NL2026484B1 - Offshore lifting tool and method - Google Patents

Offshore lifting tool and method Download PDF

Info

Publication number
NL2026484B1
NL2026484B1 NL2026484A NL2026484A NL2026484B1 NL 2026484 B1 NL2026484 B1 NL 2026484B1 NL 2026484 A NL2026484 A NL 2026484A NL 2026484 A NL2026484 A NL 2026484A NL 2026484 B1 NL2026484 B1 NL 2026484B1
Authority
NL
Netherlands
Prior art keywords
tool
lifting
lifting device
coupling part
coupling
Prior art date
Application number
NL2026484A
Other languages
Dutch (nl)
Inventor
Willem August Vehmeijer Terence
Original Assignee
Itrec Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itrec Bv filed Critical Itrec Bv
Priority to NL2026484A priority Critical patent/NL2026484B1/en
Priority to PCT/EP2021/075353 priority patent/WO2022058364A1/en
Application granted granted Critical
Publication of NL2026484B1 publication Critical patent/NL2026484B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/108Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means for lifting parts of wind turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/22Rigid members, e.g. L-shaped members, with parts engaging the under surface of the loads; Crane hooks
    • B66C1/34Crane hooks
    • B66C1/36Crane hooks with means, e.g. spring-biased detents, for preventing inadvertent disengagement of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/02Devices for facilitating retrieval of floating objects, e.g. for recovering crafts from water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • B66C13/085Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/52Floating cranes
    • B66C23/53Floating cranes including counterweight or means to compensate for list, trim, or skew of the vessel or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/04Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage
    • B66D3/06Pulley blocks or like devices in which force is applied to a rope, cable, or chain which passes over one or more pulleys, e.g. to obtain mechanical advantage with more than one pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Abstract

Offshore lifting tool for lifting an object, for suspension from a lifting device on a floating vessel, comprising - a coupling part for coupling the object with the lifting tool, - an attachment member for connecting the tool to the lifting device, and - an extensible structure interconnecting the attachment member and the coupling part via upper and lower parts thereof that are mutually longitudinally movable to allow for longitudinal extension and shortening of the extensible structure, wherein a passive heave compensator interconnecting the upper and lower part forms an integral part of the tool and is configured to upon upwards and downwards heave motion of the lifting device enable respectively extension and shortening of the extensible structure thereby cancelling out the heave motion of the lifting device for the coupling part of the tool.

Description

P34465NLOO/MEL
OFFSHORE LIFTING TOOL AND METHOD The present invention relates to an offshore lifting tool and a method for lifting an object, for instance offshore wind turbine components, e.g. a tool and method for lifting and upending a monopile or mast of an offshore wind turbine. When lifting offshore components on a floating vessel, it is common to utilize a vessel-mounted or integrated lifting device and a lifting tool releasably connectable thereto, which lifting tool is configured for coupling to the component. Generally the lifting device is a crane, the lifting tool with the coupled object being suspended from one or more hoisting cables of the crane, one or more winches being provided to pay out or haul in the respective hoist cables. The use of such lifting tools include the transfer or lifting of the components e.g. between a jack-up vessel or quay and a floating vessel, e.g. a feeder vessel, and/or between floating vessels.
Particular lifting tools are used for wind turbine components with vessel-mounted or integrated lifting devices, e.g. in the installation, maintenance or demolition of offshore wind turbines. Combined with such lifting tools, in line passive heave compensators are often utilized to reduce the impact of significant load variations on the lifting tool that are possible during offshore heavy lifting or transfer, generally due to the variable motions of the lifting point and/or the component induced by waves, wind and currents. These in line passive heave compensators are interposed between a lifting point at the top of the lifting range, e.g. a crown block of a crane, and a lifting tool. For example, an in line passive heave compensator is interposed between a hoisting block and the lifting tool, e.g. between a hook underneath the hoisting block and the lifting tool. In line compensators are capable of reducing the dynamic forces in the lifting wire or hoist wire caused by the motion of the sea from or on the object, to the lifting point. They generally employ a mixture of hydraulic and pneumatic dampers to help compensate for such load variations and are operable between the lifting point, e.g. the crown block of a crane, and the object. They rely upon the maintenance of the predetermined fluid pressure in the cylinder and piston mechanism, while permitting relative telescopic movement to occur between the cylinder and piston portions of the mechanism.
During use with a lifting tool, an in line passive heave compensator cancels out at least part of, preferably substantially all of, the downwards heave motion of the coupled object.
2. Thereby, the heave motions of the lifting device are substantially not transferred to the coupled object and the object can be vertically positioned by a lifting and lowering operation of the lifting device substantially without being influenced by heave motions. The lifting device can thus be operated without simultaneously compensating heave motions. Therefore a lifting device without heave compensating equipment can be used. In case of a crane with a hoisting block, the hoisting cables are advantageously kept free from compensating movements by the lifting device, reducing the accompanying wear of the cables caused by the heave compensating back and forth movements thereof over guiding sheaves and/or winches.
These in line passive heave compensators generally comprise an upper fixation point associated with a hydraulic cylinder for connection with the hoist cables, e.g. via a hoisting block or a hook, and a lower fixation point associated with the piston rod for connection to the load, e.g. a hook or a specific lifting tool. At least one accumulator is provided, having a moveable separator to divide the accumulator between a variable volume gas chamber above the separator, and a variable volume oil chamber below the separator. The oil chamber is in communication with an oil chamber in the hydraulic cylinder. The gas chamber is connected to a bank of pressurized gas reservoirs. The pressure of the gas can be controlled, e.g. set at a desired level, by a gas pressure controller such as to control the hydraulic pressure within the cylinder. Heave motion of the vessel causes the piston to oscillate within the cylinder of the compensator. Hereby the distance between the hoisting point and the load is lengthened and shortened, thus cancelling at least a part of the heave motion. The accumulator can be provided on the compensator itself, or on the vessel, the accumulator being connected to the compensator via an umbilical. For example, the company Ernst-B. Johansen AS supplies units under the trademark ‘Cranemaster’ as passive heave compensators, which are self-contained units charged with an internal gas pressure and oil volume. For instance when the lifting device is a crane, the ‘Cranemaster is interposed between a hook underneath a hoisting block and the tool. As another example, the company Seaqualize develops a passive heave compensation device with a small active component for use between a crane hook and a lifting tool for wind turbine components.
3.
US9718652 and US7934561 disclose in line heave compensators. US3714995 and WO2005038188 disclose the use of in line passive heave compensators on a drilling rig. Here the passive heave compensators are interposed between a travelling block and a lifting tool in the form of a hook.
When lifting wind turbine components, for instance when upending a monopile or mast thereof from a horizontal to a vertical location on a vessel, it is known to suspend an in line passive heave compensator between a hook, e.g. a hook underneath a hoisting block, and a specific lifting and upending tool engaging a longitudinal end of the monopile or mast.
Examples of upending and lifting tools are disclosed in DE202009006507U1, figures 9d and Se, in WO2020020821, VWO2014084738, and WO2016184905, and in WO2018139918, NL2024947 and in NL2025102 by the applicant. These upending and lifting tools are configured to be suspended from one or more hoisting cables, e.g. from a crane hook of a crane, and are in particular envisaged for upending and lifting of a monopile of an offshore wind turbine. The tools of WO2018139918, NL2024947 and NL2025102 may however also be applied for retaining, lifting and/or upending other objects, e.g. other piles, e.g. for fixing a jacket-type foundation to the seabed, for mooring, etc. or for upending other wind turbine components, e.g. like the mast, or a jacket-type foundation.
The current practice of using an in line passive heave compensator in combination with a lifting tool is however not satisfactory in multiple respects.
The use of an in line passive heave compensator between the hoisting point, e.g. a crown block of a crane, and a lifting tool, e.g. between a hoisting block and the tool, e.g. between a hook underneath the hoisting block and the tool, leads to the compensator occupying a certain part of the hoisting height. This disadvantageously reduces the effective hoisting range of the lifting device.
Furthermore, the use of a passive heave compensator between the hoisting block and a lifting tool, e.g. between a hook underneath the hoisting block and the tool, increases the height between the hoisting block and the tool, which may complicate the interconnection of the tool and the hoisting block, compromising both safety and required time of this interconnection. Furthermore, the stability and control of the load may be reduced, as a greater distance from the hoisting block may result in a larger amplitude of possible (pendulous) motions relative thereto, hampering an accurate positioning of the load.
-4- Furthermore, the use of an in line passive heave compensator may complicate or alter the characteristics of a pendulum motion of the load, as it may add pivots at the upper and lower fixation point thereof. This may reduce the stability and control of the load, hampering an accurate positioning of the load. A further drawback is the time consumption involved with connecting the compensator. It is an object of the invention to provide an alternative to an in line passive heave compensator used in combination with a lifting tool.
Itis an object of the invention to provide in line passive heave compensation while lessening the entailed reduction of effective hoisting range of the lifting device when using a lifting tool, in particular the hoisting height occupied underneath a hoisting block of a crane.
It is an object of the invention to provide in line passive heave compensation while lessening the entailed reduction of stability of the object and improves the control in positioning the object when using a lifting tool.
These objects are at least in part achieved by a lifting tool according to claim 1, and methods according to claims 14 and 15.
According to a first aspect thereof, the invention provides an offshore lifting tool for lifting an object. This object is for example a component of an offshore wind turbine, for example a monopile, a mast, a transition piece, or a jacket type component. The lifting tool is configured to be suspended from a lifting device on a floating vessel. According to common practice, this lifting device is for example a crane mounted on or integral with the vessel, the lifting tool therein being suspended from one or more hoisting cables of the crane. For instance, the lifting tool is configured to be suspended from a pair of hoisting cables suspended from a crane hook of the crane. This crane hook may be suspended underneath a hoisting block of the crane. When suspended, the tool can be lifted, e.g. hoisted, and lowered by the lifting device as is known in the art.
The lifting tool comprises an attachment member by means of which the tool is connectable to the lifting device such as to suspend the tool from the lifting device. For instance the attachment member is configured to suspend the tool from one or more, e.g. a pair, of hoisting cables, comprising for example one or more stationary guides or rotary sheaves through which the cables may be run, one or more eyelets, etc.
5.
The lifting tool further comprises a coupling part that is configured for coupling the object with the lifting tool. The coupling part may in a simple form be a crane hook, e.g. a Ramshorn hook. The coupling part may be an operable coupling part for coupling the object, for instance in the form of a gripper, for instance for gripping and retaining a component of an offshore wind turbine. In an embodiment the coupling part is embodied as the operable coupling part of the upending and lifting tool of NL2024947, and is pivotal around a horizontal pivot axis relative to the attachment member, so that the lifting tool is a lifting and upending tool for an offshore wind turbine component. In other embodiments wherein the lifting tool is a lifting and upending tool for an offshore wind turbine component, the coupling part is embodied as any of the coupling parts of other prior art upending and lifting tools, being pivotal around a horizontal pivot axis relative to the attachment member. In an embodiment the coupling part is a yoke, for instance for retaining a component of an offshore wind turbine, e.g. a rotor thereof, or parts of a rotor thereof, e.g. a blade or a generator.
The lifting tool further comprises an extensible structureand a passive heave compensator. The extensible structure interconnects the attachment member and the coupling part. The extensible structure comprises an upper part, connected to the attachment member and comprising an upper fixation point, and a lower part, connected to the coupling part and comprising a lower fixation point. The upper and lower part are movable relative to one another in a longitudinal direction to allow for longitudinal extension and shortening of the extensible structure. With this extension and shortening, a longitudinal distance between the fixation points is increased and decreased, respectively.
The passive heave compensator mounted between the lower fixation point and an upper fixation point of the extensible structure, such as to form an integral part of the tool. The passive heave compensator is configured to, upon upwards heave motion of the lifting device, enable extension of the extensible structure such that the longitudinal distance between the upper and lower fixation points increases. By this extension of the extensible structure, at least a part of the upwards heave motion of the lifting device is cancelled out for the coupling part of the lifting tool. The passive heave compensator is configured to upon downwards heave motion of the lifting device, enable shortening of the extensible structure such that the longitudinal distance between the upper and lower fixation point decreases, which cancels out at least a part of the downwards heave motion of the lifting device for the coupling part of the tool. Preferably, the passive heave compensator is configured to enable extension and shortening of the extensible structure to an extent which cancels out all of the upwards and downwards heave motion of the lifting device. As is known in the art, this configuration is
-B- achieved by establishing a suitable stiffness of the passive heave compensator, which determines the effective elasticity of the extension and shortening in response to the heave motions.
When coupled to an object, the extension and shortening of the extensible structure thus, advantageously, cancels out at least part of, preferably substantially all of, the downwards heave motion of the coupled object. Thereby, the heave motions of the lifting device are substantially not transferred to the object and the object can be vertically positioned by a lifting and lowering operation of the lifting device substantially without being influenced by heave motions.
The lifting tool according to the invention thus exhibits the functionality of in line passive heave compensation. Therefore, when using the lifting tool according to the invention in lifting an object on a floating vessel, the use of a separate in line passive heave compensator between the lifting tool and the hoisting point to provide in line heave compensation is obviated. By integrating an extensible structure in the lifting tool, the invention enables that the upper and lower fixation point of an in line passive heave compensator are fixed to associated upper and lower fixation points of the tool itself. Thereby it enables the compensator to be integrated in the tool, instead of being provided in line with the hoisting tool.
By the integration of the compensator in the tool as enabled by the extensible structure of the lifting tool, and thus obviating a separate compensator in line with the tool, any pivoting at the fixation points of a separate compensator in line with the tool is eliminated. As such, the lifting tool according to the invention may eliminate the reduction of stability of the object entailed by this pivoting, and improve control in positioning the coupled object. Similarly, the stability and control of the lifting tool not being coupled to the object may be improved, which may aid in positioning the lifting tool while coupling it to the object.
By the obviating a separate compensator and the associated fixation points in line with the tool, the accompanying reduction of effective hoisting range of the lifting device may advantageously be lessened. When provided underneath a hoisting block of a crane, the height of the hoisting block relative to the object to be lifted is reduced — which may facilitate the controlled positioning of the tool relative to the object during coupling.
Furthermore, obviating a separate compensator advantageously saves the time and effort involved with a separate connection thereof to the lifting device.
-7- In some lifting tools, a certain height is necessarily provided between the coupling part and the attachment member in order to enable the specific functionality of the tool.
For instance lifting and upending tools for elongate objects, e.g. wind turbine components, in which the coupling part is pivotal upwards relative to the attachment member around a horizontal pivot axis towards the attachment member, provide a certain height above the pivotal connection with the coupling part.
This height covers at least the vertical extension of the coupling part when pivoted upwards, in order to enable the coupling part to pivot underneath the attachment member, for example such that with the center of gravity always being located underneath the attachment member, the coupling part can be pivoted upwards by a right angle.
With such lifting tools, the extensible structure can be provided at least in part within the necessary height between the coupling part and the attachment member, so that the lifting range gained by the integration of the passive heave compensator in the tool relative to the provision of a separate compensator in line with the tool is advantageously increased by this part of the necessary height.
Thus the necessarily provided height of the tool is effectively used for providing heave compensation — in the case of lifting and upending tools, without compromising its other function of enabling the pivoting of the coupling part.
In embodiments of the lifting tool wherein the complete extensible structure can be covered by the necessarily provided height, which is the case in common lifting and upending tools, the lifting height gained by the integration of the passive heave compensation in the tool may be the whole height of the thereby obviated separate in line compensator.
In an embodiment, the lifting tool has an arm supporting the coupling part.
The extensibe structure is integrated in this arm.
The arm furthermore supports the attachment member.
The arm may be connected to or integral with the coupling part.
For example, the lifting tool comprises multiple arms with multiple extensible structures.
In a preferred embodiment the lifting tool has one single arm with the attachment member and the extensible structure along its longitudinal extension.
It is envisaged that the attachment member is provided at the upper side of the arm, the coupling part and/or the connection of the arm therewith, at the lower side, and the extensible structure between the attachment member and the coupling part and/or the connection therewith, along a longitudinal portion of the arm, e.g. extending substantially vertically.
In an embodiment the coupling part is pivotal around a horizontal pivot axis relative to the attachment member.
In an embodiment wherein the arm is present, the coupling part is connected to the arm such as to be pivotal around the horizontal pivot axis.
-8- In an embodiment the coupling part is pivotal around a horizontal pivot axis upwardly into a horizontal position and downwardly into a vertical position. In this embodiment, when the coupling part is pivoted upwards, the vertical extension of the coupling part in the horizontal position, covers at least a part of the height of the tool above the horizontal pivot axis. As discussed, a larger height above the pivot axis leads to a larger potential height gain by the integration of the compensator in the tool. The lifting tool may comprise one or more pivot actuators which are operable between and connected to the coupling part and the arm and configured to pivot the coupling part relative to the arm around the horizontal pivot axis between the horizontal position and the vertical position of the coupling part. This pivotability is provided in known lifting and upending tools, wherein the actuators are generally in the form of one or more hydraulic cylinders between the arm and the coupling part. In an embodiment the arm comprises an upper part and a lower part, respectively comprising a lower section and upper section, which sections are telescoping relative to one another to together form the extensible structure. The lower section of the upper part comprises the lower fixation point of the extensible structure and the upper section of the lower part comprises the upper fixation point of the extensible structure. The passive heave compensator comprises one or more hydraulic heave compensation cylinders, e.g. two hydraulic cylinders arranged at opposed lateral sides of the extensible structure, e.g. at opposed lateral sides of the arm, when present. Each hydraulic heave compensation cylinder has a piston and is connected to a gas buffer. The piston, for instance the free end thereof, is fixed to the extensible structure at the upper or lower fixation point thereof, and a wall of the cylinder, for instance a longitudinal center portion or end portion of the wall, is fixed to the extensible structure at the lower or upper fixation point of the extensible structure, respectively. It is also possible to fix the piston and the wall of the cylinder to respectively the upper and lower fixation point, however the first mentioned configuration corresponds to the convention for in line passive heave compensators. Fixing the cylinder(s) to the respective fixation points at more inwards locations thereof, e.g, halfway the cylinder(s) and/or halfway the piston(s), and/or providing the fixation points makes the cylinder extend longitudinally further outwards from the fixation points, so that the extensible structure may be made shorter with the same length of the compensator, which may in embodiments lead to a larger lifting range gain. A shorter extensible structure may also be achieved by providing more horizontally juxtaposed cylinders of shorter length.
In an embodiment, the lifting tool comprises the gas buffer. The gas buffer may for example be fixed to the extensible structure, for example to the lower or upper part of the arm, when
-9- present. In another embodiment the gas buffer is provided externally from the tool, for example on the lifting device or on the deck of the vessel to which the lifting device is mounted or which it is integral with. The gas buffer is therein e.g. connected to the cylinder(s) via an umbilical.
In an embodiment the coupling part, the extensible structure, e.g. the arm with the integrated extensible structure, and the passive heave compensator are integral parts of the tool, which are fixedly interconnected or integral with each other.
In an embodiment the lifting tool is a lifting tool for a component of an offshore wind turbine, for example an elongate component such as mast, a monopile, or a transition piece. Therein the coupling part of the tool comprises multiple mobile engaging members, adapted to in a coupling position thereof engage a longitudinal end of the wind turbine component such as to couple the elongate component with the tool.
In an embodiment, the engaging members comprise mobile friction clamp members and/or mobile latching members.
Mobile friction clamp members are adapted to in the coupling position frictionally engage an inner surface and/or outer surface of the longitudinal end and one or more clamping actuators that are at least adapted to move the friction clamp members from a retracted position into the coupling position. Mobile friction clamp members are known from e.g., WO2014084738, WO2018139918, NL2024947 and NL2025102.
Mobile latching members are adapted to in the coupling position latch onto the longitudinal end, e.g. underneath a radially inward flange thereof, when present, and one or mare latching actuators adapted to move the latching members from a retracted position into the coupling position. Mobile latching members are disclosed in WO2016184905, WO2018139918, WO2018139918 WO2020020821 discloses mobile engaging members which are combined latching and friction members. In WO2018139918 the coupling part comprises both friction clamp members and latching members - NL2025102 also discloses a tool combining both.
The coupling part may further comprise one or more guiding members. Guiding members are configured for guiding the tool into a position relative to the longitudinal end in which moving the latching and/or friction members to the coupling position couples the component to the
-10- tool, aiding in the relative positioning of the tool prior to coupling. To this end the guiding members engage the upper end while positioning the tool in the vicinity of the longitudinal end, such as to limit the movement of the tool in directions away from an inserted position of the tool in which the longitudinal end may be coupled to the tool by moving the engaging members to the coupling position. Such guiding members are known from W02020020821, wherein these guide the tool by their resiliency, and NL2024947, wherein these are actively operable. In an embodiment, the lifting tool is a lifting and upending tool for an elongate component of an offshore wind turbine, e.g. a mast, a monopile, or a transition piece. Therein the coupling part of the lifting and upending tool is pivotal into a horizontal position and a vertical position. The lifting and upending tool comprises one or more pivot actuators, for example one or more hydraulic cylinders, operable between and connected to the coupling part and the arm and configured to pivot the coupling part relative to the arm around the horizontal pivot axis between the horizontal position and vertical position of the coupling part. The coupling part of the lifting and upending tool is configured to, e.g. by the arrangement of the engaging members, in a horizontal position of the coupling part, engage the longitudinal end when the elongate component is in a horizontal orientation, such as to couple the elongate component with the hoisting tool. The coupling part is furthermore configured to retain the coupled elongate component during lifting of the longitudinal end by means of the lifting device thereby upending the elongate component from a horizontal orientation into a vertical orientation thereof, while allowing the coupling part to pivot from its horizontal position to its vertical position.
In an embodiment the lifting and upending tool comprises a locking mechanism, e.g. a controllable member for maintaining a position of the pivot actuators, e.g. a mechanical blocking element, or e.g. in the case the pivot actuators are hydraulic cylinders, valves of the cylinders controllable to close off the hydraulic fluid flow, configured to retain the coupling part in its horizontal position while positioning the coupling part relative to the longitudinal end and while moving the engaging members to the coupling position thereof. In an embodiment the arm of the lifting and upending tool comprises a longitudinal portion, which comprises the extensible structure, and one or more perpendicular or slanted portions.
The longitudinal portion and the perpendicular or slanted portions are arranged such that in the horizontal position of the coupling part, the longitudinal portion extends horizontally offset from the attachment member and the center of gravity of the lifting tool, e.g, completely
-11- horizontally offset from the coupling part, when the coupling part is in the horizontal position, such that — given that the center of gravity being located underneath the attachment member in any position of the coupling part relative to the arm - the coupling part can be pivoted upwards by a right angle. For example the arm has one single slanted portion extending above the longitudinal portion. For example the upper part of the arm, when present, comprises the slanted portion. The integration of the passive heave compensator in the lifting tool furthermore advantageously enables that the lifting tool may be connected directly to an upper tool connector of the lifting device, instead of to a lower fixation point of the obviated in line compensator. Thereto the lifting tool comprises a lower tool connector configured for releasable connection with the upper tool connector of the lifting device. The lifting tool being provided with such lower tool connector, makes it an exchangeable lifting tool, which may advantageously easily be interchanged with other tools to be suspended from the lifting device and comprising a corresponding lower tool connector. This may save time and effort in an offshore lifting operation, e.g. in an installation or maintenance operation for wind turbines. WO2018139931 and WO2020055249 disclose two types of such lower tool connectors, each being configured for connection to a specific upper tool connector of a lifting device: the lower tool connector of WO20181399831 is a female connector configured for connection with a male upper tool connector of the lifting device, and that of WO2020055249 is a male tool connector configured for connection with a female upper tool connector. VWO2018139931 and WO2020055249 disclose a range of lifting tools being provided with such lower tool connector, e.g. an upending and lifting tool for an elongate offshore component.
_WO2020055249 also discloses an female-to-male adapter configured to make tools provided with a female lower connector compatible with a female upper connector. The upper tool connector of WO2018139931 is suspended directly from hoisting cables. In WO2020055249 the upper tool connector is supported inside a hoisting block of the crane. In embodiments of the lifting device provided with the upper tool connector, in particular the lifting device of WO2020055249, the use of a hook underneath the hoisting block is obviated. Accordingly, the provision of a matching lower tool connector to the lifting tool according to the invention may further benefit the hoisting range when such lifting device is used.
In an embodiment of the lifting tool according to the invention, the lifting tool is an exchangeable lifting tool and the attachment member comprises a lower tool connector, configured for releasable connection with an upper tool connector of the lifting device. The
-12- lifting device may be a crane as discussed above, and the upper tool connector may therein be supported in or integral with a hoisting block of the crane accommodating the hoisting cables.
Preferably, the lifting tool is provided with the arm as discussed herein, and the lower tool connector forms the upper end of the arm. For example the lower tool connector is a male tool connector configured for releasable connection with a female upper tool connector. For example the male lower tool connector comprises a shank having a shoulder adapted to latch above multiple mobile tool retainers inside a central passage of the female upper tool connector upon insertion of the shank into said passage, as disclosed e.g. in WO2020055249. In an embodiment, the lifting tool is embodied as a female-to-male adapter, the attachment member comprising a male lower tool connector and the coupling part being embodied as a female upper tool connector. In another embodiment the lifting tool is embodied as a male-to- female adapter, the attachment member comprising a female lower tool connector and the coupling part being embodied as a male upper tool connector. In known applications, in-line heave compensation is also obtained with an additional active heave compensator, wherein the oscillations of the piston(s) relative to the cylinder(s) of the compensator are governed by a unit supplying pressurised fluid (gas or hydraulic liquid) in a controlled manner to one or more variable volume chambers within the compensator based upon one or more input signals obtained by one or more suitable sensors - for example a vertical vessel motion sensor, e.g. acceleration sensor, a (cable) force sensor, a compensator piston position sensor, and so on. The energy source for the active part of the compensator, e.g. a battery pack, is for instance provided directly on the compensator. Alternatively an energy source may be provided elsewhere on the vessel, e.g. on the upper deck, and connected to the compensator via an umbilical. The passive heave compensator according to the invention may have such an added active component to increase the performance.
As is known in the art, the capacity of the passive heave compensator of the lifting tool can increased as desired by increasing the amount of the hydraulic cylinders in parallel. The stroke of the compensator can be increased by increasing the amount of hydraulic cylinders in series. Additional accumulators can be added to further improve the operating performance for extreme conditions.
-13- The invention furthermore relates to a method for lifting an object on a floating vessel wherein use is made of the lifting tool as described herein. For example, the object is a component of an offshore wind turbine.
The invention furthermore relates to a method for lifting an object on a floating vessel, wherein use is made of the lifting tool as described herein and a lifting device, for example a crane mounted on or integral with the vessel. The method comprises the steps of: 1a) connecting the attachment member to the lifting device thereby suspending the lifting tool from the lifting device, e.g. from one or more hoisting cables of the crane, e.g. a pair of hoisting cables suspended from a crane hook of the crane, 2a) operating the coupling part thereby coupling the object to the lifting tool, and 3) lifting and/or lowering the object. During steps 2a) and 3), the method comprises extending and shortening the extensible structure by means of the passive heave compensator thereby respectively cancelling out at least a part of the upwards and downwards heave motion of the lifting device for the coupling part of the lifting tool, and thereby of the coupled object. In an embodiment, the method is devoid of any step of interconnecting the coupling part, the extensible structure, e.g. the arm, and the passive heave compensator of the lifting tool. In an embodiment the method further comprises, between steps 1a) and 2b}, the further step of: 1d) positioning the lifting tool relative to the object.
During step 1d), the method comprises extending and shortening the extensible structure by means of the passive heave compensator thereby respectively cancelling out at least a part of the upwards and downwards heave motion of the lifting device for the coupling part of the lifting tool.
In an embodiment, use is made of a lifting and upending tool for an elongate component as described herein, e.g. an elongate component of an offshore wind turbine. Therein the elongate component is initially in a horizontal orientation. In this embodiment the method comprises, prior to step 1d), the further step of: 1b) operating the pivot actuators of the tool thereby pivoting the coupling part into the horizontal position thereof.
-14- In this same embodiment, step 1d) involves positioning the coupling part relative to the longitudinal end of the elongate component into a position in which the engaging members can engage the longitudinal end, and step 2a) involves moving the engaging members to the coupling position thereof. Step 3) involves lifting the longitudinal end thereby upending the elongate component from its horizontal orientation to a vertical orientation thereof, while allowing the coupling part to pivot from its horizontal position to its vertical position. In an embodiment wherein the lifting and upending tool further comprises the locking mechanism as described herein, the method may comprise between steps 1b) and 1d), the further step of: 10) operating the locking mechanism, such as to retain the coupling part in its horizontal position during steps 1d) and 2a}, and comprise between steps 2a) and 3), the further step of: 2b) releasing the locking mechanism such as to allow said pivoting of the coupling part during step 3). In an embodiment wherein use is made of a lifting tool comprising the lower tool connector as described herein, step 1a) of the method involves connecting the lower tool connector to an upper tool connector of the lifting device, and the method further comprises, prior to step 1a), a use of another lifting tool with a corresponding lower tool connector, and a subsequent disconnection of the lower tool connector of the other lifting tool from the upper tool connector of the lifting device such as to disconnect the other tool from the lifting device. In an embodiment wherein use is made of a lifting tool comprising the lower tool connector as described herein, step 1a) of the method involves connecting the lower tool connector to an upper tool connecter of the lifting device, and the method further comprises, after step 3), a connection of a corresponding lower tool connector of another lifting tool to the upper tool connector of the lifting device such as to suspend the other tool from the lifting device, and a subsequent use of the other lifting tool.
The invention furthermore relates to an offshore lifting tool for lifting an object, for suspension from a lifting device on a floating vessel, comprising - a coupling part for coupling the object with the lifting tool, - an attachment member for connecting the tool to the lifting device, and - an extensible structure interconnecting the attachment member and the coupling part via upper and lower parts thereof that are mutually longitudinally movable to allow for longitudinal extension and shortening of the extensible structure,
-15- wherein a passive heave compensator interconnecting the upper and lower part forms an integral part of the tool and is configured to upon upwards and downwards heave motion of the lifting device enable respectively extension and shortening of the extensible structure thereby cancelling out the heave motion of the lifting device for the coupling part of the tool.
The above discussed embodiments may be applied to this lifting tool as well and are therefore not repeated here.
The invention will now be described in reference to the appended figures. Therein, figures 1a-b illustrate in two side views an embodiment of the lifting tool according to the invention along with a longitudinal end of an elongate offshore wind turbine component in respectively a shortened and extended position of the extensible structure, figure 1c illustrates in a side views the same embodiment along with the same longitudinal end in an extended position of the extensible structure, figure 2a illustrates in a side and front view the upper part of the arm of the same embodiment, figure 2b illustrates in a side and front view the lower part of the arm of the same embodiment, figure 2c illustrates in two side views a cylinder of the passive heave compensator of the same embodiment, figure 2d illustrates in a back view the gas buffer of the same embodiment, figures 3a-b illustrate the parts of figures 2a-c in the same views together in respectively the same shortened and extended position of the extensible structure as in figures 1a-b, figures 4a-b illustrate the same embodiment in a perspective view being suspended from a lifting device and coupled to the same elongate offshore wind turbine component in respectively the same shortened and extended position of the extensible structure, figures 5a-b illustrate the same embodiment in another perspective view being suspended from the lifting device and coupled to the same elongate offshore wind turbine component in respectively the same shortened and extended position of the extensible structure,
-16- figure 8a-b illustrate another embodiment according to the invention. In figures 1-5, an embodiment of an offshore lifting tool 1 according to the invention is illustrated. In figures 1-3, the lifting tool 1 is shown without being engaged to any object. In figures 4 and 5, the lifting tool 1 is shown while lifting an object 50, namely an elongate component 50 of an offshore wind turbine. The lifting tool 1 is configured to be suspended from a lifting device 100 on a floating vessel.
In figures 4-5, the lifting device is embodied as a crane 100, which is mounted on or integral with the vessel (not shown). The lifting tool 1 is suspended from a pair of hoisting cables 103 of the crane, which hoisting cables 103 are suspended from a crane hook 101 of the crane 100 underneath a hoisting block 104 of the crane 100.
The lifting tool 1 comprises a coupling part 2 that is configured for coupling the object 50 with the lifting tool 1. In this case the coupling part 2 is embodied as a specific gripper which is operable for engaging the elongate component 50 in order to couple the component 50 to the lifting tool 1. In figures 4-5, the lifting tool 1 is shown while engaging the elongate component 50 during lifting of the elongate component 50 by the crane 100.
The lifting tool 1 further comprises an attachment member 31, by means of which the lifting tool 1 is connectable to the crane 100 such as to suspend the lifting tool 1 from the crane 100. The lifting tool 1 comprises an extensible structure 32 which is extensible and shortenable between the attachment member 31 and the coupling part 2 in at least the vertical direction. In figures 1a, 1c, 2c (left part), 3a, 4a, and 5a, the extensible structure 32 is in a shortened position thereof. In figures 1b, 2c (right part), 3b, 4b, and 5b the extensible structure 32 is in an extended position thereof.
The lifting tool 1 further comprises a passive heave compensator 4 which is fixed to the extensible structure 32 at lower fixation points 33 and upper fixation points 34 of the extensible structure 32 such as to form an integral part of the lifting tool 1.
The compensator 4 is configured to, upon upwards heave motion of the crane 100, enable extension of the extensible structure 32 such that the longitudinal distance d, and therefore the height difference h, between the upper and lower fixation point 33,34 increases. Thus, the
-17- compensator 4 enables the extensible structure 32 to move from the shortened position shown in figures 1a, 1c, 2c (left part), 3a, 4a, and 5a to the extended position shown in figures 1b, 2c (right part), 3b, 4b, and 5b when the crane 100 moves upwards as in its heave motion. This makes the coupling part 2 of the lifting tool 1 move downwards relative to the crane 100 by the same amount as the crane 100 moves upwards. Thereby, the compensator 4 cancels out the upwards heave motion of the crane 100 for the coupling part 2 of the lifting tool 1. Upon downwards heave motion of the crane 100, the compensator 4 enables shortening of the extensible structure 32 such that the longitudinal distance d, and therefore the height difference h, between the upper fixation points 34 and lower fixation points 33 decreases. Thus, the compensator 4 enables the extensible structure 32 to move from the extended position shown in figures 1b, 2c (right part}, 3b, 4b, and 5b to the shortened position shown in figures 1a, 1c, 2c (left part), 3a, 4a, and 5a when the crane 100 moves downwards as in its heave motion. This makes the coupling part 2 of the lifting tool 1 move upwards relative to the crane 100 by the same amount as the crane 100 moves downwards. Thereby, the compensator 4 cancels out the downwards heave motion of the crane 100 for the coupling part 2 of the lifting tool 1.
The lifting tool 1 comprises an arm 3 supporting the coupling part 2 from the crane 100. The arm comprises the attachment member 31 and the extensible structure 32. The arm 3 forms part of a frame of the lifting tool 1.
The coupling part 2 is connected to the arm 3 of the lifting tool such as to be pivotal around the horizontal pivot axis 2a relative to the attachment member 31 of the arm 3.
The coupling part 2 is pivotal upwardly into a horizontal position, shown in figure 1c, and downwardly into a vertical position, shown in figures 1a-b in the same view, and in figures 3a- b, 4a-b, 5a-b in other views.
The lifting tool 1 comprises a pivot actuator which is operable between and connected to the coupling part 2 and the arm 3 and configured to pivot the coupling part 2 relative to the arm 3 around the horizontal pivot axis 2a between the horizontal position and the vertical position of the coupling part 2. This actuator is omitted in the figures for the sake of clarity. However it can easily be envisaged that the actuator may, as is known in the art, be embodied as a hydraulic cylinder. The piston and cylinder wall of the cylinder are therein connected to respectively the arm 3 and the coupling part 2 or vice versa.
-18- The arm 3 comprises an upper part 35 and a lower part 36, respectively comprising a lower section 351 and upper section 36u. These sections 351,36u are telescoping relative to one another to together form the extensible structure 32. The lower section 351 of the upper part 35 comprises the lower fixation points 33 of the extensible structure 32 and the upper section 36u of the lower part 36 comprises the upper fixation points 34 of the extensible structure 32. The passive heave compensator 4 as provided in the lifting tool 1 is in principle known in the art. The compensator comprises two hydraulic heave compensation cylinders 41 at opposed lateral sides of the arm 3. Each hydraulic heave compensation cylinder 41 has a piston 43 with a separator separating a gas chamber from a liquid chamber. The cylinder 41 is connected to a bank of pressurized gas reservoirs 45. The piston 43 is with its free end 44 thereof fixed to the extensible structure 32 at the lower fixation points 33 via a ring member
46. A wall 42 of the cylinder 41 is with a longitudinal center portion thereof fixed to the extensible structure 32 at the upper fixation point 34.
Heave motion of the crane 100 causes the piston 43 to oscillate within the cylinder 41 of the compensator 4. Hereby the distance between the hoisting point and the object 50 is lengthened and shortened, thus cancelling at least a part of the heave motion. The lifting tool 1 comprises the gas reservoirs 45. The bank of gas reservoirs 45 is fixed to the extensible structure 32, namely to the lower part 36 of the arm 3.
The coupling part 2, the extensible structure 32, e.g. the arm 3, and the passive heave compensator 4 are integral parts of the tool 1, which are fixedly interconnected.
Figures 2a-d illustrate the upper part 35, the lower part 36, the cylinder 41, and the gas buffer 45 separately. In figure 3a, these parts are shown as present in the hoisting tool 1, when the extensible structure is in the shortened position. The cylinder 41 is shown separately to the left of the figure, to illustrate that the cylinder 41 is extended in this position of the extensible structure 32. In figure 3a, the parts 35, 36, 41 and 45 are shown in the same manner, but this time when the extensible structure is in the extended position. The cylinder 41 is shortened in this position of the extensible structure 32.
The lifting tool 1 is a lifting and upending tool for an elongate component 50 of an offshore wind turbine, e.g. a mast, a monopile, or a transition piece. The coupling part 2 of the tool comprises multiple mobile engaging members 21 adapted to in a coupling position thereof, engage a longitudinal end 51 of the elongate wind turbine component 50 such as to couple the elongate component with the tool.
-19- The engaging members 21 comprise three mobile latching members 21 adapted to in the coupling position latch onto the longitudinal end 51, underneath a radially inward flange 53 thereof, and three latching actuators 22, in the form of cylinders, adapted to move the latching members 21 from a retracted position into the coupling position. In figures 1a-c, the latching members 21 are in the retracted position, so that the lifting tool 1 has a radial contour that fits within the inner circumference of the flange 53, so that the tool 1 is movable into and out of the longitudinal end 51. In the figures the lifting tool 1 is shown being inserted into the longitudinal end 51, in a position relative to the flange 53 in which extension of the cylinders 22 moves the latching members 21 to the coupling position, in which these latch underneath the flange 53.
The engaging members 21 further comprise two actively operable guiding members 23, not visible in figures 1a-b but shown most clearly in figures 4a-b and 5a-b. The guiding members 23 are embodied as in NL2024947, and are configured for guiding the tool 1 into the position relative to the longitudinal end 51 shown in figures 1a-c, in which moving the latching members 21 to the coupling position couples the component 50 to the tool 1, thus aiding in the relative positioning of the tool 1 prior to coupling.
As shown in figure 1c, by the arrangement of the latching members 21, the coupling part 2 is configured to in a horizontal position of the coupling part 2, engage the longitudinal end 51 when the elongate component 50 is in a horizontal orientation, such as to couple the elongate component 50 with the lifting tool 1.
The coupling part 2 is configured to retain the coupled elongate component 50 during lifting of the longitudinal end 51 by means of the crane 100 thereby upending the elongate component 50 from the horizontal orientation of figure 1c into a vertical orientation thereof, shown in figures 1a-b, 4a-b, and 5a-b, while allowing the coupling part 2 to pivot from its horizontal position to its vertical position.
The lifting tool 1 comprises a locking mechanism, formed by valves of the cylinder forming the pivot actuator (not shown). The valves are controllable to close off the hydraulic fluid flow. Thereby the locking mechanism is configured to retain the coupling part 2 in its horizontal position while positioning the coupling part 2 relative to the longitudinal end 51 and while moving the latching members 21 to the coupling position thereof.
-20- The arm 3 comprises a longitudinal portion 37, which comprises the extensible structure 32. The upper part 35 of the arm 3 has a slanted portion 38 extending above the longitudinal portion 37. The longitudinal portion 37 and the slanted portion 38 are arranged such, that in the horizontal position of the coupling part 2, the longitudinal portion 37 extends substantially vertically and horizontally offset from the attachment member 31 and the center of gravity of the lifting tool 1 when the coupling part 2 is in the horizontal position. In particular, the longitudinal portion extends completely horizontally offset from the coupling part 2. With the center of gravity being located centrally within the coupling part, the result is that the coupling part 2 can be pivoted upwards from the vertical position of figures 1a-b into the horizontal position of figure 1c by a substantially a right angle, i.e. 90 degrees. This is visible from a comparison between figures 1a-b and 1c.
In other embodiments, the lifting tool is an exchangeable lifting tool. An example of such an exchangeable lifting tool is shown in figure 6a, wherein parts of the embodiment of figures 1-5 are visible as well. Therein, the coupling part 2 of the tool is embodied here as a Ramshorn hook, but it may in other embodiments also be another tool such as a gripper or a yoke. The attachment member 31 comprises a lower tool connector 5. This lower tool connector 5 is configured for releasable connection with an upper tool connector 105 of the crane 100. Here, the tool connectors 5,105 are embodied as in WO2020055249, and the upper tool connector 105 is alike in WO2020055249 supported in the hoisting block 104 of the crane 100 accommodating the hoisting cables 103 as shown in figure 6b.
The lower tool connector 5 forms the upper end of the arm 3 of the hook. The lower tool connector 5 is a male tool connector and the upper tool connector a female tool connector.
The male lower tool connector 5 comprises a hollow shank having a shoulder adapted to latch above multiple mobile tool retainers inside a central passage of the female upper tool connector upon insertion of the shank into said passage. This is illustrated for this embodiment in figure 6b, and disclosed in more detail in WO2020055249.
In this embodiment the passage of the female upper tool connector 105 enables the lower part 36 of the arm 3 to extend and shorten inside the passage in order to maximize the hoisting height. In this embodiment, the gas buffer 45 is not fixed to the extensible structure 32, but present on the crane 100 and to be connected inside the hollow shank to the cylinder 41 via an umbilical. Other embodiments are envisaged wherein the extensible structure is below the passage of the upper tool connector 105, e.g. wherein the gas buffer 45 is fixed to the extensible structure 32.

Claims (19)

-21- CONCLUSIES-21- CONCLUSIONS 1. Offshore hefwerktuig (1) voor het heffen van een object (50), bijv. een component van een offshore windturbine, welk hefwerktuig (1) is ingericht om te worden gehangen aan een hefinrichting (100) op een drijvend schip dat onderhevig is aan door golven geïnduceerde bewegingen, bijv. aan een kraan (100) van het vaartuig, bijv. aan één of meer hijskabels (103) van de kraan, bijv. een paar hijskabels (103) die aan een kraanhaak (101) van de kraan hangen, bijv. een kraanhaak (101) onder een hijsblok (104) van de kraan, waarbij het hefwerktuig (1) omvat: - een koppeldeel (2) dat is ingericht, bijv. tewerk te stellen, om het object aan het hefwerktuig te koppelen, - een bevestigingselement (31) middels welke het werktuig verbindbaar is met de hefinrichting (100) om zo het werktuig aan de hefinrichting (100) te hangen, waarbij het werktuig een verlengbare constructie (32) heeft welke het bevestigingselement (31) en het koppeldeel (2) met elkaar verbindt, waarbij de verlengbare constructie (32) omvat: - een bovenste deel (35) dat met het bevestigingselement (31) is verbonden en een bovenste fixatiepunt (33) omvat, en - een onderste deel (36) dat met het koppeldeel (2) is verbonden en een onderste fixatiepunt (34) omvat, waarbij het bovenste en onderste deel (35, 36) ten opzichte van elkaar beweegbaar zijn in een longitudinale richting om longitudinale verlenging en verkorting van de verlengbare constructie mogelijk te maken en een longitudinale afstand (d) tussen de fixatiepunten (33, 34) respectievelijk te vergroten en te verkleinen, waarbij het hefwerktuig (1) verder een passieve deiningscompensator (4) omvat welke is bevestigd tussen de bovenste en onderste fixatiepunten (33, 34) van de verlengbare constructie om een integraal deel van het werktuig te vormen, waarbij de passieve deiningscompensator (4) is ingericht om: - bij opwaartse deiningsbeweging van de hefinrichting, verlenging van de verlengbare constructie mogelijk te maken zodanig dat de longitudinale afstand (d) tussen het bovenste en onderste fixatiepunt (33, 34) vergroot, waarmee het ten minste een deel van, bij voorkeur volledig, een opwaartse deiningsbeweging van de hefinrichting opheft voor het koppeldeel van het werktuig, en om - bij neerwaartse deiningsbeweging van de hefinrichting, verkorting van de verlengbare constructie mogelijk te maken zodanig dat de longitudinale afstand (d) tussen hetAn offshore lifting device (1) for lifting an object (50), e.g. a component of an offshore wind turbine, the lifting device (1) adapted to be suspended from a lifting device (100) on a floating vessel subject to to wave-induced movements, e.g. on a crane (100) of the vessel, e.g. on one or more lifting ropes (103) of the crane, e.g. a pair of lifting ropes (103) attached to a crane hook (101) of the crane hanging, e.g. a crane hook (101) under a hoisting block (104) of the crane, the lifting device (1) comprising: - a coupling part (2) arranged, e.g. to be employed, to attach the object to the lifting device coupling, - a fastening element (31) by means of which the tool is connectable to the lifting device (100) so as to suspend the tool from the lifting device (100), the tool having an extendable construction (32) which comprises the fixing element (31) and connects the coupling part (2) with each other, whereby the extendable construction ( 32) comprises: - an upper part (35) connected to the fastening element (31) and comprising an upper fixation point (33), and - a lower part (36) connected to the coupling part (2) and a lower fixation point (34), wherein the upper and lower parts (35, 36) are movable relative to each other in a longitudinal direction to allow longitudinal elongation and shortening of the extensible structure and a longitudinal distance (d) between the fixation points (33 , 34) respectively, wherein the lifting tool (1) further comprises a passive heave compensator (4) mounted between the upper and lower fixation points (33, 34) of the extendable structure to form an integral part of the tool. shapes, wherein the passive heave compensator (4) is adapted to: - in case of upward heaving movement of the lifting device, allow extension of the extendable construction such that the longitudinal distance (d) between the upper and lower fixation points (33, 34), thereby canceling at least a part, preferably completely, of an upward heave movement of the lifting device for the coupling part of the implement, and to - upon downward heave movement of the lifting device, to allow shortening of the extendable structure such that the longitudinal distance (d) between the 22. bovenste en onderste fixatiepunt (33, 34) verkleint, waarmee het ten minste een deel van, bij voorkeur volledig, een opwaartse deiningsbeweging van de hefinrichting opheft voor het koppeldeel van het werktuig.22. lowers the upper and lower fixation points (33, 34), thereby canceling at least a part, preferably completely, of an upward heaving movement of the lifting device for the coupling part of the tool. 2. Offshore hefwerktuig volgens conclusie 1, waarbij het hefwerktuig een arm (3) heeft waar de verlengbare constructie (32) in is geïntegreerd, waarbij de arm het koppeldeel (2) en het bevestigingselement (31) ondersteunt.Offshore lifting equipment according to claim 1, wherein the lifting tool has an arm (3) into which the extensible construction (32) is integrated, the arm supporting the coupling part (2) and the fastening element (31). 3. Offshore hefwerktuig (1) volgens conclusie 1 of 2, waarbij het koppeldeel (2) om een horizontale scharnieras (2a) scharnierbaar is ten opzichte van het bevestigingselement (31), bijv. verbonden met de arm (3) van het hefwerktuig om zo scharnierbaar te zijn om de horizontale scharnieras (2a), bijv. waarbij het koppeldeel (2) opwaarts scharnierbaar is naar een horizontale positie en neerwaarts scharnierbaar naar een verticale positie, bijv. waarbij het werktuig één of meer scharnieraandrijvingen omvat welke werkzaam zijn tussen en verbonden met het koppeldeel en de arm (3) en ingericht om het koppeldeel ten opzichte van de arm om de horizontale scharnieras {2a) te scharnieren tussen de horizontale positie en de verticale positie van het koppeldeel.Offshore lifting device (1) according to claim 1 or 2, wherein the coupling part (2) is pivotable about a horizontal pivot axis (2a) with respect to the fastening element (31), e.g. connected to the arm (3) of the lifting device about so as to be pivotable about the horizontal pivot axis (2a), e.g. wherein the coupling member (2) is pivotable upwardly to a horizontal position and downwardly pivotable to a vertical position, e.g. wherein the tool comprises one or more pivot drives operating between and connected to the coupling part and the arm (3) and arranged to pivot the coupling part with respect to the arm about the horizontal pivot axis {2a) between the horizontal position and the vertical position of the coupling part. 4. Offshore hefwerktuig (1) volgens één van de voorgaande conclusies, waarbij het bovenste deel (35) en het onderste deel (36) respectievelijk een onderste sectie (351) en een bovenste sectie (36u) omvat, welke secties (351, 36u) onderling telescoperen om samen de verlengbare constructie (32) te vormen, waarbij de onderste sectie (351) van het bovenste deel (35) het onderste fixatiepunt (33) van de verlengbare constructie omvat en de bovenste sectie (35u) van het onderste deel (36) het bovenste fixatiepunt (34) van de verlengbare constructie omvat.Offshore lifting equipment (1) according to any one of the preceding claims, wherein the upper part (35) and the lower part (36) comprise a lower section (351) and an upper section (36u), respectively, said sections (351, 36u) telescope together to form the extendable structure (32), the lower section (351) of the upper part (35) comprising the lower fixation point (33) of the extendable structure and the upper section (35u) of the lower part (36) comprises the top fixation point (34) of the extendable structure. 5. Offshore hefwerktuig (1) volgens één van de conclusies 1-4, waarbij de passieve deiningscompensator (4) één of meer hydraulische deiningscompensatiecilinders (41) omvat, bijv. twee hydraulische cilinders {41) welke aan tegenovergelegen laterale zijden van de verlengbare constructie (32) zijn opgesteld, bijv. van de arm (3), waarbij elke hydraulische deiningscompensatiecilinder een zuiger (43) heeft en is verbonden met een gasbuffer (45), waarbij de zuiger (43), bijv. het vrije uiteinde (44) daarvan, op één van de fixatiepunten (33, 34) aan de verlengbare constructie (32) is vastgezet, en waarbij een wand (42) van de cilinder, bijv. een longitudinaal middengedeelte of eindgedeelte van de wand, op de andere van de fixatiepunten (33, 34) aan de verlengbare constructie is vastgezet.Offshore lifting equipment (1) according to any one of claims 1-4, wherein the passive swell compensator (4) comprises one or more hydraulic swell compensation cylinders (41), e.g. two hydraulic cylinders {41) mounted on opposite lateral sides of the extendable structure (32) are arranged, e.g. of the arm (3), each hydraulic swell compensation cylinder having a piston (43) and being connected to a gas buffer (45), the piston (43), e.g. the free end (44) thereof, being secured to the extendable structure (32) at one of the fixation points (33, 34), and a wall (42) of the cylinder, e.g. a longitudinal center or end portion of the wall, being fixed to the other of the fixation points (33, 34) is secured to the extendable structure. -23.-23. 6. Offshore hefwerktuig (1) volgens conclusie 5, waarbij het werktuig de gasbuffer (45) omvat, waarbij de gasbuffer bij voorkeur aan de verlengbare constructie (32) is vastgezet.An offshore lifting tool (1) according to claim 5, wherein the tool comprises the gas buffer (45), the gas buffer preferably being secured to the extendable structure (32). 7. Offshore hefwerktuig (1) volgens één van de voorgaande conclusies, waarbij het koppeldeel (2), de verlengbare constructie (32), bijv. de arm (3) met de geïntegreerde verlengbare constructie, en de passieve deiningscompensator (4) integrale delen van het werktuig zijn, welke met elkaar vast verbonden of integraal zijn.Offshore lifting equipment (1) according to any one of the preceding claims, wherein the coupling part (2), the extendable structure (32), e.g. the arm (3) with the integrated extendable structure, and the passive heave compensator (4) are integral parts of the tool, which are rigidly connected or integral. 8. Offshore hefwerktuig (1) volgens één van de voorgaande conclusies, waarbij het hefwerktuig een hefwerktuig is voor een langwerpige component van een offshore windturbine, bijv. een mast, een monopile of een transitiestuk, waarbij het koppeldeel (2) van het werktuig meerdere beweegbare aangrijpelementen (21) heeft die zijn aangepast om in een koppelpositie daarvan een longitudinaal uiteinde (51) van de langwerpige windturbinecomponent (50) aan te grijpen om de langwerpige component met het werktuig te koppelen, bijv. waarbij de aangrijpelementen (21) omvatten: - beweegbare wrijvingsklemonderdelen, bijv. wigvormig, aangepast om in de koppelpositie een binnenoppervlak (51) en/of buitenoppervlak (510) van het longitudinale uiteinde (51) middels wrijving aan te grijpen één of meer klemaandrijvingen die ten minste zijn aangepast om de wrijvingsklemonderdelen van een teruggetrokken positie naar de koppelpositie te bewegen, en/of - beweegbare haakonderdelen (21) aangepast om in de koppelpositie aan het longitudinale uiteinde te haken, bijv. onder een radiaal inwaartse flens (53) daarvan, indien aanwezig, en één of meer haakaandrijvingen (22) die zijn aangepast om de haakonderdelen (21) van een teruggetrokken positie naar de koppelpositie te bewegen.An offshore lifting tool (1) according to any one of the preceding claims, wherein the lifting tool is a lifting tool for an elongate component of an offshore wind turbine, e.g. a mast, a monopile or a transition piece, wherein the coupling part (2) of the tool has several has movable engaging elements (21) adapted to engage in a coupling position thereof a longitudinal end (51) of the elongate wind turbine component (50) for coupling the elongate component to the tool, e.g. wherein the engaging elements (21) comprise: - movable friction clamp members, e.g. wedge-shaped, adapted to frictionally engage, in the coupling position, an inner surface (51) and/or outer surface (510) of the longitudinal end (51) one or more clamping drives adapted at least to engage the friction clamp members of move from a retracted position to the docking position, and/or - movable hook parts (21) adapted to be in the docking position to hook onto the longitudinal end, eg below a radially inward flange (53) thereof, if present, and one or more hook drives (22) adapted to move the hook members (21) from a retracted position to the engaging position. 9. Offshore hefinrichting (1) volgens conclusies 2, 3 en 8 en optioneel één of meer van conclusies 4 - 6, waarbij het hefwerktuig een hef- en rechtopkantelwerktuig is voor een langwerpige component (50) van een offshore windturbine, bijv. een mast, een monopile, of een transitiestuk, waarbij het koppeldeel (2) van het hef- en rechtopkantelwerktuig scharnierbaar is naar een horizontale positie en een verticale positie, waarbij het werktuig één of meer scharnieraandrijvingen omvat, bijv. één of meer hydraulische cilinders, welke werkzaam zijn tussen, en verbonden zijn met, het koppeldeel en de arm (3) en ingericht om het koppeldeelAn offshore lifting device (1) according to claims 2, 3 and 8 and optionally one or more of claims 4-6, wherein the lifting device is a lifting and upright tilting tool for an elongate component (50) of an offshore wind turbine, e.g. a mast , a monopile, or a transition piece, wherein the coupling part (2) of the lifting and upright tilting tool is pivotable to a horizontal position and a vertical position, the tool comprising one or more articulated drives, e.g. one or more hydraulic cylinders, operable are between, and connected to, the coupling part and the arm (3) and arranged to connect the coupling part - 24. ten opzichte van de arm om de horizontale scharnieras (2a) tussen de horizontale positie en de verticale positie te scharnieren, waarbij het koppeldeel is ingericht om, bijv. door de opstelling van de aangrijpelementen (21): - in de horizontale positie van het koppeldeel, het longitudinale uiteinde (51) aan te grijpen wanneer de langwerpige component zich in een horizontale oriéntatie bevindt, om zo de langwerpige component met het hefwerktuig te koppelen, en - de langwerpige component vast te houden tijdens heffen van het longitudinale uiteinde middels de hefinrichting (100) en daarmee rechtop kantelen van de langwerpige component van de horizontale oriéntatie naar een verticale oriéntatie daarvan, terwijl het voor het koppeldeel mogelijk maakt om van de horizontale positie daarvan naar de verticale positie daarvan te scharnieren.- 24. with respect to the arm for pivoting the horizontal pivot axis (2a) between the horizontal position and the vertical position, the coupling part being adapted to, e.g. through the arrangement of the engaging elements (21): - in the horizontal position of the coupling part, to engage the longitudinal end (51) when the elongate component is in a horizontal orientation, so as to couple the elongate component to the lifting device, and - retain the elongate component during lifting of the longitudinal end by means of the lifting device (100) and thereby tilting the elongate component upright from its horizontal orientation to a vertical orientation thereof, while allowing the coupling member to pivot from its horizontal position to its vertical position. 10. Hefwerktuig (1) volgens conclusie 9, waarbij het hefwerktuig een vergrendelmechanisme omvat, dat is ingericht om het koppeldeel in de horizontale positie daarvan te houden tijdens positioneren van het koppeldeel ten opzichte van het longitudinale uiteinde en tijdens bewegen van de aangrijpelementen (21) naar de koppelpositie daarvan, waarbij het vergrendelmechanisme bijv. is belichaamd als een aanstuurbaar element voor het handhaven van een positie van de scharnieraandrijvingen, bijv. een mechanisch blokkeerelement, of bijv. in het geval dat de scharnieraandrijvingen hydraulische cilinders zijn, kleppen van de cilinders aanstuurbaar om de hydraulische fluidumstroming af te sluiten.A lifting device (1) according to claim 9, wherein the lifting device comprises a locking mechanism arranged to keep the coupling part in its horizontal position during positioning of the coupling part with respect to the longitudinal end and during movement of the engaging elements (21) to the coupling position thereof, wherein the locking mechanism is e.g. embodied as a controllable element for maintaining a position of the articulation drives, e.g. a mechanical blocking element, or e.g. in case the articulation drives are hydraulic cylinders, valves of the cylinders can be actuated to shut off hydraulic fluid flow. 11. Hefwerktuig (1) volgens conclusie 9 of 10, waarbij de arm (3) een longitudinaal gedeelte (37) omvat, welk de verlengbare constructie (32) omvat, en één of meer haakse of schuine gedeelten (38), waarbij het longitudinale gedeelte (37) en de haakse of schuine gedeelten zodanig zijn opgesteld dat in de horizontale positie van het koppeldeel (2), het longitudinale gedeelte zich in hoofdzaak verticaal uitstrekt, en horizontaal verschoven van het bevestigingselement (31) en het zwaartepunt van het hefwerktuig, bijv. volledig horizontaal verschoven van het koppeldeel, zodanig dat opwaarts scharnieren vanuit het koppeldeel van de verticale positie over een rechte hoek het koppeldeel naar de horizontale positie beweegt, bijv. waarbij de arm, bijv. het bovenste deel (35) daarvan, indien aanwezig, één enkel schuin gedeelte heeft dat zich boven het longitudinale gedeelte uitstrekt. A lifting device (1) according to claim 9 or 10, wherein the arm (3) comprises a longitudinal portion (37) comprising the extendable structure (32), and one or more angular or oblique portions (38), the longitudinal portion (37) and the angled or oblique portions are arranged such that in the horizontal position of the coupling portion (2), the longitudinal portion extends substantially vertically, and is horizontally offset from the fixing element (31) and the center of gravity of the lifting gear, e.g. fully horizontally offset from the coupling member such that pivoting upwardly from the coupling member from the vertical position through a right angle moves the coupling member to the horizontal position, e.g. with the arm, e.g. the upper part (35) thereof, if present , has a single oblique portion extending above the longitudinal portion. 12 Hefwerktuig (1) volgens één van de conclusies 1-8, waarbij het koppeldeel (2) van het hefwerktuig is belichaamd als één van: - een haak, bijv. dubbele lasthaak of een viertandige haak,A lifting device (1) according to any one of claims 1-8, wherein the coupling part (2) of the lifting device is embodied as one of: - a hook, e.g. double load hook or a four-toothed hook, - 25.- 25. - een grijper, bijv. voor het grijpen en vasthouden van een component van een offshore windturbine, - een draagjuk, bijv. voor het vasthouden van een component van een offshore windturbine, bijv. een rotor daarvan, of delen van een rotor daarvan, bijv. een blad of een generator.- a gripper, e.g. for gripping and holding a component of an offshore wind turbine, - a support yoke, e.g. for holding a component of an offshore wind turbine, e.g. a rotor thereof, or parts of a rotor thereof, e.g. a blade or a generator. 13. Hefwerktuig (1) volgens één van conclusies 1-12, waarbij het hefwerktuig een uitwisselbaar hefwerktuig is en het bevestigingselement een onderste werktuigconnector (5) heeft, ingericht voor losmaakbare verbinding met een bovenste werktuigconnector (105) van de hefinrichting (100), bijv. waarbij de hefinrichting een kraan is en de bovenste werktuigconnector (105) wordt ondersteund in of integraal met een hijsblok (104) van de kraan welke de hijskabels (103) accommodeert, waarbij, bij voorkeur, het hefwerktuig volgens claim 2 is en de onderste werktuigconnector (5) het bovenste uiteinde van de arm (3) vormt, bijv. waarbij de onderste werktuigconnector (5) een mannelijke werktuigconnector (5) is en de bovenste werktuigconnector een vrouwelijke werktuigconnector is, bijv. waarbij de mannelijke werktuigconnector een schacht omvat die een schouder heeft die is aangepast om boven meerdere werktuigvasthouders binnenin een centrale doorgang van de vrouwelijke werktuigconnector te haken bij inbrengen van de schacht in de doorgang.A lifting tool (1) according to any one of claims 1-12, wherein the lifting tool is an interchangeable lifting tool and the fastening element has a lower tool connector (5) adapted for releasable connection to an upper tool connector (105) of the lifting device (100), e.g. wherein the lifting device is a crane and the upper tool connector (105) is supported in or integrally with a lifting block (104) of the crane which accommodates the lifting ropes (103) wherein, preferably, the lifting tool according to claim 2 is lower tool connector (5) forms the upper end of the arm (3), e.g. wherein the lower tool connector (5) is a male tool connector (5) and the upper tool connector is a female tool connector, e.g. wherein the male tool connector comprises a shaft having a shoulder adapted to hook above a plurality of tool holders within a central passageway of the female tool connector at insertion of the shaft into the passageway. 14. Werkwijze voor het heffen van een object (50) op een drijvend vaartuig, bijv. een component van een offshore windturbine, waarbij gebruik wordt gemaakt van het hefwerktuig (1) volgens één of meer van de conclusies 1-13.A method for lifting an object (50) on a floating vessel, e.g. a component of an offshore wind turbine, using the lifting tool (1) according to one or more of claims 1-13. 15. Werkwijze voor het heffen van het object (50) op een drijvend vaartuig dat onderhevig is aan deiningsbewegingen, waarbij gebruik wordt gemaakt van het hefwerktuig (1) volgens één of meer van conclusies 1-13 en een hefwerktuig (100), bijv. een kraan (100) bevestigd op of integraal met het vaartuig, omvattende de stappen van: 1a) het verbinden van het bevestigingselement (31) van het werktuig (1) aan de hefinrichting (100) en daarmee het aan de hefinrichting (100) hangen van het hefwerktuig, bijv. aan één of meer hijskabels (103) van de kraan, bijv. een paar hijskabels die aan een kraanhaak (101) van de kraan hangen, 2a) het tewerkstellen van het koppeldeel (2) en daarmee het koppelen van het object (50) aan het hefwerktuig, en 3) het heffen en/of neerlaten van het object (50) door het tewerkstellen van de hefinrichting,A method of lifting the object (50) on a floating vessel subject to swell movements, using the lifting tool (1) according to one or more of claims 1-13 and a lifting tool (100), e.g. a crane (100) mounted on or integral with the vessel, comprising the steps of: 1a) connecting the attachment element (31) of the implement (1) to the lifting device (100) and thereby suspending it from the lifting device (100) of the lifting gear, e.g. to one or more hoisting ropes (103) of the crane, e.g. a pair of hoisting ropes hanging from a crane hook (101) of the crane, 2a) engaging the coupling part (2) and thereby coupling the object (50) on the lifting device, and 3) raising and/or lowering the object (50) by operating the lifting device, - 26 - waarbij gedurende stappen 2a) en 3), de werkwijze verlengen en verkorten van de verlengbare constructie (32) omvat middels de passieve deiningscompensator (4) en daarmee het opheffen van ten minste een deel van een respectievelijk opwaartse en neerwaartse deiningsbeweging van de hefinrichting voor het koppeldeel van het hefwerktuig, en daarmee van het gekoppelde object (50).- 26 - wherein during steps 2a) and 3), the method comprises lengthening and shortening the extensible structure (32) by means of the passive heave compensator (4) and thereby canceling at least a part of an upward and downward heave movement, respectively, of the lifting device for the coupling part of the lifting device, and therewith of the coupled object (50). 16. Werkwijze volgens conclusie 14 of 15, waarbij de werkwijze enige stap van onderling verbinden van het koppeldeel (2), de verlengbare constructie (32), bijv. middels verbinden van de arm (3), en de passieve deiningscompensator (4) van het hefwerktuig (1) ontbeert.A method according to claim 14 or 15, wherein the method comprises some step of interconnecting the coupling part (2), the extendable structure (32), e.g. by connecting the arm (3), and the passive heave compensator (4) of the lifting gear (1) is missing. 17. Werkwijze volgens conclusie 15 en optioneel conclusie 16, verder omvattende, tussen stappen 1a) en 2b), de verdere stap van: 1d) het positioneren van het hefwerktuig (1) ten opzichte van het object (50), waarbij gedurende stap 1d), de werkwijze verlengen en verkorten van de verlengbare constructie (32) omvat middels de passieve deiningscompensator (4) en daarmee het opheffen van een respectievelijk opwaartse en neerwaartse deiningsbeweging van de hefinrichting voor het koppeldeel van het hefwerktuig.A method according to claim 15 and optionally claim 16, further comprising, between steps 1a) and 2b), the further step of: 1d) positioning the lifting tool (1) relative to the object (50), wherein during step 1d ), the method of lengthening and shortening the extendable structure (32) comprises by means of the passive heave compensator (4) and thereby canceling an upward and downward heave movement, respectively, of the lifting device for the coupling part of the lifting device. 18. Werkwijze volgens conclusie 17, waarbij gebruik wordt gemaakt van een hefinrichting (1) volgens conclusie 9 en optioneel één of meer van conclusies 10-11, en het object (50) de langwerpige component van een offshore windturbine omvat, waarbij de langwerpige component zich initieel in een horizontale oriëntatie bevindt, waarbij de werkwijze, voorafgaand aan stap 1d), de verdere stap omvat van: 1b) het tewerkstellen van de scharnieraandrijvingen en daarmee het scharnieren van het koppeldeel (2) van het werktuig naar de horizontale positie daarvan, waarbij bij stap 1d) positioneren van het koppeldeel (2) ten opzichte van het longitudinale uiteinde (51) van de langwerpige component naar een positie waarin de aangrijpelementen (21) in staat zijn om het longitudinale uiteinde aan te grijpen betrokken is, en bij stap 2a) bewegen van de aangrijpelementen (21) naar de koppelpositie daarvan betrokken is, waarbij bij stap 3) heffen van het longitudinale uiteinde betrokken is en daarmee rechtop kantelen van de langwerpige component van de horizontale oriëntatie daarvan naar een verticale oriëntatie daarvan, en gelijktijdig, scharnieren van het koppeldeel van het werktuig van de horizontale positie naar de verticale positie daarvan mogelijk maken.A method according to claim 17, wherein use is made of a lifting device (1) according to claim 9 and optionally one or more of claims 10-11, and the object (50) comprises the elongate component of an offshore wind turbine, the elongate component is initially in a horizontal orientation, the method, prior to step 1d), comprising the further step of: 1b) operating the pivot drives and thereby pivoting the coupling part (2) of the tool to its horizontal position, wherein in step 1d) positioning the coupling member (2) with respect to the longitudinal end (51) of the elongate component to a position in which the engagement members (21) are capable of engaging the longitudinal end is involved, and in step 2a) involving moving the engaging elements (21) to their engagement position, step 3) involving lifting the longitudinal end and straight therewith p tilting the elongate component from its horizontal orientation to a vertical orientation, and simultaneously permitting pivoting of the coupling portion of the tool from its horizontal position to its vertical position. 27 -27 - 19. Werkwijze volgens conclusie 18, waarbij de werkwijze tussen stappen 1b) en 1d) de verdere stap omvat van: 1c) het tewerkstellen van het vergrendelmechanisme, zodanig om het koppeldeel (2) in de horizontale positie daarvan vast te houden gedurende stappen 1d) en 2a), en waarbij de werkwijze tussen stappen 2a) en 3) de verdere stap omvat van: 2b) het losmaken van het vergrendelmechanisme om zo het scharnieren van het koppeldeel gedurende stap 3) mogelijk te maken.A method according to claim 18, wherein the method between steps 1b) and 1d) comprises the further step of: 1c) operating the locking mechanism so as to retain the coupling member (2) in its horizontal position during steps 1d) and 2a), and wherein the method between steps 2a) and 3) comprises the further step of: 2b) releasing the locking mechanism so as to allow pivoting of the coupling member during step 3).
NL2026484A 2020-09-16 2020-09-16 Offshore lifting tool and method NL2026484B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2026484A NL2026484B1 (en) 2020-09-16 2020-09-16 Offshore lifting tool and method
PCT/EP2021/075353 WO2022058364A1 (en) 2020-09-16 2021-09-15 Offshore lifting tool and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2026484A NL2026484B1 (en) 2020-09-16 2020-09-16 Offshore lifting tool and method

Publications (1)

Publication Number Publication Date
NL2026484B1 true NL2026484B1 (en) 2022-05-16

Family

ID=74095984

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026484A NL2026484B1 (en) 2020-09-16 2020-09-16 Offshore lifting tool and method

Country Status (2)

Country Link
NL (1) NL2026484B1 (en)
WO (1) WO2022058364A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714995A (en) 1970-09-04 1973-02-06 Vetco Offshore Ind Inc Motion compensating apparatus
JPS5241348A (en) * 1975-09-27 1977-03-30 Yasuyuki Takagi Balancing apparatus
WO2005038188A2 (en) 2003-10-08 2005-04-28 National Oilwell, Inc. Inline compensator for a floating drilling rig
DE202009006507U1 (en) 2009-04-30 2009-08-06 Bard Engineering Gmbh A guide frame for vertically guiding at least one foundation pile when constructing a foundation of an offshore wind turbine and stacking, erecting and lowering device for erecting a foundation of an offshore wind turbine
US7934561B2 (en) 2007-04-10 2011-05-03 Intermoor, Inc. Depth compensated subsea passive heave compensator
WO2014084738A1 (en) 2012-11-29 2014-06-05 Ihc Norex B.V. Pile upending device
WO2016184905A1 (en) 2015-05-19 2016-11-24 Ihc Holland Ie B.V. Flange lifting tool
US9718652B2 (en) 2013-02-07 2017-08-01 Technip France Passive heave compensator
WO2018139918A1 (en) 2017-01-25 2018-08-02 Itrec B.V. A method and tool for installation of an offshore wind turbine
WO2018139931A1 (en) 2017-01-30 2018-08-02 Ihc Holland Ie B.V. System for use with a crane on a surface vessel
US10308327B1 (en) * 2018-07-10 2019-06-04 GeoSea N.V. Device and method for lifting an object from a deck of a vessel subject to movements
WO2020020821A1 (en) 2018-07-26 2020-01-30 DEME Offshore Holding N.V. Coupling tool for connection to an outer end of a tubular element for upending the element
WO2020055249A1 (en) 2018-09-12 2020-03-19 Itrec B.V. System of a crane and an exchangeable tool
EP3653561A1 (en) * 2018-11-13 2020-05-20 NHLO Holding B.V. (heave) balancing device, hoisting system, method for hoisting and kit of parts for spring balancing a hoisting system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714995A (en) 1970-09-04 1973-02-06 Vetco Offshore Ind Inc Motion compensating apparatus
JPS5241348A (en) * 1975-09-27 1977-03-30 Yasuyuki Takagi Balancing apparatus
WO2005038188A2 (en) 2003-10-08 2005-04-28 National Oilwell, Inc. Inline compensator for a floating drilling rig
US7934561B2 (en) 2007-04-10 2011-05-03 Intermoor, Inc. Depth compensated subsea passive heave compensator
DE202009006507U1 (en) 2009-04-30 2009-08-06 Bard Engineering Gmbh A guide frame for vertically guiding at least one foundation pile when constructing a foundation of an offshore wind turbine and stacking, erecting and lowering device for erecting a foundation of an offshore wind turbine
WO2014084738A1 (en) 2012-11-29 2014-06-05 Ihc Norex B.V. Pile upending device
US9718652B2 (en) 2013-02-07 2017-08-01 Technip France Passive heave compensator
WO2016184905A1 (en) 2015-05-19 2016-11-24 Ihc Holland Ie B.V. Flange lifting tool
WO2018139918A1 (en) 2017-01-25 2018-08-02 Itrec B.V. A method and tool for installation of an offshore wind turbine
WO2018139931A1 (en) 2017-01-30 2018-08-02 Ihc Holland Ie B.V. System for use with a crane on a surface vessel
US10308327B1 (en) * 2018-07-10 2019-06-04 GeoSea N.V. Device and method for lifting an object from a deck of a vessel subject to movements
WO2020020821A1 (en) 2018-07-26 2020-01-30 DEME Offshore Holding N.V. Coupling tool for connection to an outer end of a tubular element for upending the element
WO2020055249A1 (en) 2018-09-12 2020-03-19 Itrec B.V. System of a crane and an exchangeable tool
EP3653561A1 (en) * 2018-11-13 2020-05-20 NHLO Holding B.V. (heave) balancing device, hoisting system, method for hoisting and kit of parts for spring balancing a hoisting system

Also Published As

Publication number Publication date
WO2022058364A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
EP1922280B1 (en) Tie-back system for cranes, in particular heavy load offshore cranes
US10161380B2 (en) Device and method for placing components of a structure
EP2855329B1 (en) Handling loads in offshore environments
US20130220960A1 (en) Heave Compensated Crane
CN103030074A (en) Hinge points-variable combined type multi-functional crawler crane
JP2002510003A (en) Riser tension structure
CN115697885A (en) Ocean folding arm type crane
JP2002540329A (en) Method of mounting a plurality of risers or tendons and a ship performing the method
EP2194017A1 (en) An offshore crane
NL2026484B1 (en) Offshore lifting tool and method
CN112829880A (en) Mining vehicle distribution and recovery system suitable for deep sea mining
EP2865631B1 (en) Lifting jig and method
EP2932017B1 (en) Device for connection and disconnection of an active heave compensator
CN117337265A (en) Marine crane vessel and method for operating the same
US12006189B2 (en) Heave compensated dual hoist crane
CN113120172A (en) Retracting device for underwater equipment
WO1989007068A1 (en) Marine launch and recovery arrangement
CN114206766A (en) Lifting crane for use on an offshore vessel and method of operation
CN216889822U (en) Offshore cargo ship pile winding crane with high stability
CN220298698U (en) Ship rescue boat retraction system
CN218931547U (en) Counterweight adjusting device and hoisting equipment
CN117087818B (en) A-shaped frame submersible vehicle cloth-laying, recycling and swing-reducing device and working method thereof
NL2031680B1 (en) Hoisting device for a wind turbine, and method for installing a hoisting device on a wind turbine
CN218560946U (en) Hoisting equipment
WO2024052129A1 (en) Crane system for installation of a wind turbine rotor blade