NL2015938A - Mechanically assisted ventilation and heat recovery system. - Google Patents

Mechanically assisted ventilation and heat recovery system. Download PDF

Info

Publication number
NL2015938A
NL2015938A NL2015938A NL2015938A NL2015938A NL 2015938 A NL2015938 A NL 2015938A NL 2015938 A NL2015938 A NL 2015938A NL 2015938 A NL2015938 A NL 2015938A NL 2015938 A NL2015938 A NL 2015938A
Authority
NL
Netherlands
Prior art keywords
tubular structure
heat exchanger
air
ventilation
flow
Prior art date
Application number
NL2015938A
Other languages
Dutch (nl)
Other versions
NL2015938B1 (en
Inventor
Fijn Jaap
Original Assignee
Mmid Products B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mmid Products B V filed Critical Mmid Products B V
Priority to NL2015938A priority Critical patent/NL2015938B1/en
Publication of NL2015938A publication Critical patent/NL2015938A/en
Application granted granted Critical
Publication of NL2015938B1 publication Critical patent/NL2015938B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0218Flexible soft ducts, e.g. ducts made of permeable textiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics

Abstract

The invention relates to a tubular structure (14) for use in ventilation systems, which has a mesh-like wall with structural elements having bridge sections (17,17’,17’’) that upon bending of the tubular structure mutually a but at the inner side (19) of the bend to result in a substantially constant diameter of the tubular structure (14). The invention also relates to a ventilation system comprising a heat exchanger, input and output fans at a distance from the heat exchanger and at least two air valves for directing a flow of ventilated air along the heat exchanger or bypassing ventilated air around the heat exchanger. The invention furthermore relates to a ventilation channel for use in such a system comprising a rectangular plate-shaped enclosure around a duct and a foam filling material.

Description

Mechanically assisted ventilation and heat recovery system Field of the invention
The invention relates to a tubular structure, in particular for use in a mechanically assisted ventilation system. The invention also relates to a ventilation system comprising an inlet fan, an exhaust fan and a heat exchanger and to an air valve for use in such a ventilation system. The invention furthermore relates to a ventilation channel.
Background of the invention
From GB 2513093, a mechanical ventilation and heat recovery unit is known comprising a housing with a heat exchanger with a fresh air inlet and a fresh air outlet, a spent air inlet and a spent air outlet and two fans for circulating cold fresh air from outside a building along the heat exchanger into an inner space. Moist hot air is removed from the inner space, along the heat exchanger to cool it down and is exhausted into the outside air. In this manner spaces can be ventilated with pre-heated fresh air from outside, while recovering the heat when exhausting spent air from the ventilated space. The known ventilation system comprises a bypass valve for diverting air around the heat exchanger. Generally the bypass valve is fitted to the outgoing air and is used during the summer months. The fresh air is brought in through the heat exchanger, but, as the exhausted stale air is not passed through the heat exchanger, the outgoing air dose not heat the incoming air, and cool fresh air is delivered into the building.
The known ventilation/heat exchanger units are usually placed in a utilities room in the loft of a building, under the roof. From the utilities room, fresh air needs to be distributed through ventilation ducts to different areas of the building, and spent air needs to be removed. When using tubular ventilation ducts, many curves need to be provided to bridge the distance between the room that is ventilated and the heat exchanger unit. Known ventilation ducts may be formed of metal tubes or coiled wire tubes, having bendable sections which can be deformed to be adapted to a curved trajectory. Providing bends in the know tubular structures will result in a change in diameter at the bend sections, resulting in increased resistance to air flow and increased air speeds with according increase in noise levels.
Furthermore, the known mechanically assisted heat recovery system is not optimally laid out to selectively operate with or without the heat exchanger under a wide variety of environmental conditions such as seasonal variations, changes in weather or day and night variations. The known system has a layout in which the inlet and the outlet fans, the heat exchanger and filter elements are placed in a single housing, and are closely spaced together in a compact integral construction such that operation of the different components is designed to accommodate their mutual proximity and a compromise is obtained that differs from the best attainable operation of each component when in an isolated position.
Finally, it is difficult to retrofit existing buildings with a ventilation system and providing tubular ducts between the heat exchanger unit in the utilities room and other places in the building where conditioned ventilated air is required. Placing the ducts inside the walls is difficult and running the ducts along the inner walls often results in a visually unattractive effect.
It is an object of the invention to provide a tubular structure that can be easily installed in existing and in newly constructed buildings and can be formed into a ventilation system by placing it in a curved or bend configuration without significant changes in diameter.
It is a further object of the invention to provide a ventilation system in which the fans and the heat exchanger can be easily selectively adapted to different environmental conditions, such as daytime or night-time, to changes in weather and to different environmental conditions.
It is again an object of the present invention to provide a ventilation channel that can be easily cut to size and be easily installed while providing an optically attractive construction.
Summary of the invention
Hereto a tubular structure according to the invention is provided, having a length direction and comprising a wall formed of a mesh of interconnected deformable structural elements, the tubular structure being bendable in a transverse direction to form a bend having an outer side where the wall is extended and an inner side where the wall is compressed, each element comprising opposed bridge sections extending in the length direction, wherein upon bending of the tubular structure, bridge sections that are situated at substantially the same circumferential position at the inner side of the bend mutually abut.
By use of the mesh like wall material according to the invention, the tubular structure can be bent while preventing a decrease in diameter at the position of the bend. During bending, the structural elements of the tubular structure are deformed to be stretched at the outside of the bend and to be compressed at the inside of the bend. During compression, which occurs in bends of at most 900, the bridge sections of adjacent structural elements at the same cirucumferential position come to abut while the narrow section of the element lying in between these bridge sections is decreased in size, preventing further compression and preventing further decrease in size of the diameter of the tubular structure. By the abutting bridge sections, a decrease in diameter of the deformed tubular structure is controlled. During bending, the size of the structural elements can increase. Preferably the diameter during bending remains constant, such that the tubular structure forms a bend flow channel that maintains a substantial uniform diameter and undesired pressure drops and variations in flow speed of the air in the tubular structure are prevented. A cross sectional surface of the tubular structure according to the invention at the position of the bend is not smaller than the cross sectional surface of the tubular structure at positions away from the bend. Bending of the tubular structure according to the invention may result in an increase in diameter. Preferably, the structural elements are sized and shaped in such a manner that after bending, the diameter of the tubular structure remains substantially unaltered.
In an embodiment of a tubular structure according to the invention, the structural elements extend in rows oriented in a circumferential direction, each row formed of two adjacent wave-shaped strips having peaks and troughs, the peaks of one of the strips being opposed to troughs of the adjacent strip and being each time connected to an opposed through via a longitudinal bridge section, a structural element being formed each time by two circumferentially opposed bridge sections interconnected by two opposed side sections, each side section having two side section parts that each extend from an end part of a respective bridge section towards a narrow mid section of the element, wherein, seen in the length direction, the bridge sections of adjacent rows of structural elements are offset in the circumferential direction by half the size of a structural element, for three adjacent rows the bridge elements of the outer rows and the narrow midsection of the middle row extending in the length direction at substantially the same circumferential position.
The mesh like pattern according to the invention may be cut or stamped in sheet material or may be laser-cut. The sheet material may be made of paper, a plastics or metal or may comprise a laminate of two or more of these materials or a fiber reinforced material. A flexible impermeable material may be arranged adjacent the mesh to provide a bendable fluid tight enclosure.
For providing easy interconnectability, an embodiment of a tubular structure according to the invention comprises end flanges for interconnecting multiple tubular structures or for connecting it to a distributor box or manifold. A ventilation system according to the invention comprises an air intake fan with a fan outlet, an exhaust fan with a fan inlet, a heat exchanger having a fresh air inlet and a fresh air outlet, a spent air inlet and a spent air outlet, the fresh air inlet being connectable to the intake fan and the spent air inlet being connectable to the exhaust fan, characterized in that a two air valves are provided, each valve having two flow positions, in a first flow position the valves connecting the air intake fan outlet to the fresh air inlet and the fresh air outlet to a first inner ventilation duct and connecting a second inner ventilation duct to the spent air inlet and the spent air outlet to the exhaust fan inlet, in a second flow position the valves connecting the inlet fan output and the outlet fan input to a respective inner ventilation duct and interconnecting or disconnecting the spent air inlet, spent air outlet, fresh air inlet and fresh air outlet so that the heat exchanger is bypassed.
In the ventilation system of the present invention, the ingoing air or the outgoing air, or both air streams may be selectively bypassed around the heat exchanger. By simply adjusting the valves, which adjustment may be carried out manually or automatically, the ventilation system can be adapted to be best suited to the prevailing environmental conditions, such as hot or cold weather, daytime or night-time conditions, or sunny or rainy conditions.
An embodiment of a ventilation system according to the invention comprises an inner space enclosed by constructional elements and an outer space at an outward side of the constructional elements, wherein the heat exchanger is situated within the inner space and the inlet and outlet fans are connected to a respective opening in the constructional elements at a mutual distance of at least 1 m and are spaced from the heat exchanger by a distance of at least 1 m.
By separating the heat exchanger from the inlet and outlet fans, an optimal balance can be obtained in which the fans are situated in different positions in the wall or in other constructional elements such as roof elements, enclosing the ventilated space, while the heat exchanger is designed in capacity to provide the required heating or cooling power in any other suitable location of the enclosed space. The separate heat exchanger can be placed inside the ventilated structure and needs not be positioned close to the outer walls. Furthermore, the use of separate heat exchanger and fans can result in a layout of ventilation ducts in which bends are avoided as much as possible, so that the air resistance is at a minimum. Finally, also the filter units of the ventilation system according to the invention having separate fans and heat exchanger, can be placed at the desired position inside the ventilated space where they are easily accessible.
In a further embodiment of a ventilation system according to the invention, the valves each have at least two flow channels, wherein in the first flow position of the valves the first and second flow channels of the valves interconnect the fresh air outlet and spent air outlet to the inner space, while in the second flow position the first flow channels connect the inlet fan and the exhaust fan to the inner space while the second flow channels interconnect or disconnect the inlets and outlets of the heat exchanger.
The valves according to the invention can either connect the inner ventilation ducts to the intake fan and exhaust fan via the heat exchanger, or directly intemconnect the inner ventilation ducts and exhaust fans while placing the heat exchanger in a bypass position.
Preferably respective filter units are placed upstream from the exhaust fan and downstream from the intake fan. The filter units may be placed in such a position as to be easily accessible for cleaning or exchange of filter elements.
The heat exchanger for use in a ventilation system according to the invention comprises a housing without a fan, the housing having a hot air inlet and a hot air outlet and a cool air inlet and a cool air outlet and two air valves each having two flow positions, the valves in a first flow position forming respective flow paths form the cold air inlet to the hot air outlet and from the hot air inlet to the cold air outlet and in the second flow position block the hot and cold air inlets and outlets of the heat exchanger and provide a flow path section through the space around the heat exchanger.
In this way a heat exchanger is provided that can be installed at different positions in a building to cooperate with an air intake fan and an exhaust fan which are spaced in different location in the building. A valve for use in a ventilation system according to the invention has a housing with four apertures spaced at angular positions (such as for instance 90 degree positions) and a rotary body inside the housing defining two channels having a bend, the channels in a first flow position of the rotary body interconnecting a first and second aperture and a third and fourth aperture, and in second flow position, in which the rotary body is rotated, interconnect the second and third and fourth and first apertures. A further embodiment of the invention comprises a rectangular ventilation channel with a cylindrical duct, a plate material in the form of a cuboid or beam like shape around said duct and a foam material in the space between the cylindrical duct and the plate material.
Such a duct can be easily fitted along the inside walls of a building, for instance along an upper part, without resulting in unattractive visual effects. After mounting, the plate material can be plastered or colored in the same color as the wall without having to apply a separate finish to the duct. In this way the duct can be rapidly installed while having a visually attractive impression. By the combination of outer plate material and inner foam material surrounding the duct, the ventilation channel can be manufactured off site and can be cut or sawn to the desired size in a reliable and reproducible manner.
In one embodiment the plate material comprises gypsum. A second duct of smaller diameter may be incorporated in the foam material to extend parallel to the first duct for the accommodating electric or other utility cables or ducts such as for gas or water.
Brief description of the drawings
Some embodiments of a tubular structure, a ventilation system and a ventilation duct according to the invention will by way of non-limiting example, be explained in detail with reference to the accompanying drawings. In the drawings:
Fig. 1 shows a schematic view of a house comprising a ventilation system having bendable ventilation ducts according to the invention,
Fig. 2 shows a detail on an enlarged scale of a bent end section of a tubular ventilation duct according the invention,
Fig. 3 shows a tubular structure formed from a mesh according to the invention,
Fig. 4 shows an enlarged detail of the stretched outside bend section of the structure of fig. 3,
Fig. 5 shows an enlarged detail of the compressed inside bend section of the structure of fig. 3,
Fig. 6 shows a plan view of a mesh for forming the tubular structure according to figs. 3-5,
Fig. 7 shows an enlarged view of a structural element in a tubular structure according to the invention,
Fig. 8 shows a plan view of an alternative mesh layout for forming a tubular structure according to the invention,
Fig. 9. Shows a schematic layout of a ventilation system according to the invention comprising inlet and outlet fans, a heat exchanger and a valve in a heat exchange position,
Fig. 10 shows a schematic layout of the ventilation system of fig. 9 with the valves in a bypass position,
Fig. 11 shows a ventilation system according to the invention with an alternative arrangement of the valves,
Figs. 12a and 12b show the valves in two different positions having an opposite flow direction,
Figs.13a and 13b show a schematic view of a ventilation system according to the invention comprising a heat exchanger and two valves in a heat exchange position and in a bypass position respectively, filter units being placed downstream from the air intake fan and upstream of the exhaust fan,
Figs. 14a and 14b show schematic views of a valve according to the invention in two different flow positions,
Fig. 15 shows a schematic perspective view of a first embodiment of a ventilation duct according to the invention,
Fig. 16 shows a schematic perspective view of a second embodiment of a ventilation duct according to the invention, comprising along its length a number of air flow openings, and
Fig. 17 shows a schematic perspective view of a room provided at its upper part with an inflow and an outflow ventilation duct according to the invention providing along the height of the space a high volume, low speed airflow across the room.
Detailed description of the invention
Fig. 1 shows a house 1 comprising in its roof an inlet duct 2 connected to an air intake fan 4 for taking in air and passing it along a heat exchanger 3 to ventilation ducts 5. Spent air is removed via ventilation duct 7 by exhaust fan 6 via outlet duct 8. As can be seen in fig. 2, the ventilation ducts 5,7 can be placed inside a vertical casing 11 or a horizontal casing 12 in a newly build construction, or can be placed in casings that are retrofitted onto the inside walls of existing housing. As can be seen, the ventilation duct 7 has a bend part 13 where it connects to the casing 11. The casing 11 can be provided with regularly spaced apertures along its length so that it acts as an air distributor.
Fig. 3 shows a tubular structure 14 according to the invention, made up of interconnected structural elements 15. The tubular structure 14 has a length direction L and a circumferential direction C. The structural elements making up the tubular structure 14 are such that deformation in the length direction L leads to an increase in diameter of the tubular structure 14, as illustrated in fig. 6. Bending of the tubular structure 14 results in bridge sections 16, 16’ at the outer side 18 of the bend being separated while at the inner side 19, compression of the structural elements due to bending results in abutting of the bridge sections 17, 17’, 17” such that further deformation by compression at this position is counteracted. In this manner, a substantially constant cross-section of the tubular structure 14 can be maintained upon bending.
In fig. 3, end flanges 19,20 are provided on the tubular structure 14 for interconnection of multiple tubular structures to obtain a duct of predetermined length or to provide a connection to a distributor such as shown in fig. 2. The flanges 19, 20 also provide rigidity to the tubular structure 14 so that it can be more easily handled.
In fig. 6 it can be seen that the wall pattern of the tubular structure 14 is formed of rows 21, 22,23 of structural elements 25,26,27, which rows extend in the circumferential direction C. Each row 21-23 is formed of two adjacent wave-shaped strips 29, 30 having peaks 31,31’ and opposed troughs 32,32’. Horizontal bridge sections 33, 33’ and 34,34’ each time interconnect a peak 31,31 and an opposite trough 32,32’.
The structural elements 25,26,27,35, as can be seen in the enlarged detail of fig 7, are each time formed by two opposed bridge sections 36, 37 and two side sections 38,39. Each side section 38,39 has side section parts 40,41 extending from a bridge section connection point 42, 43 to a narrow mid section 44, resulting in an hourglass like shape. The adjacent rows 46, 47 of structural elements are offset in the circumferential direction C by half the size L of a structural element, so that the bridge sections 37,37’ of every second row lie at the same circumferential position, and alternate with the narrow mid-sections 44 of adjacent rows.
When the tubular structure is deformed by exerting a pulling force in the length direction L, as can be seen in fig. 6, the structural elements 25,26,27,35 are elongated in the circumferential direction C and widened in the length direction L, such that the diameter D1 of the tubular structure after stretching is increased compared to the undeformed diameter DO. Upon bending of the tubular structure 14, the structural elements are deformed to increase in size at the outside of the bend and to be compressed at the inside of the bend, in such a way that the diameter D1 after bending remains substantially of the same size as the undeformed diameter DO.
Fig. 8 shows an alternative configuration of the structural elements, which are made up from wave-like strips 56,57,58,59 of material which strips at opposed pairs of peaks and troughs are interconnected by bridge sections 53,54, forming hour-glass shaped structural elements. The rows 50,51,52 of structural elements are arranged such that the bridge sections 53,54 of outer rows 50,52 are situated at the same circumferential position as the narrow midsection 55 of the middle row 51.
The tubular structure 14 according to the invention may be formed from sheet material by mechanical cutting, laser cutting stamping and the like. The sheet material may comprise metal, plastics or paper and combinations thereof. Preferably an impermeable flexible sheet material is combined with the tubular structure to form an airtight tubular structure.
In Fig. 9 a ventilation system according to the invention is shown comprising an air intake fan 60, an exhaust fan 61, two air valves 62,63 and a heat exchanger 64. The valves 62, 63 each have two channels 65,66 and 67,68 that can be selectively connected to a fresh air inlet 69, a spent air inlet 70, a fresh air outlet 71 and a spent air outlet 72 of the heat exchanger 64. The valve 63 is connected to outlet ventilation ducts 73,74 and to inlet ventilation duct 75. The outlet ventilation duct 73 supplies spent warm air from an inner space 79 in a building to the valve 63. The outlet ventilation duct 74 is connected to the exhaust fan 61, which is in fluid communication with an outer environment 80 via a duct 81 in a wall or in a roof construction 82. The valve 62 is connected to an inlet ventilation duct 83 and is connected to outlet ventilation ducts 84 and 85. The inlet ventilation duct 83 is connected to the intake fan 60, which draws in fresh air from the outer environment 80 via a duct 86. The outlet duct 85 supplies fresh air to the inside environment 79 and the outlet duct 84 is connected to the outlet ventilation duct 74.
The fans 60,61, the air valves 62, 63 and the heat exchanger 64 are controlled by a central control unit 87. The control lines are schematically indicated by dashed lines, but may be formed by a wireless connection (Wi-Fi, Bluetooth, Zigby). The control unit 87 may set the fan speed and the flow direction of the fans 60,61, set the flow position of the valves 62,63 and set the cooling or heating power of the heat exchanger 64.
The fans 60,61 may be attached to the same wall or constructional element 82, but may also be situated in different parts of a building and may be connected to the outer environment via different constructional parts of the building. The distance between the fans 60,61 is at least 1 m and they are situated at distanced positions from the heat exchanger 64 such as at a distance of 1 m or more.
In the heat exchange position shown in fig. 9, the first channel 66 of the first air valve 62 connects the inlet ventilation duct 83 with the fresh air inlet 69 of the heat exchanger 64. The second channel 65 of the air valve 62 connects the spent air outlet duct 72 to the outlet channel 84. The second air valve 63 is in its first flow position wherein the first channel 67 interconnects the fresh air outlet 71 with the inlet ventilation duct 75.
The second channel 68 of the second air valve 63 interconnects the spent air inlet 70 and the ventilation outlet duct 73. In this way, cool fresh air from the outside environment 80 is passed along the heat exchanger 64 and is heated by heat exchange with the warm spent air coming form the inner environment 79 through the duct 73 so that pre-heated fresh air is supplied to inlet duct 75 and is passed to the inside environment 79.
In Fig. 10, the air valves 62,63 bypass the heat exchanger 64 and fresh air from the outside environment 80 is passed along channel 66 of the valve 62 to ventilation outlet duct 85 and from there on directly into the inside environment 79. Spent air is passed from inside environment 79 via outlet ventilation duct 73 trough first channel 67 of the second valve 63 into outlet duct 74 and is expelled to the outside environment 80 by the exhaust fan 61.
In the embodiment of fig. 11 an alternative configuration of the valves 62,63 and the heat exchanger 64 is shown. In this embodiment, the valves 62 and 63 are in a heat exchange position such that fresh air taken in from the outside environment 80 and spent air taken in from the inside environment 79 is passed along the heat exchanger 64.
In the positions of the valves 62,63 in fig. 11 in which the channels are indicated by the dashed lines, the heat exchanger 64 is bypassed and the ventilation outlet duct 73 is directly connected to the ventilation inlet duct 83 via the first valve 62. Reversal of the flow direction of the intake fan 60 will remove spent air from the inside environment 79 to the outside environment 80 via ducts 73 and 83. The second air valve 63 directly connects air inlet duct 75 with air outlet duct 74. Reversal of the flow direction of the exhaust fan 61, via the control unit 87, results in direct intake of fresh air from the outside environment 80 to the inside environment 79.
Figs. 12a and 12b show an embodiment in which an air valve 90 is used to switch the flow direction of the fan 93. In fig. 12a the airflow is directed to come from an inside environment of a ventilated space 94 and to pass to the outside environment 95. In fig. 12b the valve 90 is moved to the second flow position such that, for the same air displacement direction of the fan 93, fresh air is taken in from the outside environment 95 and is displaced to inside environment 94.
Fig. 13a shows an embodiment of a ventilation system corresponding to the system of fig. 9, wherein a filter unit 98 is placed downstream from the intake fan 60. Upstream of valve 63 a filter unit 99 is placed. The filter units 98, 99 are situated at a position at a distance from the heat exchanger 64 of 1 m or more in a position that can be easily accessed for cleaning or replacement of the filter elements.
Fig. 13b shows an embodiment of a ventilation system in which the heat exchanger 64 is bypassed and the air intake fan 60 directly supplies filtered air into the inside space via air supply duct 75 and the exhaust fan 61 removes spent air from the inside space via filter unit 101. The heat exchanger 64 is bypassed by fresh air inlet 69 and outlet 71 being interconnected via the valve 62, while spent air inlet and outlet 70, 72 are interconnected via the valve 63.
Fig. 14a shows an embodiment of an air valve 100 in a first flow position. The valve 100 has a housing 101 with four apertures 102,103,104 and 105 each connected to an air duct. A central rotary body 106 defines two curved channels 107, 108 that can be placed at different angular positions inside the housing 101. In fig. 14, the rotary body 106 interconnects apertures 103 and 104 and apertures 102 and 105. In fig. 14b, the rotary body 106 is rotated such that apertures 102 and 103 and apertures 104 and 105 are in mutual fluid connection.
Fig. 15 shows an embodiment of a rectangular ventilation channel 110 comprising a rectangular outer casing 111, for instance made of gypsum board material, in which a cylindrical ventilation duct 112 is placed. The ventilation duct 112 is preferably formed by a tubular structure as described in figs. 3-7. The space between the outside of the duct 112 and the casing 111 is filled with a foam material 113, such as for instance Polyurethane foam. A second duct 114 may be incorporated in the ventilation channel 110 to extend parallel to the ventilation duct 112 for accommodating electrical power cables or data cables, water ducts or other utility ducts or cables.
In the embodiment shown in fig. 16, a number of air outlets or inlets 115,116,117 are provided, extending along the length of the ventilation channel 110. Mounting two ventilations channels 111, 111’ along opposed upper wall positions of a room 120, and flowing air from the outlets 115-117 of the ventilation channel 111 to the inlets 115’, 116’, 117’ of the channel 111’ results in a controlled and regular air flow of large volumes of air at low speeds across the height of the room for obtaining good ventilation results and providing an agreeable ventilated atmosphere in the room.

Claims (20)

1. Buisvormige structuur (14) met een lengterichting L en omvattende een wand gevormd van een netwerk van onderling verbonden vervormbare structurele elementen (25,26,27,35), waarbij de buisvormige structuur buigbaar is in een dwarsrichting om een bocht te vormen met een buitenzijde (18) waarbij de wand verlengd is en een binnenzijde (19) waar de wand is samengedrukt, waarbij elk element tegenover elkaar gelegen brugsecties (36,37) omvat die zich in de lengterichting L uitstrekken, waarbij bij buiging van de buisvormige structuur, brugsecties (37,37') die op hoofdzaak dezelfde omtrekspositie C liggen elkaar aan de binnenzijde van de bocht raken.A tubular structure (14) with a longitudinal direction L and comprising a wall formed from a network of interconnected deformable structural elements (25, 26, 27, 35), the tubular structure being flexible in a transverse direction to form a bend with an outside (18) where the wall is extended and an inside (19) where the wall is compressed, wherein each element comprises opposed bridge sections (36, 37) extending in the longitudinal direction L, wherein when the tubular structure is bent bridge sections (37, 37 ') which are substantially the same circumferential position C touch each other on the inside of the bend. 2. Buisvormige structuur (14) volgens conclusie 1, waarbij het dwarsdoorsnedeoppervlak van de buisvormige structuur op de positie van de bocht niet kleiner is dan 85% van het dwarsdoorsnedeoppervlak van de buisvormige structuur op een positie weg van de bocht.The tubular structure (14) of claim 1, wherein the cross-sectional area of the tubular structure at the bend position is not less than 85% of the cross-sectional area of the tubular structure at a position away from the bend. 3. Buisvormige structuur (14) volgens conclusie 1 of 2, waarbij de structurele elementen (25,26,27,35) zich uitstrekken in rijen (21,22,23;46,47;50,51,52) georiënteerd in een omtreksrichting C, waarbij elke rij is gevormd uit twee naburige gegolfde stroken (29,30; 56,57,58,59) met pieken (31,31') en dalen (32,32’), waarbij de pieken van één van de stroken liggen tegenover dalen van de aangrenzende strip en telkens worden verbonden met een tegenoverliggend dal via een longitudinaal brugelement (33,33’,34,34,37,37’,53,54), waarbij een structureel element telkens wordt gevormd door twee tegenover elkaar langs de omtrek gelegen brugsecties (36,37) met elkaar verbonden door twee tegenover elkaar gelegen zijsecties (38,39), waarbij elke zijsectie twee zijsectiedelen (40,41) heeft die zich elk uitstrekken vanaf een einddeel (42,43) van een respectieve brugsectie (36,37) naar een smalle middensectie (44) van het element (35), waarbij de brugsecties (37,37 ') van naburige rijen (46,47) van structurele elementen verschoven worden in de omtreksrichting C over de helft van de grootte van een structureel element, waarbij voor drie aangrenzende rijen (50,51,52) de brugelementen (53,54) van de buitenste rijen en de smalle middensecties (55) van de middelste rij zich uitstrekken in de lengterichting L op hoofdzakelijk dezelfde omtrekspositie C.The tubular structure (14) according to claim 1 or 2, wherein the structural elements (25, 26, 27, 35) extend in rows (21, 22, 23; 46.47; 50, 51, 52) oriented in a circumferential direction C, wherein each row is formed from two adjacent corrugated strips (29.30; 56.57.58.59) with peaks (31.31 ') and valleys (32.32'), the peaks of one of the strips are opposite valleys of the adjacent strip and are each connected to an opposite valley via a longitudinal bridge element (33.33 ', 34.34, 37.37', 53.54), a structural element being formed by two opposite peripheral bridge sections (36, 37) interconnected by two opposite side sections (38, 39), each side section having two side section members (40, 41) each extending from an end section (42, 43) of a respective bridge section (36.37) to a narrow center section (44) of the element (35), the bridge sections (37.37 ') of adjacent rows (46.47) of structural elements are shifted in circumferential direction C by half the size of a structural element, with for three adjacent rows (50,51,52) the bridge elements (53,54) of the outer rows and the narrow middle sections (55) of the middle row extend in the longitudinal direction L at substantially the same circumferential position C. 4. Buisvormige structuur (14) met een lengterichting L en omvattende een wand gevormd van een netwerk van onderling verbonden vervormbare structurele elementen (25,26,27,35), waarbij de elementen zich uitstrekken in rijen (21,22,23; 46,47; 50,51,52) georiënteerd in een omtreksrichting C, waarbij elke rij is gevormd uit twee naburige gegolfde stroken (29,30, 56,57,58,59) met toppen (31,31) en dalen (32,32 '), waarbij de pieken van één van de stroken liggen tegenover dalen van de aangrenzende strip en telkens worden verbonden met een tegenoverliggend dal via een longitudinaal brugelement (33,33',34,34,37,37’,53,54), waarbij een structureel element telkens wordt gevormd door twee tegenover elkaar langs de omtrek gelegen brugsecties (36,37) met elkaar verbonden door twee tegenover elkaar gelegen zijsecties (38,39), waarbij elke zijsectie twee zijsectiedelen (40,41) heeft die zich elk uitstrekken vanaf een einddeel (42,43) van een respectieve brugsectie (36,37) naar een smalle middensectie (44) van het element (35), waarbij de brugsecties (37,37 ') van naburige rijen (46,47) van structurele elementen verschoven worden in de omtreksrichting C over de helft van de grootte van een structureel element, waarbij voor drie aangrenzende rijen (50,51,52) de brugelementen (53,54) van de buitenste rijen en de smalle middensecties (55) van de middelste rij zich uitstrekken in de lengterichting L op hoofdzakelijk dezelfde omtrekspositie C.A tubular structure (14) with a longitudinal direction L and comprising a wall formed from a network of interconnected deformable structural elements (25,26,27,35), the elements extending in rows (21,22,23; 46 , 47; 50.51.52) oriented in a circumferential direction C, wherein each row is formed from two adjacent corrugated strips (29.30, 56.57.58.59) with crests (31.31) and valleys (32, 32 '), wherein the peaks of one of the strips are opposite valleys of the adjacent strip and are each connected to an opposite valley via a longitudinal bridge element (33.33', 34.34, 37.37 ', 53.54) , wherein a structural element is in each case formed by two opposite bridge sections (36,37) located opposite one another and connected to each other by two opposite side sections (38,39), each side section having two side section parts (40,41) which each extending from an end portion (42.43) of a respective bridge section (36.37) to a narrow center section (44) of the element (35), wherein the bridge sections (37.37 ') of adjacent rows (46.47) of structural elements are shifted in the circumferential direction C by half the size of a structural element, wherein for three adjacent rows (50.51.52) the bridge elements (53.54) of the outer rows and the narrow middle sections (55) of the middle row extend in the longitudinal direction L at substantially the same circumferential position C. 5. Buisvormige structuur (14) volgens een van de conclusies 1-4, waarbij het netwerk wordt gemaakt van een kunststof.The tubular structure (14) according to any of claims 1-4, wherein the network is made of a plastic. 6. Buisvormige structuur (14) volgens een der conclusies 1-4, waarbij het netwerk wordt gemaakt van een metaal.The tubular structure (14) according to any of claims 1-4, wherein the network is made of a metal. 7. Buisvormige structuur (14) volgens een van de voorgaande conclusies, waarbij de structurele elementen gesneden zijn uit een plaatmateriaal.The tubular structure (14) according to any of the preceding claims, wherein the structural elements are cut from a sheet material. 8. Buisvormige structuur (14) volgens een van de voorgaande conclusies, omvattende eindflenzen (19,20) voor het verbinden van de buisvormige structuur.The tubular structure (14) according to any of the preceding claims, comprising end flanges (19,20) for connecting the tubular structure. 9. Buisvormige structuur (14) volgens een van de voorgaande conclusies, omvattende een flexibel ondoordringbaar materiaal nabij het netwerk.The tubular structure (14) according to any of the preceding claims, comprising a flexible impermeable material near the network. 10. Ventilatiesysteem omvattende een ventilator ( 4.6 ) en een kanaalsysteem (5,7) met een gebogen kanaal omvattende een buisvormige structuur (14) volgens een van de conclusies 1-9.A ventilation system comprising a fan (4.6) and a duct system (5.7) with a curved duct comprising a tubular structure (14) according to any of claims 1-9. 11. Ventilatiesysteem omvattende een luchttoevoerventilator (60) met een ventilatoruitlaat (83), een afzuigvcntilator (61) met een ventilatorinlaat (74), een warmtewisselaar (64) met een verse-lucht inlaat (69) en een verse-lucht uitlaat (71), een verbruikte-lucht inlaat (70) en een verbruikte-lucht uitlaat (72), waarbij de verse-lucht inlaat (69) verbindbaar is met de toevoerventilator (60) en de verbruikte-lucht inlaat (70) verbindbaar is met de afzuigventilator (61), met het kenmerk, dat twee luchtkleppen (62,63) worden verschaft, waarbij elke klep (62,63) twee stromingsposities heeft, waarbij in een eerste stromingspositie de kleppen de luchttoevoerventilatoruitlaat (83) aan de verse-lucht inlaat (69) en de verse-lucht uitlaat (71) aan een eerste binnenste ventilatiekanaal (75) verbinden en een tweede binnenste ventilatiekanaal (73) aan de verbruikte-lucht inlaat (70) en de verbruikte-lucht uitlaat (72) aan de afzuigventilatorinlaat (74) verbinden, waarbij in een tweede stromingspositie de kleppen de toevoerventilatoruitlaat (83) en de afVoerventilatoringang (74) verbinden aan een respectieve binnenste ventilatiekanaal (73,75,85) en de verbruikte-lucht inlaat (70), verbruikte-lucht uitlaat (72), verse-lucht inlaat (69) en verse-lucht uitlaat (71) met elkaar verbinden of van elkaar loskoppelen zodat de warmtewisselaar (64) is omzeild.A ventilation system comprising an air supply fan (60) with a fan outlet (83), an exhaust fan (61) with a fan inlet (74), a heat exchanger (64) with a fresh air inlet (69) and a fresh air outlet (71 ), a spent air inlet (70) and a spent air outlet (72), the fresh air inlet (69) being connectable to the supply fan (60) and the spent air inlet (70) being connectable to the exhaust fan (61), characterized in that two air valves (62,63) are provided, each valve (62,63) having two flow positions, wherein in a first flow position the valves inlet the air supply fan outlet (83) into the fresh air (69) and connect the fresh air outlet (71) to a first inner ventilation channel (75) and a second inner ventilation channel (73) to the spent-air inlet (70) and the spent-air outlet (72) on the exhaust fan inlet (74) connecting, wherein in a second flow rate the valves connect the supply fan outlet (83) and the outlet fan inlet (74) to a respective inner ventilation duct (73.75.85) and the spent-air inlet (70), spent-air outlet (72), fresh-air inlet ( 69) connect or disconnect fresh air outlet (71) from each other so that the heat exchanger (64) is bypassed. 12. Ventilatiesysteem volgens conclusie 11, omvattende een binnenruimte (79) omsloten door constructieve elementen (82), zoals een muur, en een buitenruimte (80) aan een buitenzijde van de constructieve elementen (82), waarbij de warmtewisselaar (64) gelegen is in de binnenruimte (79) en de inlaat- en uitlaatventilatoren (60,61) verbonden zijn met een respectievelijke opening in de constructieve elementen op een onderlinge afstand van ten minste 1 m en op afstand van de warmtewisselaar zijn geplaatst over een afstand van minstens 1 m.A ventilation system according to claim 11, comprising an inner space (79) enclosed by structural elements (82), such as a wall, and an outer space (80) on an outer side of the structural elements (82), wherein the heat exchanger (64) is located in the interior space (79) and the inlet and outlet fans (60, 61) are connected to a respective opening in the structural elements at a mutual distance of at least 1 m and placed at a distance of at least 1 m from the heat exchanger m. 13. Ventilatiesysteem volgens conclusie 12, waarbij de kleppen (62,63) elk ten minste twee stromingskanalen (65,66;67,68) hebben, waarbij in de eerste stroompositie van de kleppen de eerste en tweede stromingskanalen van de kleppen de toevoerventilator (60) en de afzuigventilator (61) naar de binnenruimte (79) via de warmtewisselaar (64) onderling verbinden, terwijl in de tweede stroompositie de eerste stromingskanalen (66,67) de toevoerventilator (60) en de afzuigventilator (61) naar de binnenruimte (79) verbinden, terwijl de tweede stromingskanalen (65,68) de inlaten en uitlaten (69,70,71,72) van de warmtewisselaar ( 64 ) onderlingverbinden of van elkaar losmaken.A ventilation system according to claim 12, wherein the valves (62,63) each have at least two flow channels (65,66; 67,68), wherein in the first flow position of the valves the first and second flow channels of the valves are the supply fan ( 60) and interconnect the exhaust fan (61) to the interior (79) via the heat exchanger (64), while in the second flow position the first flow channels (66, 67) connect the supply fan (60) and the exhaust fan (61) to the interior (79) while the second flow channels (65,68) interconnect or disconnect the inlets and outlets (69,70,71,72) of the heat exchanger (64). 14. Ventilatiesysteem volgens een van de conclusies 11,12 of 13, waarbij respectieve filtereenheden (98,99) stroomopwaarts van de afzuigventilator (61) en stroomafwaarts van de toevoerventilator (60) geplaatst zijn.A ventilation system as claimed in any one of claims 11, 12 or 13, wherein respective filter units (98.99) are disposed upstream of the exhaust fan (61) and downstream of the supply fan (60). 15. Warmtewisselaar voor gebruik in een ventilatiesysteem volgens een van de conclusies 10-14, omvattende een behuizing zonder een ventilator, waarbij de behuizing een hete-lucht inlaat (70) en een hete-lucht uitlaat (71) en een koele-lucht inlaat (69) en een koele-lucht uitlaat (72) en twee luchtkleppen (62,63) elk met twee stromingsposities heeft, waarbij de kleppen in een eerste stromingspositie respectieve stroompaden door het eerste ventiel (62) via de koele-lucht inlaat (69) en de koele-lucht uitlaat (71) door het tweede ventiel (63) vormen en door het tweede ventiel (63) via en de koele-lucht uitlaat (72) door het eerste ventiel (62) vormen, en in de tweede stromingspositie van de koele- en warme-lucht inlaten en uitlaten (69,70,71,72) van de warmtewisselaar (64) blokkeren of onderling verbinden en een stroompadsectie door de ruimte rondom de warmtewisselaar (64) Voorzien.A heat exchanger for use in a ventilation system according to any of claims 10-14, comprising a housing without a fan, wherein the housing has a hot air inlet (70) and a hot air outlet (71) and a cool air inlet (69) and has a cool air outlet (72) and two air valves (62, 63) each with two flow positions, the valves in a first flow position passing respective flow paths through the first valve (62) through the cool air (69) ) and form the cool air outlet (71) through the second valve (63) and through the second valve (63) through and the cool air outlet (72) through the first valve (62), and in the second flow position block or interconnect the cool and warm air inlets and outlets (69,70,71,72) of the heat exchanger (64) and provide a flow path section through the space around the heat exchanger (64). 16. Klep (100) voor gebruik in een ventilatiesysteem volgens een van de conclusies 10-14, waarbij de klep een behuizing (101) omvat met vier openingen (102,103,104,105) uit elkaar geplaatst op over een hoek gespreide posities en een draaibaar lichaam (106) in de behuizing omvat welke twee kanalen (107,108 ) met een bocht definieert, waarbij de kanalen verbinden onderling in een eerste stromingspositie van het draaibaar lichaam eerste en tweede openingen (103,104) en derde en vierde openingen (105,102) onderling verbinden, en verbinden onderling in tweede stromingspositie, waarin het draaibaar lichaam (106) is geroteerd, de tweede en derde openingen (104,105) en de vierde en eerste openingen (102,103) onderling verbinden.The valve (100) for use in a ventilation system according to any of claims 10-14, wherein the valve comprises a housing (101) with four openings (102,103,104,105) spaced apart at angular positions and a rotatable body (106 ) in the housing which defines two channels (107, 108) with a bend, the channels connecting to each other in a first flow position of the rotatable body connecting first and second openings (103, 104) and third and fourth openings (105, 102) to one another, and connecting to each other in the second flow position, in which the rotatable body (106) is rotated, the second and third openings (104, 105) and the fourth and first openings (102, 103) interconnect. 17. Rechthoekig ventilatiekanaal, omvattende een cilindrische buis (112), een plaatmateriaal in de vorm van een rechthoekige behuizing (111) om de buis (112) en een schuimmateriaal (113) in de ruimte tussen de cilindrische buis (112) en het plaatmateriaal.A rectangular ventilation duct, comprising a cylindrical tube (112), a sheet material in the form of a rectangular housing (111) around the tube (112) and a foam material (113) in the space between the cylindrical tube (112) and the sheet material . 18. Ventilatiekanaal volgens conclusie 17, waarbij het plaatmateriaal gips omvat.A ventilation duct according to claim 17, wherein the plate material comprises plaster. 19. Ventilatiekanaal volgens conclusie 17 of 18, omvattende een tweede buis (114) van kleinere diameter parallel aan de eerste buis (112) voor het opnemen van elektrische kabels of gas- of waterleidingen.A ventilation duct according to claim 17 or 18, comprising a second tube (114) of smaller diameter parallel to the first tube (112) for receiving electrical cables or gas or water pipes. 20. Ventilatiekanaal volgens een van de conclusies 17-19, omvattende een aantal kanalen (115,116,117) die zich dwars uitstrekken vanaf de buis (112) door de behuizing (111).A ventilation duct according to any of claims 17-19, comprising a plurality of ducts (115, 116, 117) extending transversely from the pipe (112) through the housing (111).
NL2015938A 2015-12-10 2015-12-10 Mechanically assisted ventilation and heat recovery system. NL2015938B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2015938A NL2015938B1 (en) 2015-12-10 2015-12-10 Mechanically assisted ventilation and heat recovery system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2015938A NL2015938B1 (en) 2015-12-10 2015-12-10 Mechanically assisted ventilation and heat recovery system.

Publications (2)

Publication Number Publication Date
NL2015938A true NL2015938A (en) 2017-06-22
NL2015938B1 NL2015938B1 (en) 2017-07-03

Family

ID=55485245

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2015938A NL2015938B1 (en) 2015-12-10 2015-12-10 Mechanically assisted ventilation and heat recovery system.

Country Status (1)

Country Link
NL (1) NL2015938B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823703A (en) * 1955-07-26 1958-02-18 Jr Otto Nusser Flexible pipe
US3786637A (en) * 1971-03-13 1974-01-22 Bridgestone Tire Co Ltd Oil fence
US5538294A (en) * 1994-11-01 1996-07-23 Tru-Flex Metal Hose Corporation Corrugated flexible metal piping assembly
US20100154914A1 (en) * 2006-03-24 2010-06-24 Steven Liebson Semi-rigid flexible duct
US20100270796A1 (en) * 2009-04-28 2010-10-28 Thomas William David Ashcroft Kink eliminator connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823703A (en) * 1955-07-26 1958-02-18 Jr Otto Nusser Flexible pipe
US3786637A (en) * 1971-03-13 1974-01-22 Bridgestone Tire Co Ltd Oil fence
US5538294A (en) * 1994-11-01 1996-07-23 Tru-Flex Metal Hose Corporation Corrugated flexible metal piping assembly
US20100154914A1 (en) * 2006-03-24 2010-06-24 Steven Liebson Semi-rigid flexible duct
US20100270796A1 (en) * 2009-04-28 2010-10-28 Thomas William David Ashcroft Kink eliminator connector

Also Published As

Publication number Publication date
NL2015938B1 (en) 2017-07-03

Similar Documents

Publication Publication Date Title
US8662147B2 (en) Geothermal air-conditioner device
EP2950026B1 (en) Counter flow air-to-air energy exchange assembly and method of forming the latter
KR101215573B1 (en) Multi-Function assembly wall and construction method thereof
US20080000617A1 (en) Climate-conditioning fan and coil apparatus
JP6208194B2 (en) Air conditioning ventilation system
NL2015938B1 (en) Mechanically assisted ventilation and heat recovery system.
KR200463037Y1 (en) Air Conditioning System
LT3350B (en) Radiant or radiant-ventilating airconditioning prefabricated elements and air conditioning installation including said elements
US3815486A (en) Air circulation diffuser system
EP2660526B1 (en) A ventilation apparatus
WO2015063578A1 (en) Climate ceiling
EP3452760B1 (en) Recuperator for exchange of energy between two air flows
WO2012177186A2 (en) Active air distributing ceiling cladding and an active air duct with ion ventilator (variants)
FI83698B (en) ANORDNING FOER KLIMATISERING AV RUM.
KR100488573B1 (en) Heat-exchanging ventilation system
WO2008051098A2 (en) A heat exchanger, a heat sink and a heat exchange system
JP3156870U (en) Heat exchange structure
RU151589U1 (en) MANEAU AIR DUCT FOR THE HEATING AND VENTILATION COMPLEX
GB2481225A (en) Heat exchanger particularly for use in the ventilation of buildings
RU2643420C1 (en) Supply-recirculation plant
EP2971990B1 (en) Compact heat recovery ventilation unit
JP2021042628A (en) Air conditioning system for buildings
KR101192927B1 (en) Heat exchanger with curved air course and air conditioning apparatus using the same
JPH0740916Y2 (en) Single-layer ventilation panel duct
RU2022102739A (en) EQUIPMENT FOR HARDENING BENT GLASS WITH THE POSSIBILITY OF REDUCING TEMPERING SPOTS

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: GOFLOW B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: NORBERT PETER VROEGE

Effective date: 20170825

MM Lapsed because of non-payment of the annual fee

Effective date: 20190101