodiment, the method further comprises: - manufacturing the rocker outsole having the selected rocker outsole shape by the rocker outsole manufacturing device based on the outputted data.
In this embodiment the rocker outsole is manufactured. This may be done by the manufacturing device, e.g. a 3D printer, near where the biomechanical parameters were measured. The rocker outsole may also be manufactured in a central location away from the location of the measurements and shipped to the user. The rocker outsole manufacturing device may be a rocker shoe manufacturing device.
In an embodiment the distinct rocker outsole shapes are determined iteratively, e.g. wherein a next rocker outsole shape parameter set is chosen based on a previous rocker outsole shape parameter set, e.g. based on simulated biomechanical parameters corresponding to the previous rocker outsole shape parameter set. This may allow less simulation because an optimal shape of the outsole may be approximated in each iteration. This reduces computing time and increases efficiency.
In an embodiment wherein the rocker outsole shapes are determined iteratively, the next rocker outsole shape parameter set is determined after simulated biomechanical parameters of a previous rocker outsole shape parameter set are determined. This may allow the method to terminate before simulating biomechanical parameters for each distinct rocker outsole shape, e.g. when a rocker outsole shape is found which has a suitable shape. In an embodiment one of the critical values of the measured biomechanical parameters corresponds to the plantar pressure and wherein the simulated critical value of the plantar pressure of the selected rocker outsole shape is lower than the measured critical value of the plantar pressure. In an additional embodiment the simulated critical value of the planter pressure of the selected rocker outsole shape is lower than 200kPa. It is found that this value is advantage for reducing load on the user and reducing wear of the outsole. In an embodiment, preferably an embodiment wherein the plantar pressure is reduced compared to a measured value, the distinct rocker outsole shapes have a distinct rocker outsole stiffness. By varying the stiffness the pressure may be redistributed. The longitudinal bending stiffness may be more rigid or more flexible depending on the biomechanical parameters. This embodiment may be particularly advantageous for users with a higher pressure on the foot. By determining the longitudinal bending stiffness, peak pressure may be offloaded.
In an embodiment the computer is adapted to perform machine learning and wherein the computer implemented method makes use of machine learning to determine the shape of the individualized rocker outsole. E.g. by machine learning the simulation process may become more efficient as the gait cycle simulation model gains more experience in running the simulation, e.g. based on previous simulations of gait cycles. In an embodiment the simulated biomechanical parameters comprise a center of pressure trajectory of the foot of the user. The center of pressure trajectory of the foot of the user during the gait cycle is the point under the foot as a function of normalized time where the center of pressure is located. The center of pressure trajectory may be used to simulate the foot-to- horizontal angle and the ankle moment arm for a rocker profile. In a further embodiment the front apex position of the selected rocker outsole shape is selected based on the simulated center of pressure trajectory, e.g. by comparing the simulated center of pressure trajectory to a critical value based on a measured center of pressure trajectory. By selecting the front apex position based on the center of pressure trajectory, load on the user, e.g. on the ankle of the user, is reduced during the gait cycle.
In an embodiment the measured biomechanical parameters and simulated biomechanical parameters further comprise a foot-to-horizontal angle during the gait cycle. It is possible that the foot-to-horizontal angle is determined in a way independent of the center of pressure trajectory, e.g. by foot markers. The foot-to-horizontal angle may be used to determine e.g. ankle moment arm and may help find values for the apex positions, apex angles and rocker outsole curvature. In an embodiment the measured biomechanical parameters and simulated biomechanical parameters further comprise a shank-to-vertical angle during the gait cycle of the user. The shank-to-vertical angle may be used to determine an ankle angle, and may help find values for the apex positions and rocker radius. An embodiment the measured biomechanical parameters and simulated biomechanical parameters further comprise a ground reaction force during a gait cycle of the user.
In an embodiment the simulated biomechanical parameters comprise an ankle moment during the gait of the user, e.g. based on the measured center of pressure trajectory, measured foot-to-horizontal angle, and measured ground reaction force, e.g. a magnitude and/or direction of the ground reaction force.
In an embodiment, the method further comprises: - storing the measured biomechanical parameters, the simulated biomechanical parameters, the outputted data and/or the selected rocker outsole shape of a first user in the database, wherein the gait cycle simulation model may collect data of the first user from the database for selecting a shape of a rocker outsole of a second user. In an example wherein the first and second user are the same user, this allows the method to make use of data obtained during a previous application of the method for the user. For example, this allows the method to look at differences that have occurred over time. In examples wherein the first user and second user are different users, this embodiment allows to compare data obtained by the method between the different users. The invention is further related to a rocker outsole having a rocker outsole shape determined by the method of the invention.
The invention is further related to a method for manufacturing the rocker outsole, wherein the rocker outsole shape is determined by the method of the invention. In an embodiment, the rocker outsole is manufactured using a 3D printer.
The invention is further related to a rocker shoe having a rocker outsole having a rocker outsole shape determined by the method according to the invention. The invention is further related to a computer for performing the computer implemented method according to the invention. The invention will now be described in a non-limiting way by reference to the accompanying drawings in which like parts are indicated by like reference symbols and in which: figure 1 depicts a top view of a rocker outsole; figure 2 depicts a side view of the rocker outsole of figure 1; figure 3 depicts a second side view of the rocker outsole of figure 1; figure 4 depicts a side view of several rocker outsoles with different front rocker radii; figure 5 depicts a schematic side view of two rocker outsoles with different apex positions; figure 6 depicts a graph of an ankle angle during a gait cycle of a user wearing a measuring shoe and of a simulated ankle angle during a gait cycle; figure 7 depicts a flow chart of the method steps of the computer implemented invention; and figure 8 depicts a schematic view of a computer for use in the computer implemented method. Figure 1 depicts a top view of a rocker outsole 1. The front apex position 4 is shown as a distance from the heel of the rocker outsole 1. The front apex position 4 is determined in the figure by the point where the longitudinal axis 15 crosses the front rocker axis 11. The front rocker axis 11 is the line along which the rocker outsole 1 curves away from the floor 14 when the rocker outsole 1 is placed on the floor 14 as can be seen in figure 2.
Figure 1 further shows the front apex angle 5 which is the angle the front rocker axis 11 makes with the longitudinal axis 15. The front apex angle 5 and the front apex position 4 determine the front rocker axis 11, thus mathematically the front rocker axis 11 may be redundant when the front apex angle 5 and the front apex position 4 are known.
Figure 1 similarly shows the back apex position 7 as a distance from the heel of the rocker outsole 1 along the longitudinal axis 15. The back rocker axis 13 makes is angled with respect to the longitudinal axis 15 by the back apex angle 8.
Figure 2 depicts a side view of the rocker outsole 1 of figure 1. The rocker outsole 1 is placed on the floor 14 such that the rocker outsole curves away from the floor along the front rocker axis 11. The angle with which the rocker outsole 1 curves away from the floor 14 is given by the front rocker angle 12, which alternatively is given by the front rocker radius 6 as shown in figure 3. Figure 2 further shows the rocker outsole thickness 2 and the back apex position 7.
Figure 3 shows a second side view of the rocker outsole 1 of figures 1 and 2. In figure 3 the front rocker radius 6 is shown. The rocker outsole 1 curves away from the floor 14 near the front side at least approximately along a circle. The radius of this circle is the front rocker radius 8. The front rocker radius may also determine the front rocker angle 12.
Similarly to the front rocker radius 6, the rocker outsole 1 also determines a back rocker radius 9 which is not explicitly shown in the figure. More in general, for the shape parameters associated with the front of the rocker outsole 1, e.g. the front rocker radius 8, there exists a similar shape parameter associated with the back of the rocker outsole 1, e.g. the back rocker radius 9. Figure 4 depicts a side view of several rocker outsoles 1 with different front rocker radii 6. In an example of the method of the invention the gait cycle of a user wearing these rocker outsoles 1 may be simulated by the gait cycle simulation model. Subsequently, for each of the rocker outsoles 1, simulated biomechanical parameters of the user are determined. Figure 5 depicts a schematic side view of two rocker outsoles 1 with different front apex positions 4. The gait cycle simulation model simulates the gait cycle of the user wearing the different rocker outsoles 1 depicted in figure 5 and consequently determine for each of the two rocker outsoles 1 simulated biomechanical parameters, in this case the internal moment arm 15 and the external moment arm 16. By calculating the internal moment arm 15 and the external moment arm 16 during the gait of the user for each of the rocker outsoles 1, the optimal of the two shapes is determined. By reducing the external moment arm 16 a load on the user may be reduced. Thus, in this example, the front apex position 4 determines the external moment arm 15 during the gait of the user, which in turn determines a load on the user. By finding an optimal front apex position 4 the load is reduced. Figure 6 depicts a graph of an ankle angle 18 during a gait cycle of a user wearing a measuring shoe and of a simulated ankle angle 17 during a gait cycle as simulated by the gait cycle simulation model. As can be seen from the figure, the simulated ankle angle, which is the biomechanical parameter in this example, is lower throughout the gait cycle compared to the measured ankle angle. In the gait cycle a critical value of the ankle angle is indicated by the dashed horizontal line, indicated by dorsiflexion boundary. As can be seen, the simulated angle never reaches this dashed line. Thus the simulated outsole shape may be selected based on this graph. Further, the position of the apex position for the rocker outsole shape used for simulating the gait cycle is indicated as a percentage of the gait cycle by the vertical line.
The gait cycle simulation model may be used to determine, based on the simulated gait cycle, several biomechanical parameters such as depicted here. Figure 7 depicts a flow chart of the method steps of the computer implemented invention. One or more biomechanical parameters of the user are measured 101 using a measuring device 22, e.g. by using a standardized measuring shoe 10, wherein the measured biomechanical parameters comprise a plantar pressure of a foot of the user during a gait cycle 17 of the user and/or kinetics and kinematics of the gait cycle 17 of the user. The measured biomechanical parameters are inputted 102 into the computer 19, e.g. by the measuring device 22, and the measured biomechanical parameters are stored in the database 21. Critical values of one or more of the measured biomechanical parameters of the user are determined 103 and the critical values are stored in the database. In embodiments the critical values are determined after measuring the biomechanical parameters. However it is also possible that the critical values are determined beforehand or independent of the measurement 101. This may for example be the case when a rocker outsole shape is desired that has a maximal plantar pressure lower than 200kPA.
Various distinct rocker outsole shapes are determined 104 by choosing distinct sets of rocker outsole shape parameters 4, 5, 6, 7, 8, wherein the rocker outsole shape parameters 4, 5, 8, 7, 8 are chosen between shape parameter limit values. The distinct rocker outsole shapes are stored in the database 21. The shape parameter limit values may be chosen based on previous experience or based on the measurements of the biomechanical parameters.
When the various distinct rocker outsole shapes are determined 104, the gait cycle simulation model is used to simulate 105, for each of the distinct rocker outsole shapes, a gait cycle 18 of the user wearing a rocker shoe 1 comprising a rocker outsole according to the corresponding shape. The gait cycle simulation model uses the distinct rocker outsole shapes stored in the database 21.
For each of the simulated gait cycles, corresponding simulated biomechanical parameters of the user are determined 106. These simulated biomechanical parameters are determined based on the simulated gait cycle 18. The simulated biomechanical parameters are stored in the database.
One of the distinct rocker outsole shapes is selected 107 by comparing the corresponding simulated biomechanical parameters of the distinct rocker outsole shapes to the critical values, wherein at least one simulated critical value of the simulated biomechanical parameters is lower than the corresponding critical value of the measured biomechanical parameters.
Finally, data representing the selected rocker outsole shape is outputted 108 by the computer 19 for manufacturing the individualized rocker outsole by the rocker outsole manufacturing device. The data may be used to manufacture, e.g. 3D print the rocker outsole 1.
In embodiments the method further comprises the step of manufacturing 109 the rocker outsole having the selected rocker outsole shape by the rocker outsole manufacturing device based on the outputted data.
Figure 8 depicts a schematic view of a computer 19 for use in the computer implemented method. The computer 19 comprises a processor 20 and a database 21, wherein the processor 20 is configured to run the gait cycle simulation model for simulating the gait cycle of the user. The processor 20 is further configured to access the database 21 for retrieving data stored therein and for storing data in the database 21. Figure 8 further depicts a measuring device 22 connected to the computer 19.

Claims (21)

-15- CONCLUSIES-15- CONCLUSIONS 1. Een computer geimplementeerde werkwijze voor het selecteren van een geïndividualiseerde rockerbuitenzool (1) voor het vervaardigen van de rockerbuitenzool (1) door een rockerbuitenzoolvervaardigingsinrichting, waarbij de vorm van de rockerbuitenzool bepaald wordt door een set rockerbuitenzoolvormparameters, welke set rockerbuitenzoolvormparameters ten minste één omvat van: e een rockerbuitenzooldikte (2); e een rockerbuitenzoolstijfheid (3), bijvoorbeeld een longitudinale buigstijfheid; es een voorste apexpositie (4); e een voorste apexhoek (5); e een voorste rockerradius (6); e een achterste apexpositie (7); e een achterste apexhoek (8); en e een achterste rockerradius (9), waarbij de werkwijze gebruik maakt van een computer (19) omvattende een processor (21) en een database (20), waarbij de processor (21) is ingericht om een loopcyclussimulatiemodel te draaien voor het simuleren van een loopcyclus (17, 18) van de gebruiker, bijvoorbeeld gebaseerd op biomechanische parameters van de gebruiker en rockerbuitenzoolvormparameters, waarbij de processor (21) is ingericht om toegang te krijgen tot de database (20) voor het ophalen van data die daarin opgeslagen is en waarbij de processor (21) is ingericht om toegang te krijgen tot de database om data daarin op te slaan, waarbij de werkwijze omvat: - het meten (101) van een of meer biomechanische parameters van de gebruiker door gebruik te maken van een meetinrichting (22), bijvoorbeeld een gestandaardiseerde meetschoen (10), waarbij de gemeten biomechanische parameters een plantaire druk van een voet van de gebruiker gedurende een loopcyclus (17, 18) van de gebruiker en/of kinetica en kinematica van de loopcyclus van de gebruiker omvatten; - het invoeren (102) van de gemeten biomechanische parameters in de computer (19), bijvoorbeeld door de meetinrichting (22), en het opslaan van de gemeten biomechanische parameters in de database (20); - het vaststellen (103) van kritieke waarden van een of meer van de gemeten biomechanische parameters van de gebruiker en het opslaan van de kritieke waarden in de database (20);A computer-implemented method for selecting an individualized rocker outsole (1) for manufacturing the rocker outsole (1) by a rocker outsole manufacturing apparatus, wherein the shape of the rocker outsole is determined by a set of rocker outsole shape parameters, said set of rocker outsole shape parameters including at least one of : e a rocker outsole thickness (2); e a rocker outsole stiffness (3), for example a longitudinal bending stiffness; es an anterior apex (4); e a front apex corner (5); e a front rocker radius (6); e a posterior apex position (7); e a posterior apex corner (8); and e a rear rocker radius (9), the method using a computer (19) comprising a processor (21) and a database (20), the processor (21) arranged to run a gait cycle simulation model to simulate a user's gait cycle (17, 18) based, for example, on the user's biomechanical parameters and rocker outsole shape parameters, the processor (21) being arranged to access the database (20) for retrieving data stored therein and wherein the processor (21) is arranged to access the database to store data therein, the method comprising: - measuring (101) one or more biomechanical parameters of the user using a measuring device ( 22), for example a standardized measuring shoe (10), wherein the measured biomechanical parameters are a plantar pressure of a foot of the user during a gait cycle (17, 18) of the user and/or ki include netics and kinematics of the user's gait cycle; - inputting (102) the measured biomechanical parameters into the computer (19), for example by the measuring device (22), and storing the measured biomechanical parameters in the database (20); - determining (103) critical values of one or more of the measured biomechanical parameters of the user and storing the critical values in the database (20); -16 - - het vaststellen (104) van verschillende rockerbuitenzoolvormen door het kiezen van verschillende sets rockerbuitenzoolvormparameters, waarbij de rockerbuitenzoolvormparameters gekozen worden tussen limietwaarden en het opslaan van de verschillende rockerbuitenzoolvormen in de database (20); - het simuleren (105) op de computer (19) door het loopcyclussimulatiemodel, voor elk van de verschillende rockerbuitenzoolvormen, van een loopcyclus (18) van de gebruiker die een rockerschoen draagt omvattende een rockerbuitenzool (1) volgens de corresponderende verschillende rockerbuitenzoolvorm, waarbij het loopcyclussimulatiemodel gebruik maakt van de verschillende rockerbuitenzoolvormen die in de database (20) zijn opgeslagen; - het vaststellen (106), voor elk van de gesimuleerde loopcyclussen (19), van corresponderende gesimuleerde biomechanische parameters van de gebruiker gebaseerd op de corresponderende loopcyclus (19) en het opslaan van de gesimuleerde biomechanische parameters in de database (20); - het selecteren {107) van een van de verschillende rockerbuitenzoolvormen door het vergelijken van de corresponderende gesimuleerde biomechanische parameters van de verschillende rockerbuitenzoolvormen met de kritieke waarden, waarbij ten minste een gesimuleerde kritieke waarde van de gesimuleerde biomechanische parameters lager is dan de corresponderende kritieke waarde van de gemeten biomechanische parameters; en - het uitvoeren (108) van data door de computer (19) die de geselecteerde rockerbuitenzool representeert voor het vervaardigen van de geïndividualiseerde rockerbuitenzool (1) door de rockerbuitenzoolvervaardigingsinrichting.-16 - - determining (104) different rocker outsole shapes by selecting different sets of rocker outsole shape parameters, the rocker outsole shape parameters being selected between limit values and storing the different rocker outsole shapes in the database (20); - simulating (105) on the computer (19) by the gait cycle simulation model, for each of the different rocker outsole shapes, a gait cycle (18) of the user wearing a rocker shoe comprising a rocker outsole (1) according to the corresponding different rocker outsole shape, wherein the gait cycle simulation model uses the different rocker outsole shapes stored in the database (20); - determining (106) for each of the simulated gait cycles (19), corresponding simulated biomechanical parameters of the user based on the corresponding gait cycle (19) and storing the simulated biomechanical parameters in the database (20); - selecting {107) one of the different rocker outsole shapes by comparing the corresponding simulated biomechanical parameters of the different rocker outsole shapes with the critical values, wherein at least one simulated critical value of the simulated biomechanical parameters is lower than the corresponding critical value of the measured biomechanical parameters; and - outputting (108) data by the computer (19) representing the selected rocker outsole for manufacturing the individualized rocker outsole (1) by the rocker outsole manufacturing apparatus. 2. Een computer geïmplementeerde werkwijze volgens conclusie 1, waarbij het loopcyclussimulatiemodel de gemeten biomechanische parameters en/of de kritieke waarden die in de database (20) opgeslagen zijn gebruikt voor het simuleren, voor elke rockerbuitenzoolvorm, van de loopcyclus (19) van de gebruiker die de rockerschoen omvattende een rockerbuitenzool (1) volgens de corresponderende rockerbuitenzoolvorm draagt.A computer implemented method according to claim 1, wherein the gait cycle simulation model uses the measured biomechanical parameters and/or the critical values stored in the database (20) to simulate, for each rocker outsole shape, the user's gait cycle (19) which wears the rocker shoe comprising a rocker outsole (1) according to the corresponding rocker outsole shape. 3. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de werkwijze verder omvat: - het vervaardigen (109) van de rockerbuitenzool (1) met de geselecteerde rockerbuitenzool vorm door de rockerbuitenzoolvervaardigingsinrichting gebaseerd op de uitgevoerde data.A computer-implemented method according to one or more of the preceding claims, the method further comprising: - manufacturing (109) the rocker outsole (1) having the selected rocker outsole shape by the rocker outsole manufacturing apparatus based on the output data. 4. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de verschillende rockerbuitenzoolvormen iteratief bepaald worden,A computer implemented method according to any one of the preceding claims, wherein the different rocker outsole shapes are determined iteratively, -17 - bijvoorbeeld waarbij een volgende rockerbuitenzoolvormset gekozen wordt gebaseerd op een vorige rockerbuitenzoolvormparameterset, bijvoorbeeld gebaseerd op gesimuleerde biomechanische parameters die corresponderen met de vorige rockerbuitenzoolvormparameterset.-17 - e.g. where a next rocker outsole shape set is selected based on a previous rocker outsole shape parameter set, e.g. based on simulated biomechanical parameters corresponding to the previous rocker outsole shape parameter set. 5. Een computer geimplementeerde werkwijze volgens conclusie 4, waarbij de volgende rockerbuitenzoolvormparameterset bepaald is nadat gesimuleerde biomechanische parameters van een vorige rockerbuitenzoovormlparameterset vastgesteld zijn.A computer implemented method according to claim 4, wherein the next rocker outsole shape parameter set is determined after simulated biomechanical parameters of a previous rocker outsole shape parameter set are determined. 6. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij een van de kritieke waarden van de gemeten biomechanische parameters correspondeert met de plantaire druk en waarbij de gesimuleerde kritieke waarde van de plantaire druk van de geselecteerde rockerbuitenzoolvorm lager is dan de gemeten kritieke waarde van de plantaire druk.A computer implemented method according to any one of the preceding claims, wherein one of the critical values of the measured biomechanical parameters corresponds to the plantar pressure and wherein the simulated critical value of the plantar pressure of the selected rocker outsole shape is lower than the measured critical value of plantar pressure. 7. Een computer geïmplementeerde werkwijze volgens conclusie 5, waarbij de gesimuleerde kritieke waarde van de plantaire druk van de geselecteerde rockerbuitenzoolvorm lager is dan 200 kPa.A computer implemented method according to claim 5, wherein the simulated critical value of the plantar pressure of the selected rocker outsole shape is less than 200 kPa. 8. Een computer geïmplementeerde werkwijze volgens een of meer van de conclusies 6-7, waarbij de verschillende rockerbuitenzoolvormen een verschillende rockerbuitenzoolstijfheid (3) hebben.A computer-implemented method according to any one of claims 6-7, wherein the different rocker outsole shapes have different rocker outsole stiffness (3). 9. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de computer (19) is ingericht om machine learning toe te passen en waarbij de computer geïmplementeerde werkwijze gebruik maakt van machine learning om de vorm van de geïndividualiseerde rockerbuitenzool (1) vast te stellen.A computer-implemented method according to any one of the preceding claims, wherein the computer (19) is arranged to apply machine learning and wherein the computer-implemented method uses machine learning to shape the individualized rocker outsole (1) to establish. 10. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de gesimuleerde biomechanische parameters een centrum van druk traject van de voet van de gebruiker omvatten.A computer-implemented method according to any one of the preceding claims, wherein the simulated biomechanical parameters comprise a center of pressure trajectory of the user's foot. 11. Een computer geïmplementeerde werkwijze volgens conclusie 10, waarbij de voorste apexpositie (4) van de geselecteerde rockerbuitenzoolvorm geselecteerd is gebaseerd op het gesimuleerde centrum van druk traject, bijvoorbeeld door het vergelijken van het gesimuleerde centrum van druk traject met een kritieke waarde gebaseerd op een gemeten centrum van druk traject.A computer implemented method according to claim 10, wherein the front apex position (4) of the selected rocker outsole shape is selected based on the simulated center of pressure range, for example by comparing the simulated center of pressure range with a critical value based on a measured center of pressure trajectory. -18 --18 - 12. Een computer geimplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de gemeten biomechanische parameters en gesimuleerde biomechanische parameters verder een voet-tot-horizontaal hoek tijdens de loopcyclus (17, 18) omvatten.A computer-implemented method according to any preceding claim, wherein the measured biomechanical parameters and simulated biomechanical parameters further comprise a foot-to-horizontal angle during the gait cycle (17, 18). 13. Een computer geimplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de gemeten biomechanische parameters en gesimuleerde biomechanische parameters verder een scheenbeen-tot-verticaal hoek tijdens de loopcyclus (17, 18) van de gebruiker omvatten.A computer-implemented method according to any preceding claim, wherein the measured biomechanical parameters and simulated biomechanical parameters further comprise a tibial-to-vertical angle during the user's gait cycle (17, 18). 14. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de gemeten biomechanische parameters en gesimuleerde biomechanische parameters verder een grondreactiekracht tijdens de loopcyclus (17, 18) van de gebruiker omvatten.A computer implemented method according to any preceding claim, wherein the measured biomechanical parameters and simulated biomechanical parameters further comprise a ground reaction force during the user's gait cycle (17, 18). 15. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de gesimuleerde biomechanische parameters een enkelmoment tijdens de loopcyclus (17, 18) van de gebruiker omvatten, bijvoorbeeld gebaseerd op het gemeten centrum van kracht traject, de gemeten voet-tot-horizontaal hoek, en de gemeten grondreactiekracht, bijvoorbeeld een grootte en/of richting van de grondreactiekracht.A computer implemented method according to any one of the preceding claims, wherein the simulated biomechanical parameters comprise an ankle moment during the user's gait cycle (17, 18), for example based on the measured center of force trajectory, the measured foot-to-foot -horizontal angle, and the measured ground reaction force, for example a magnitude and/or direction of the ground reaction force. 16. Een computer geïmplementeerde werkwijze volgens een of meer van de voorgaande conclusies, waarbij de werkwijze verder omvat: - het opslaan van de gemeten biomechanische parameters, de gesimuleerde biomechanische parameters, de uitgevoerde data, en/of de geselecteerde rockerbuitenzoolvorm van een eerste gebruiker in de database (29), waarbij het loopcyclussimulatiemodel data van de eerste gebruiker uit de database (20) kan halen voor het selecteren van een vorm van een rockerbuitenzool (1) van een tweede gebruiker.A computer-implemented method according to one or more of the preceding claims, the method further comprising: - storing the measured biomechanical parameters, the simulated biomechanical parameters, the output data, and/or the selected rocker outsole shape of a first user in the database (29), wherein the gait cycle simulation model can retrieve data of the first user from the database (20) for selecting a shape of a rocker outsole (1) of a second user. 17. Rockerbuitenzool (1) met een rockerbuitenzoolvorm vastgesteld door de computer geïmplementeerde werkwijze volgens een of meer van de conclusies 1-16.A rocker outsole (1) having a rocker outsole shape determined by the computer-implemented method according to one or more of claims 1-16. 18. Werkwijze voor het vervaardigen van een rockerbuitenzool (1), waarbij de rockerbuitenzoolvorm vastgesteld is door de computer geïmplementeerde werkwijze volgens een of meer van de conclusies 1-16.A method of manufacturing a rocker outsole (1), wherein the rocker outsole shape is determined by the computer-implemented method according to one or more of claims 1-16. -19--19- 19. Werkwijze volgens conclusie 18, waarbij de rockerbuitenzool (1) vervaardigd is door een 3D printer.A method according to claim 18, wherein the rocker outsole (1) is manufactured by a 3D printer. 20. Rockerschoen (1) met een rockerbuitenzool met een rockerbuitenzoolvorm vastgesteld door de werkwijze volgens een of meer van de conclusies 1-16.A rocker shoe (1) having a rocker outsole having a rocker outsole shape determined by the method according to one or more of claims 1-16. 21. Computer (19) voor het uitvoeren van de computer geïmplementeerde werkwijze volgens een of meer van de conclusies 1-18.A computer (19) for performing the computer-implemented method according to one or more of the claims 1-18.
NL2027067A 2020-12-08 2020-12-08 A computer implemented method for selecting a shape of a rocker outsole NL2027067B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2027067A NL2027067B1 (en) 2020-12-08 2020-12-08 A computer implemented method for selecting a shape of a rocker outsole
PCT/EP2021/084574 WO2022122724A1 (en) 2020-12-08 2021-12-07 A computer implemented method for selecting a shape of a rocker outsole
EP21836377.8A EP4258927A1 (en) 2020-12-08 2021-12-07 A computer implemented method for selecting a shape of a rocker outsole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2027067A NL2027067B1 (en) 2020-12-08 2020-12-08 A computer implemented method for selecting a shape of a rocker outsole

Publications (1)

Publication Number Publication Date
NL2027067B1 true NL2027067B1 (en) 2022-07-07

Family

ID=74183492

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027067A NL2027067B1 (en) 2020-12-08 2020-12-08 A computer implemented method for selecting a shape of a rocker outsole

Country Status (3)

Country Link
EP (1) EP4258927A1 (en)
NL (1) NL2027067B1 (en)
WO (1) WO2022122724A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100263233A1 (en) * 2009-04-06 2010-10-21 Northwestern University Rocker shoes for prescribed ankle motion
WO2016176351A1 (en) 2015-04-27 2016-11-03 United States Government As Represented By The Department Of Veterans Affairs Rocker shoes, rocker shoe development kit and method
US20170068774A1 (en) * 2014-05-09 2017-03-09 Rsprint Methods and apparatuses for designing footwear
US20170213382A1 (en) * 2016-01-27 2017-07-27 Adidas Ag Manufacturing a customized sport apparel based on sensor data
US20180343981A1 (en) * 2013-03-14 2018-12-06 Modern Protective Footwear, Llc Protective Patient Footwear System and Methods
US10299722B1 (en) * 2016-02-03 2019-05-28 Bao Tran Systems and methods for mass customization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100263233A1 (en) * 2009-04-06 2010-10-21 Northwestern University Rocker shoes for prescribed ankle motion
US20180343981A1 (en) * 2013-03-14 2018-12-06 Modern Protective Footwear, Llc Protective Patient Footwear System and Methods
US20170068774A1 (en) * 2014-05-09 2017-03-09 Rsprint Methods and apparatuses for designing footwear
WO2016176351A1 (en) 2015-04-27 2016-11-03 United States Government As Represented By The Department Of Veterans Affairs Rocker shoes, rocker shoe development kit and method
US20170213382A1 (en) * 2016-01-27 2017-07-27 Adidas Ag Manufacturing a customized sport apparel based on sensor data
US10299722B1 (en) * 2016-02-03 2019-05-28 Bao Tran Systems and methods for mass customization

Also Published As

Publication number Publication date
WO2022122724A1 (en) 2022-06-16
EP4258927A1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
Tang et al. Functional gradient structural design of customized diabetic insoles
CN106455757B (en) Method and apparatus for designing footwear
EP2723280B1 (en) Foot orthotic design system
US11464427B2 (en) Custom foot orthotic and system and method for designing of a custom foot orthotic
JP2003526435A (en) Method of producing an insert for interpolation by computer
CN107580463A (en) Include the article of footwear of the sole member with sectional hole patterns
KR20100087090A (en) Method and apparatus for producing footbeds
CN112203551B (en) Method for manufacturing insole
KR20190051643A (en) System and method for providing customized lasts
KR20200092264A (en) Method of Manufacturing Customized Smart Insole Using 3D Printing and Customized Smart Insole Manufactured Thereby
US8192375B2 (en) Apparatus and method for dynamically fitting insoles to a patient
NL2027067B1 (en) A computer implemented method for selecting a shape of a rocker outsole
US20210093049A1 (en) Method, device and system for measuring, evaluating and simulating a shoe
TWI664547B (en) Insole design method and insole design system
JP7395336B2 (en) Foot pressure measuring device, method, and non-transitory tangible machine-readable medium thereof
EP2501251B1 (en) Functional insole
GB2370487A (en) Method of selecting orthotics elements to correct pathological foot movements
Azariadis et al. Virtual shoe test bed: a computer-aided engineering tool for supporting shoe design
RU2771510C1 (en) Device for developing a shoe last that provides increased shoe fitless
RU2765771C1 (en) Method for creating a digital shoe last model that provides increased fitness in the area of the sides
US11758984B1 (en) Methods and systems for designing and making custom footwear with user underfoot component
CN115187733B (en) Method and device for determining shoe body internal model based on foot dynamic data
US20220265003A1 (en) Shoe making assistance apparatus
KR102501998B1 (en) Method for manufacturing of non-contact personalized insole using smart terminals
WO2023276868A1 (en) Data providing device, method for providing foot care product, and foot care product