NL2012015C2 - Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system. - Google Patents

Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system. Download PDF

Info

Publication number
NL2012015C2
NL2012015C2 NL2012015A NL2012015A NL2012015C2 NL 2012015 C2 NL2012015 C2 NL 2012015C2 NL 2012015 A NL2012015 A NL 2012015A NL 2012015 A NL2012015 A NL 2012015A NL 2012015 C2 NL2012015 C2 NL 2012015C2
Authority
NL
Netherlands
Prior art keywords
rotor blade
electrically conductive
wind turbine
conductive layer
foot
Prior art date
Application number
NL2012015A
Other languages
Dutch (nl)
Inventor
Edo Johannes Hendrikus Kuipers
Original Assignee
Viventus Holding B V
E J H Kuipers B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viventus Holding B V, E J H Kuipers B V filed Critical Viventus Holding B V
Priority to NL2012015A priority Critical patent/NL2012015C2/en
Application granted granted Critical
Publication of NL2012015C2 publication Critical patent/NL2012015C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

ROTOR BLADE,
SYSTEM COMPRISING THE ROTOR BLADE AND METHOD OF ELECTRICALLY CONNECTING THE ROTOR BLADE TO GROUND USING THE SYSTEM
The present invention relates to a rotor blade for a wind turbine having a tip end area and a root end area, said rotor blade comprising an outer surface formed by layers of different material, wherein at least one of the layers is an electrically conductive layer.
It is general practice to protect rotor blades of wind turbines from strokes of lightning by forming conductive pathways to the rest of the wind turbine in order to give the current an ample number of routes to safely exit the wind turbine. This is typically achieved by adding conductive elements, such as metal foils or lightning receptors, to the blade surface and connecting the conductive elements to an internal "ground plane," which includes metal components such as engines, conduit, etc.
As an example EP2518312 describes a rotor blade for a wind turbine according to the preamble having a conductor layer on the outer surface that connects lightning receptors. In the blade a downward conductor cable is arranged in an insulator to guide the lightning to ground through the inner space of the blade, the rotor hub, the nacelle and the tower. More specifically the conductor layer functions as an additional lightning receptor that can be arranged at the leading edge blade part where it is difficult to place receptors.
The invention has for its object to provide a rotor blade according to the preamble wherein the lightning is guided to ground through the interior of the blade to the turbine housing without using additional conducting elements, like wires or the downward conductor cables 21 according to EP2518312.
Thereto the rotor blade according to the invention is characterized in that the electrically conductive layer extends to the root end area and is arranged for electrical and mechanical connection to blade root connector means for connecting the blade root to the wind turbine.
According to the invention the electrically conductive layer functions both as a lightning receptor and as conducting element. Advantageously the blade root connector means, which are already present to connect the blade root to the wind turbine, function to establish the electrical connection to the internal ground plane.
No additional wiring and/or cabling is needed, so the grounding of the rotor blade is even more integrated in the assembling of the wind turbine blade.
According to a first preferred embodiment of the rotor blade according to the invention the electrically conductive layer substantially extends continuously from the tip end area to the root end area of the blade.
According to a further preferred embodiment of the rotor blade according to the invention the electrically conductive layer substantially extends continuously over at least the width of the main girder. The main girder usually comprises material that attracts lightning, such as carbon fibre. In this embodiment the main girder is optimally protected.
In a practical preferred embodiment the electrically conductive layer lays below, preferably directly below, the outer surface layer.
Suitable materials for the electrically conductive layer comprise copper or aluminium mesh.
According to a practical preferred embodiment of the rotor blade according to the invention the electrically conductive layer is provided with a strip of electrically conductive material at the end facing the root end area. In a further preferred embodiment the strip comprises holes for passage of the blade root connector means. The production of this preferred embodiment of the rotor blade is very efficient, since the strip allows for easy establishment of a reliable electrical connection.
In a complete embodiment the electrically conductive layer is electrically connected to a number of lightning receptors present in the outer surface.
The invention further relates to a system comprising a rotor blade of a wind turbine according to the invention, further comprising blade root connector means and ground connector means to connect the blade root connector means to ground.
In a preferred embodiment the blade root connector means comprise barrel nuts. In another preferred embodiment the ground connector means comprise cabling. Preferably the cabling and the barrel nuts are arranged for mechanical fastening, for example by screwing.
The invention further relates to a method of electrically connecting a rotor blade of a wind turbine to ground using a system according to the invention, comprising the steps of: a. connecting the blade root connector means to the electrically conductive layer in the rotor blade; and b. Connecting the ground connector means to the blade root connector means.
In a first preferred embodiment of the method step a) comprises step a1) placing the barrel nuts in the holes in the strip. In a further preferred embodiment of the method step a) further comprises step a2) Attaching an external strip of electrically conductive material to the strip and to an outer end of the barrel nuts present in the holes in the strip. In a practical preferred embodiment of the method step b) comprises step b1) mechanically fastening the cabling to the barrel nuts.
The invention will be further described with reference to the attached drawings, wherein
Figure 1 schematically shows part of a preferred embodiment of a rotor blade according to the present invention in exploded view;
Figure 2 shows part of figure 1 in more detail; and
Figure 3 shows part of a preferred embodiment of a rotor blade according to the invention in cross section.
Like component are designated in the figures by means of the same reference numerals.
Figures 1, 2 and 3 show only part of a preferred embodiment of a rotor blade according to the present invention. All figures are schematically. Figure 1 is an exploded view. Figure 2 reveals more detail of the exploded view of figure 1. Figure 3 shows a cross section of part of the rotor blade according to the present invention. In the preferred embodiment shown surface layers 100 of the rotor blade according to the invention comprise an outer skin 10, an electrically conductive layer 20, a load carrying layer 30, main girder 40 and an inner skin 50.
To produce the rotor blade according to the invention a known lamination process, such as Resin Infusion Moulding, may be used. The outer skin 10 is made of a suitable covering material, such as biaxial or triaxial laminate. The load carrying layer 30 is made of a suitable material, such as triaxial laminate. The further layer 40 is made of a suitable material, such as unidirectional laminate. The inner skin 50 is made of a suitable covering material, such as biaxial or triaxial laminate. A person skilled in the art will be able to make a choice out of the unidirectional, biaxial and triaxial laminate materials available in the field.
The electrically conductive layer 20 lies below, preferably directly below, the outer surface layer 10 and extends to the root end area of the rotor blade (dedicated with R). The electrically conductive layer 20 is electrically and mechanically connected to blade root connector means 22 that are arranged to connect the blade root R to the wind turbine (not shown). Further ground connector means 24, 26, 27 are provided to connect the blade root connector means 22 to ground.
In longitudinal direction of the blade the electrically conductive layer 20 preferably substantially extends continuously from the tip end area (dedicated with T) of the blade to the root end area R of the blade. In lateral direction of the blade the electrically conductive layer 20 preferably at least covers the width of the main girder, but may even substantially extend continuously along the circumference of the blade.
In the preferred embodiment shown the electrically conductive layer 20 comprises copper or aluminium mesh. Preferably the mesh consist of one layer EMS 800 gram/m2 combined with one layer of Soric®XXF1.5for the Resin Infusion Moulding (RIM) process and the handling of the copper mesh whereby damaging is avoided. This material is produced by Lantor B.V. located in Veenendaal, The Netherlands.
The copper mesh is an open foil, i.e. the copper mesh is thinner than wide and long. The copper mesh is usually placed on the outer side of the blade covering the main girder. The copper mesh is placed mould side and the XXF layer is placed towards the inner side of the blade and functions as interlaminar infusion layer between main girder and mesh/outer skin.
At the end facing the root end area R the layer 20 is provided with a strip of electrically conductive material. Suitable electrically conductive material is copper. A copper strip 23A is prefab integrated in the copper mesh and denoted as internal strip 23A. An external strip 23B of electrically conductive material is applied against the internal strip 23A being in direct contact therewith. The internal strip 23A and the external strip 23B run in parallel. Both strips run substantially along (part of) the width of the copper mesh 22. The strip 23A is provided with holes 21 for passage of the blade root connector means 22. In the preferred embodiment shown the blade root connector means comprise nuts, preferably cylindrical nuts, also referred to as barrel nuts. The cylindrical nuts 22 are arranged to receive bolts 28 so as to form a T-fastener.
Ground connector means 27, 26 comprise a cable of wire 27 provided with an eye or lug 26, and are mechanically fastened to the barrel nuts 22, for example using screws 24. The external strip 23B is also mechanically fastened to nuts 22, for example using screws 24.
Although the invention is illustrated by referring to one preferred embodiment, many variations on this embodiment are included. For instance the electrically conductive layer may (in whole or in part) form the outer skin of the rotor blade. In another alternative embodiment the root blade connector means (cylindrical nuts 22) may abut against (instead of pierce through) the electrically conductive layer 20 and receive the screws 24.
After reading this text a person skilled in the art will be able to come up with other variations on the embodiment shown. Therefore it is noted that the invention is not limited to the embodiment described and shown herein, but generally extends to any embodiment which falls within the scope of the appended claims as seen in the light of the foregoing description and drawings.

Claims (16)

1. Rotorblad voor een windturbine met een tipuiteindegebied en een voetuiteinde gebied, waarin het genoemde rotorblad een buitenoppervlak omvat, dat is gevormd door lagen van verschillend materiaal, waarin ten minste één van de lagen een elektrisch geleidende laag is, met het kenmerk dat, de elektrisch geleidende laag zich uitstrekt tot aan het voetuiteindegebied en is ingericht voor elektrische en mechanische verbinding met bladvoetverbindingsmiddelen voor het verbinden van de voet van het rotorblad aan de windturbine.A wind turbine rotor blade with a tip end area and a foot end area, wherein said rotor blade comprises an outer surface formed by layers of different material, wherein at least one of the layers is an electrically conductive layer, characterized in that, electrically conductive layer extending as far as the foot end region and is adapted for electrical and mechanical connection to leaf foot connecting means for connecting the foot of the rotor blade to the wind turbine. 2. Rotorblad voor een windturbine volgens conclusie 1, waarin de elektrisch geleidende laag zich in hoofdzaak continu uitstrekt vanaf het tipuiteindegebied tot aan het voetuiteinde gebied van het rotorblad.A wind turbine rotor blade according to claim 1, wherein the electrically conductive layer extends substantially continuously from the tip end area to the foot end area of the rotor blade. 3. Rotorblad voor een windturbine volgens conclusie 1 of 2, waarin de elektrisch geleidende laag zich in hoofdzaak continu uitstrekt over tenminste de breedte van de hoofdgording.A wind turbine rotor blade according to claim 1 or 2, wherein the electrically conductive layer extends substantially continuously over at least the width of the main purlin. 4. Rotorblad voor een windturbine volgens conclusie 1, 2 of 3, waarin de elektrisch geleidende laag onder, bij voorkeur direct onder, de buitenste oppervlakte laag ligt.A wind turbine rotor blade according to claim 1, 2 or 3, wherein the electrically conductive layer is below, preferably directly below, the outer surface layer. 5. Rotorblad voor een windturbine volgens één of meer van de voorgaande conclusies, waarin de elektrisch geleidende laag koper of aluminium maas omvat.A wind turbine rotor blade according to one or more of the preceding claims, wherein the electrically conductive layer comprises copper or aluminum mesh. 6. Rotorblad voor een windturbine volgens één of meer van de voorgaande conclusies, waarin de elektrisch geleidende laag is voorzien van een strip van elektrisch geleidend materiaal aan het eind dat is toegekeerd naar het voetuiteindegebied.A wind turbine rotor blade as claimed in one or more of the preceding claims, wherein the electrically conductive layer is provided with a strip of electrically conductive material at the end facing the foot end area. 7. Rotorblad voor een windturbine volgens conclusie 6, waarin de strip gaten omvat voor doorgang van de bladvoetverbindingsmiddelen.A wind turbine rotor blade according to claim 6, wherein the strip comprises holes for passage of the blade foot connecting means. 8. Rotorblad voor een windturbine volgens één of meer van de voorgaande conclusies, waarin de elektrisch geleidende laag elektrisch is verbonden met een aantal bliksemreceptoren, die aanwezig zijn in het buitenoppervlak.A wind turbine rotor blade according to one or more of the preceding claims, wherein the electrically conductive layer is electrically connected to a number of lightning receptors present in the outer surface. 9. Systeem omvattende een rotorblad voor een windturbine volgens één of meer van de voorgaande conclusies, verder omvattende bladvoetverbindingsmiddelen en aardverbindingsmiddelen ten einde de bladvoetverbindingsmiddelen te verbinden met aarde.A system comprising a rotor blade for a wind turbine according to one or more of the preceding claims, further comprising blade base connection means and ground connection means for connecting the blade base connection means to ground. 10. Systeem volgens conclusie 9, waarin de bladvoetverbindingsmiddelen tonmoeren omvatten.10. System as claimed in claim 9, wherein the leaf foot connecting means comprise bar nuts. 11. Systeem volgens conclusie 9 of 10, waarin de aardverbindingsmiddelen bekabeling omvatten.The system of claim 9 or 10, wherein the ground connection means comprises cabling. 12. Systeem volgens conclusie 11, waarin de bekabeling en de tonmoeren zijn ingericht voor mechanische bevestiging, bijvoorbeeld middels verschroeven.12. System as claimed in claim 11, wherein the cabling and the bar nuts are adapted for mechanical fixing, for example by screwing. 13. Werkwijze voor het elektrisch verbinden van een rotorblad voor een windturbine met aarde onder gebruikmaking van een system volgens één of meer van de voorgaande conclusies 9-12, omvattende de stappen: a. het verbinden van de bladvoetverbindingsmiddelen met de elektrisch geleidende laag in het rotorblad; b. het verbinden van de aardverbindingsmiddelen aan de bladvoetverbindingsmiddelen.A method for electrically connecting a rotor blade for a wind turbine to earth using a system according to one or more of the preceding claims 9-12, comprising the steps of: a. Connecting the blade foot connecting means to the electrically conductive layer in the rotor blade; b. connecting the ground connecting means to the leaf foot connecting means. 14. Werkwijze volgens conclusie 13 onder gebruikmaking van een systeem volgens conclusie 10 omvattende een rotorblad volgens conclusie 7, waarbij stap a) stap a1 omvat: het plaatsen van de tonmoeren in de gaten in de strip.A method according to claim 13 using a system according to claim 10 comprising a rotor blade according to claim 7, wherein step a) comprises step a1: placing the bar nuts in the holes in the strip. 15. Werkwijze volgens conclusie 14, waarbij stap a) verder omvat stap a2) het bevestigen van een externe strip van elektrisch geleidend materiaal aan de strip en aan een uiteinde van de tonmoeren.The method of claim 14, wherein step a) further comprises step a2) attaching an external strip of electrically conductive material to the strip and to one end of the bar nuts. 16. Werkwijze volgens conclusie 14 of 15 onder gebruikmaking van een systeem volgens conclusie 12, waarbij stap b) omvat b1: het mechanisch bevestigen van de bekabeling aan de tonmoeren.The method of claim 14 or 15 using a system according to claim 12, wherein step b) comprises b1: mechanically securing the cabling to the bar nuts.
NL2012015A 2013-12-23 2013-12-23 Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system. NL2012015C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2012015A NL2012015C2 (en) 2013-12-23 2013-12-23 Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2012015A NL2012015C2 (en) 2013-12-23 2013-12-23 Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system.
NL2012015 2013-12-23

Publications (1)

Publication Number Publication Date
NL2012015C2 true NL2012015C2 (en) 2015-06-26

Family

ID=53838246

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2012015A NL2012015C2 (en) 2013-12-23 2013-12-23 Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system.

Country Status (1)

Country Link
NL (1) NL2012015C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018328A1 (en) * 2018-11-19 2022-01-20 Siemens Gamesa Renewable Energy Service Gmbh Rotor blade of a wind turbine, comprising an insulator layer and a protective layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220018328A1 (en) * 2018-11-19 2022-01-20 Siemens Gamesa Renewable Energy Service Gmbh Rotor blade of a wind turbine, comprising an insulator layer and a protective layer

Similar Documents

Publication Publication Date Title
US11225949B2 (en) Lightning protection systems for wind turbine blades
US10465662B2 (en) Improvements relating to lightning protection systems for wind turbine blades
US10443579B2 (en) Tip extensions for wind turbine rotor blades and methods of installing same
US10125744B2 (en) Lightning protection system for wind turbine blades with conducting structural components
EP3299618B1 (en) Blade for wind turbine with lightning suppression system
US20130149153A1 (en) Wind turbine blade
EP3548742B1 (en) Carbon blade for wind power generator with multi-down conductor
KR20130084612A (en) Wind turbine blade
KR101567679B1 (en) Airflow generator and wind power generation system
NL2012015C2 (en) Rotor blade, system comprising the rotor blade and method of electrically connecting the rotor blade to ground using the system.
CN103863570B (en) Including the lightening conductor system for the lightening conductor band installed in the way of biasing
JP2010059813A (en) Object struck by lightening
EP3821123B1 (en) Improvements relating to wind turbine blades
GB2519333A (en) Improvements relating to lightning protection systems for wind turbine blades
US11005195B2 (en) Encapsulated IPC lug connector
US11434878B2 (en) Wind turbine rotor blade with a lightning protection system
EP4234928A1 (en) Wind turbine rotor blade and wind turbine
CN111431112A (en) Cable connecting device for electric power laying
EP3967869A1 (en) Wind turbine blade, wind turbine, method for fabrication of a wind turbine component and method for fabrication of a wind turbine blade

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: VIVENTUS HOLDING B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: VIVENTUS HOLDING B.V.

Effective date: 20180301

MM Lapsed because of non-payment of the annual fee

Effective date: 20210101