NL2011954C2 - Compact integrated motor-gear drive unit with cycloidal reduction. - Google Patents

Compact integrated motor-gear drive unit with cycloidal reduction. Download PDF

Info

Publication number
NL2011954C2
NL2011954C2 NL2011954A NL2011954A NL2011954C2 NL 2011954 C2 NL2011954 C2 NL 2011954C2 NL 2011954 A NL2011954 A NL 2011954A NL 2011954 A NL2011954 A NL 2011954A NL 2011954 C2 NL2011954 C2 NL 2011954C2
Authority
NL
Netherlands
Prior art keywords
motor
drive unit
shaft
transmission
mounting
Prior art date
Application number
NL2011954A
Other languages
Dutch (nl)
Inventor
Johannes Jacobus Bolt
Original Assignee
Bm Constructies B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bm Constructies B V filed Critical Bm Constructies B V
Priority to NL2011954A priority Critical patent/NL2011954C2/en
Priority to PCT/EP2014/077390 priority patent/WO2015086750A2/en
Priority to CA2967696A priority patent/CA2967696C/en
Priority to US15/039,476 priority patent/US9669701B2/en
Priority to EP14823923.9A priority patent/EP3079934B1/en
Application granted granted Critical
Publication of NL2011954C2 publication Critical patent/NL2011954C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/80Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Description

Compact integrated motor-gear drive unit with cycloidal reduction
Description
Field of the invention
The invention relates to an integrated motor-gear drive unit, for example an inwheel motor drive unit, for transmitting rotational movement from a motor output shaft with cycloidal reduction to an outer rotatable body. The integrated motor-gear drive unit can in particularly be used as a wheel with an integrated motor on e.g. a mobile patient lift or a transportation cart.
Background and problems to be solved by the invention
The invention offers a solution for the need for motor-gear drive units that require a large reduction [larger than 1:5) in a very compact and robust design. It is furthermore very suitable to be supported from one side. In certain applications of these motorized drive units, size restrictions are imposed by a demand for maneuverability and user friendliness. A good example of such an application is an indoors patient lift vehicle with steerable motorized traction wheels [Figure 6). The motorized wheels must be very compact to allow for good operability in small interior spaces. The wheels should preferably be suspended from a single side to achieve more compactness. To be able to travel at slow speeds, the integrated drive reduction must be large enough to deliver a high output torque at a low rotational wheel speed. The invention aims at a more compact and robust design than the conventional motor-gear drives, which use for example a reduction mechanism with worm gears, multi-stage planetary gears or even cycloidal gears. Worm gears can achieve large reductions, but have as main disadvantages the large size, high friction and high demands on manufacturing tolerances.
Known motor-gear drive units predominantly use a planetary gear reduction, see for example CN102673380. A single stage planetary gear set is suitable for reductions as large as 1:5. To achieve larger reductions, multiple stages of planetary gear sets are used. However, this increases the size of the unit and increases the component count and manufacturing costs.
Cycloidal gear reduction, which is able to achieve larger reduction ratios than a planetary gear set is known. The following publications give an overview of the working and design principles of cycloidal gear reductions:
Design and application guidelines for cycloid drives with machining tolerances, D.C.H. Yang, J.G. Blanche, Mech. Mach. Theory Vol. 25, No. 5, pp. 487-501.1990, Pergamon Press
Design of a Planetary-Cyclo-Drive Speed Reducer: Cycloid Stage, Geometry, Element Analyses. B. Borislavov, 1. Borisov& V. Panchev, 2012, Linnaeus University A known motor-gear drive unit which uses a cycloidal gear reduction is US8506438 B2, this and other similar motor-gear drive units operate withtwo meshing gear profiles wherein one of the meshing gear profiles comprises rollers and make use of the carrier/guide pins as the power output.
The available constructions fail to meet the needs for a compact design, a reduced axial width, a reduced component count, being suitable for mounting on a single side, and a high reduction ratio.
Means for solving problems
The invention comprises a compact integrated motor-gear drive unit with cycloidal reduction in which the motor output shaft transmits a rotational force at a highly reduced speed to an outer rotatable body. The complete unit can be mounted on one side in an application using the mounting carrier body. The outer rotatable body can for example be directly equipped with a tire which enables use of the invention as an extremely compact, single side mounted and high output torque, motorized wheel.
The outer rotatable body is rotatably supported on a combined carrier body, consisting of a mounting carrier body, a secondary carrier body and at least two carrier pin devices which structurally connect both carrier bodies. The open space between the carrier bodies enables the integration of a high reduction ratio cycloidal gear reduction consisting of one or more cycloidal gear discs. Each cycloidal gear disc is equipped with holes through which the carrier pin devices protrude. A carrier pin device can consist of a carrier pin, which can also include a rotatably supported carrier pin bushing.
Each cycloidal gear disc is rotatably supported, for example by means of a plain bearing or a separate gear disc bearing, on an eccentric body which is connected to the motor output shaft. The rotation of the eccentric body within the gear disc forces each cycloidal gear disc to move.
The holes in the cycloidal gear discs through which the carrier pin devices protrude, should have a large enough tolerance between the outer diameter of the carrier pin device and the inner diameter of the holes in each cycloidal gear disc, to allow for the motion that is forced by the rotating eccentric body on which the cycloidal gear disc is rotatably supported. On the other hand, the tolerance should not be larger than necessary. In an ideal situation the tolerance can be equal to twice the eccentricity of the eccentric element on which the cycloidal gear disc is mounted. In that case the carrier device can move and/or roll along the inner surface of the hole in the cycloidal gear disc, and rotation of the cycloidal gear disc about its own axis can be prevented. In case a larger tolerance is used, a limited although undesired rotation of the cycloidal gear discs can be possible. In the case of multiple cycloidal gear discs, a single carrier pin bushing per carrier pin device can be used, which protrudes through all cycloidal gear discs. This minimizes the component count of the complete unit and is advantageous because the rolling angular velocity of the bushing is equal for all cycloidal gear discs.
At least two carrier pin devices that protrude through the holes in the cycloidal discs are required to prevent rotation of the cycloidal gear discs. However it is advantageous to use three or more carrier pin devices, which can be equally divided on a pitch circle, to increase structural strength of the carrier assembly and to distribute the forces and stress uniformly over the carrier pin devices.
The outer gear profile of each cycloidal gear disc meshes with the internal gear profile of the outer rotatable body and their motion transmits the rotational motion of the motor output shaft at a highly reduced speed and increased torque to the outer rotatable body. This construction has the advantage of extreme compactness, high reduction ratio and a low component count. This is made possible because the carrier pin devices have a dual function, 1. they are an essential structural part of the unit and 2. they protrude through the cycloidal gear discs and function as an essential part of the gear reduction mechanism.
Multiple types of bearings can be used to rotatably support the outer rotatable body on the carrier bodies. An option is to use a angular contact ball or roller bearing. Using an angular contact type of bearing, the outer rotatable body is capable of supporting large external axial and radial forces directly to the mounting carrier body, without transferring these forces on the reduction gears. Because the design allows for a large diameter of the bearings, the unit is able to support very large axial and radial forces. An advantageous method to integrate an angular contact ball bearing is to manufacture the bearing raceways directly in the carrier bodies and outer rotatable body and utilize bearing balls and optionally a bearing ball cage. In this way a minimal amount of components is required and manufacturing costs are minimized. Naturally, any kind of rotatably supporting bearing can be used.
Cycloidal gear reductions can achieve very large reduction ratios in a compact design with common values between 1:8 and 1:130. The preferable arrangement uses the drive shaft connected to the motor output shaft as driving member, the carrier bodies as reaction member and the outer rotatable body as driven member. In this way a very compact design can be achieved, since the outer body can directly be used as a traction wheel possibly provided with a tire or used as a belt pulley or chain drive. The reduction ratio in this arrangement is defined as the difference of the number of teeth on the inner gear profile of the outer rotatable body and the number of teeth on the outer gear profile of one cycloidal disc, divided over the number of teeth on inner gear profile of the outer rotatable body. This ratio is slightly higher than in the conventional solution where the carrier pins function as driven output member(s): difference of the number of teeth on the inner gear profile of the outer rotatable body and the number of teeth on the outer gear profile of one cycloidal disc, divided over the number of teeth on the outer gear profile of a cycloidal disc. At least one, but preferably three cycloidal discs can be used at an evenly, angularly distributed eccentric position. The advantage of multiple discs is a better rotational balance, minimized vibration and reduction of the axial moment on the carrier pin devices and drive shaft. With three discs the axial moment and vibrations and noise are significantly reduced compared to a conventional solution with one or two discs. This is especially advantageous in the case of a high rotational input speed, for example when a high reduction ratio is used in combination with a compact, high power density electric motor which often have a high rotational speed.
The meshing of an outer cycloidal gear disc profile with an inner profile of the outer rotatable body can be performed using different methods. An advantageous method is the direct fabrication of an inner gear teeth profile in the outer rotatable body and an outer gear teeth profile on the cycloidal gear disc(s]. This method has the advantage that it can be performed at low cost and with minimal additional components. Friction and/or contact noise can be minimized by using lubrication or a combination of body materials and/or coatings that limit friction and contact noise e.g. a combination of materials with different hardness.
Alternatively, the inside of the outer rotatable body can be equipped with cylindrical rollers, whereby the cycloidal gear disc gear teeth profile meshes with the rotatably supported bushings mounted in the outer rotatable body. This method has the drawback of increased complexity and size, but the advantage of decreased wear and improved efficiency, this method and a general cycloidal drive is for example described in the paper “Design and application guidelines for cycloid drives with machining tolerances" as referenced in the background section.
The movement of a point on the circumference of a cycloidal gear disc relative to the outer rotatable body can be described by an epitrochoid and/or hypotrochoid curve. This curve can also be used to generate an advantageous gear profile for either the inner or outer gear profiles. Other gear profiles or gear profiled inserts can be used as well. For example it is a possibility to use as an internal gear teeth profile a toothed belt or as an internal gear profile a roller chain as gear profile insert in the outer rotatable body.
The drive shaft, connected to the motor output shaft, can be provided with eccentric bodies to rotatably support and drive the motion of the cycloidal gear discs. These eccentric bodies can be directly manufactured on the drive shaft and/or motor output shaft. In the case of more than one eccentric body it can be advantageous to provide the drive shaft and/or motor output shaft with a profiled circumference, for example with an external spline or polygon profile. This profile can be directly manufactured on the drive shaft and/or motor output shaft, or be provided on a separate outer bushing which can be rigidly and concentrically connected to the drive shaft and/or motor output shaft, for example by a press fit. The eccentric bodies can be provide with an internal profile that can interlock with the provided external profile on the drive shaft and/or motor output shaft to enable accurate positioning of the eccentric bodies and their relative angles. This method enables low cost production and simple and accurate assembly of the eccentric bodies on the drive shaft and/or motor output shaft. Preferably the amount of splines or polygon faces on the external profile is dividable by the number of gear discs used, so the angle of rotation of each fitted eccentric body compared to the next can be divided equally.
The gear-drive unit can be equipped with an integrated electrical motor. The large leverage of the transmitted torque by the cycloidal gear system allows for the use of compact motors, operating at relatively high rotational speeds with a high power density. This is a favorable property especially in applications where the rotational speed of the outer rotatable body is low.
As mentioned before, the gear drive unit of the invention can very suitably be used on an indoors patient lift vehicle with steerable motorized traction wheels (Figure 6). Other suitable applications could be in the field of belt drives where the outer rotatable body directly drives a belt pulley; or chain drives where the outer rotatable body is equipped with a chain drive wheel; in machinery, lifts, small traction wheels for robots or warehouse carts (Figure 6); or electric bikes, where the motor-gear drive unit is integrated in the rear or front wheel as wheel hub motor where the outer rotatable body is used as a wheel hub for a spoked wheel or directly connected to the bottom bracket.
The motor can be a radial or an axial flux motor, with a preferable solution being a high speed axial gap motor, because of the minimal axial space requirements and high power density. Radial flux motors are another suitable alternative, but can have the disadvantage of using more axial space. Preferably, the motor is concentrically fixed to the mounting carrier plate. However, other arrangements are possible such as in which the motor and mounting carrier plate are aggregated into one part, or in which the motor is positioned non-concentric relative to the outer rotatable body. Optionally, the design can be equipped with a braking device that brakes the outer rotatable body relative to the mounting carrier body. An additional feature could be a clutch or freewheel, for example between the motor output shaft and drive shaft.
Brief description of the figures Figures
Figure 1 is a cross sectional view of an embodiment of the invention as direct traction drive or motorized wheel, where the outer rotatable body is fitted with a tire.
Figure 2 is an exploded view of the embodiment of figure 1.
Figure 3 is an exploded view of the embodiment of figure 1, only including the motor, motor output shaft, profiled bushing, eccentric bodies and motor output shaft bearing.
Figure 4 is a cross sectional view, cutting through a cycloidal gear disc of the embodiment of fig. 1.
Figure 5 is a schematic view of the carrier construction, including a side view and an exploded view of the carrier bodies and carrier pins of the embodiment of figure 1.
Figure 6 displays possible utilization of e.g. two directly driven wheels of the invention applied to a patient lift or to a cargo transportation cart, where the front wheels are trailing.
Reference numbers used in figures 1. Outer rotatable body 2. Secondary carrier body 3. Mounting carrier body 4. Carrier pin 5. Motor 5r. Motor rotor 6. Drive shaft 6m. Motor output shaft 7. Separate outer bushing exemplified with external hexagonal profile 8. Eccentric body exemplified with internal hexagonal profile 9. Gear disc bearing 10. Cycloidal gear disc with external gear teeth profile lOh. Hole 11. Carrier pin bushing 12. Bearing ball 13. Bearing cage 14. Section having a bearing surface, the surface being concentric to the drive shaft 15. Drive shaft/bushing bearing 16. Tire 17. Fastener 18. Internal gear teeth profile 19. External body on which the motor-gear drive unit is mounted Detailed description of a preferred embodiment
Figure 1 and 2 illustrate an exemplified compact integrated motor-gear drive unit with a high reduction ratio (more than 1:5] by use of a cycloidal gear reduction.
The outer rotatable body (1), in this case a ring shape, functions as the output of the unit and can be provided with an internal gear teeth profile (18) in the same body. The complete unit can be mounted on one side by the mounting carrier body (3) which is rigidly connected to the secondary carrier body (2) by the, in this case six, carrier pins (4) with the help of e.g. fastening screws or bolts (17). The carrier pins are part of carrier pin devices. In the illustrated embodiment, the carrier pin devices comprise the carrier pins (4), carrier pin bushings (11) and the fastening screws or bolts (17). Figure 5 displays the assembly of carrier bodies and carrier pins which are rigidly attached to each other, for example by the fastening screws or bolts (17) and threaded holes in the carrier pins. The carrier pin devices are a functional part of the gear reduction, they protrude through holes (lOh) in each cycloidal gear disc (10). The inside diameter of each hole (lOh) in each gear disc is at least equal to, or larger than, the carrier pin bushing (11) diameter plus twice the distance of eccentricity of the eccentric body driven by the motor output shaft. This enables the carrier pin bushing to move along the inside wall of the cylindrical hole in the gear disc. The carrier pin devices guide the gear discs to allow the motion of the gear discs forced by the rotating eccentric bodies, but prevent rotation of the cycloidal gear discs about their own axis. The outer rotatable body is rotatably supported on the mounting carrier body (3) and secondary carrier body (2) which are part of the combined carrier body (2,3,4,11,17). This can e.g. be performed by the use of angular contact bearings, consisting of bearing balls (12), bearing cages (13) and bearing raceways directly manufactured in the outer rotatable body, mounting carrier body and secondary carrier body. Alternative bearings can be used e.g. comprising separate bearing raceways mounted to the outer rotatable body and/or mounting carrier body and/or secondary carrier body. In this case the outer rotatable body is able to transmit large axial and radial forces to the mounting carrier body.
This construction, specifically the combination of the carrier pin devices as essential member of the reduction gearing and as a structural part, enables the integration of a high ratio [1:36 in this case) cycloidal reduction gear mechanism inside a rotatable outer body. This construction has a low component count, a small width and diameter, enabling a very compact and easy to manufacture design. None of the external axial and radial forces on the outer rotatable body are transmitted to the gear discs, eccentrics, drive shaft or motor output shaft. The outer surface of the outer rotatable body can possibly be equipped with a tire (16), for improving the direct use of the unit as a motorized wheel in traction applications.
In this case an axial gap electric motor (5), such as a pancake motor, is integrated in the unit. The stator and housing of the electric motor can be connected to the mounting carrier body. The speed of the drive shaft (6), formed-by or connected-to the motor output shaft (6m), is reduced by a cycloidal reduction, consisting of at least one cycloidal gear disc, in this case three cycloidal gear discs (10) are used. The cycloidal gear discs have an external gear profile and are each driven by an eccentric body (8) attached to the drive shaft (6).
For rotatably driving the eccentric bodies (8) the drive shaft (6) respectively the motor output shaft (6m) can be directly or indirectly provided with an external spline or polygon profile. In the illustrated embodiment a hexagon outer profile is indirectly provided on a separate outer bushing (7) connected to the drive/motor output shaft (6,6m). The outer bushing (7) can be rigidly and concentrically connected to the motor output/drive shaft, for example by a press fit. An axial opening with corresponding internal hexagonal profile is formed in each eccentric body (8).
Preferably, the amount of splines or polygon faces is dividable by the number of gear discs used, so the angle of rotation of each fitted eccentric body (8) compared to the next can be divided equally. In the illustrated case of three discs, a relative angle of 120 degrees between the eccentric bodies is used. Each of the eccentric bodies (8) can be mounted with its opening having the internal hexagonal profile in the axial direction over the shaft/bushing with its corresponding external hexagonal profile. Thereby the shaft/bushing can rotationally drive the eccentric bodies (8) within the cycloidal gear discs.
The use of a profiled bushing/shaft makes it possible to easily mount multiple eccentric bodies on the shaft at equally divided angles and assemble the eccentric bodies, gear disc bearings and gear discs. In this case of three cycloidal gear discs, an angle difference of 120 degrees is used for each subsequent eccentric body, this improves the rotational balance, distributes force on the drive shaft, carrier pin devices and outer rotatable body and minimizes resulting torque along the axial direction. The last eccentric body (8] can -as shown in the illustrated embodiment-also be equipped with a section having a circular surface (14), concentric to the drive/motor-output shaft to support the shaft/bushing indirectly in a bearing (15) in the secondary carrier body (2). Alternatively, the shaft and/or bushing can be directly supported by the bearing (15). Figure 3 illustrates the assembly of the drive/motor-output shaft and eccentric bodies. The direct or indirect support of the drive shaft and/or motor output shaft in the second carrier body can be advantageous in the sense that it minimizes torque and bending forces on the shaft and thereby also enables a more uniform distribution of forces among the cycloidal gear discs.
The cycloidal gear discs are rotatably supported on the eccentric bodies, possibly -as shown in the figures- by a separate gear disc bearing (9). The cycloidal gear discs are provided with cylindrical holes (lOh) through which the carrier pin devices (4,11) protrude. The tolerance between the holes (lOh) in the cycloidal gear discs and the carrier pin devices (4,11) is large enough to allow for the motion of the gear discs which is forced by the eccentric bodies rotating within the gear discs,but small enough to prevent meaningfulrotation of the cycloidal gear discs around their own axis.
Figure 4 illustrates one of the gear discs (10) that is mounted inside the outer rotatable body (1), rotatably supported by a gear disc bearing (9) on the eccentric body (8) which is mounted on the shaft/bushing. The external gear teeth profile of each cycloidal gear disc (10) meshes with the internal gear teeth profile (18) of the outer rotatable body (1). During operation, rotation of the gear discs around their own axis is prevented by the guidance of the carrier pin bushings which move or roll along the inside surface of the holes in the gear discs. Rotation of the eccentric body (8) within the cycloidal gear disc (10) forces motion of the gear disc. Because the external gear teeth profile of the cycloidal gear discs (10) are constantly meshed with the internal gear teeth profile (18) of the outer rotatable body (1), but each gear disc external gear teeth profile has less teeth than the internal gear teeth profile of the outer rotatable body, the rotating motion of the drive shaft is transmitted to the outer rotatable body in a fashion that reduces the rotational speed but increases the torque.
The exemplified compact and integrated motor-gear drive unit, illustrated in figure 1 and figure 2, has a diameter of approximately 150 mm (including tire) and a width of approximately 60 mm (including motor).
Other aspects of the invention;
According to an alternative first other aspect of the invention, a gear drive unit is provided for transmitting rotational movement at a reduced speed from a drive shaft to an outer rotatable body with a cycloidal reduction; the integrated gear drive unit comprising: a mounting carrier body (3) and a secondary carrier body (2), wherein the mounting carrier body (3) and the secondary carrier body (2) are structurally connected by at least two carrier pin devices (4,11) forming a combined carrier body (2,3,4,11); an outer rotatable body (1) is rotatably supported on the mounting carrier body (3) and/or on the secondary carrier body (2);at least one cycloidal gear disc (10) and an eccentric body (8), wherein the cycloidal gear disc (10) is rotatably supported on the eccentric body (8) and wherein the drive shaft (6) is arranged for rotating the eccentric body (8) within the cycloidalgear disc (10); wherein said at least one gear disc (10) has at least two holes (10h) corresponding to said at least two carrier pin devices (4,11)/ and wherein each carrier pin device (4,11) protrudes through a corresponding hole (lOh); wherein each said at least one gear disc (10) is provided with an external profile and the outer rotatable body (1) is provided with an internal profile and the external profile of the cycloidal gear disc meshes with the internal profile of the outer rotatable body; wherein said profiles are gear teeth profiles or alternatively one of said profiles is formed with rollers.
The gear drive unit according to the first other aspect,characterized in that a motor (5) is mounted to or is part of the mounting carrier body (3), wherein a rotatable motor output shaft (6m) is connected to and/or part of the drive shaft (6).

Claims (15)

1. Een geïntegreerde motor-transmissieaandrijfeenheid, bijvoorbeeld een geïntegreerde wielmotoraandrijving, voor het overbrengen van een rotatiebeweging van een uitgaande motorasdoor middel van een cycloïde reductieaan een roteerbaar buitenlichaam, de geïntegreerde motor-transmissieaandrijfeenheid omvattende: a) een montage dragerlichaam (3) en een secundair dragerlichaam (2), waarbij het montage-dragerlichaam (3) en het secundairedragerlichaam (2)structureel zijn verbonden door ten minste twee bevestigingspen-inrichtingen (4,11) die een gecombineerd dragerlichaam (2,3,4,11) vormen; b) een roteerbaar buitenlichaam(l)welke roteerbaar is ondersteund op het montage dragerlichaam(3) en het secundair dragerlichaam (2); c) een motor (5) en een roteerbare uitgaande motoras(6m), waarbij de motor is gemonteerd op of deel uitmaakt van hetmontage dragerlichaam (3); d) ten minste één cycloïdische transmissieschijf (10) en een excenterlichaam (8), waarbij het excenterlichaam (8) de cycloïdische transmissieschijf (10) roteerbaar ondersteund en waarbij de uitgaande motoras (6m) de rotatie van het excenterlichaam kan bewerkstelligen(8)binnendecycloïdischetransmissieschijf (10), waarbij decycloïdischetransmissieschijf (lO)beschikt overtenminste twee openingen(lOh) overeenkomend met de, ten minste twee bevestigingspen-inrichtingen (4,11), waarbij elke bevestigingspen-inrichting (4,11) door een overeenkomstige opening (lOh) steekt; e) waarbij elke genoemde, ten minste één, cycloïdische transmissieschijf (10) is voorzien van een uitwendig profiel en het roteerbaar buitenlichaam (1) is voorzien van een inwendig profiel, waarbij het uitwendige profiel van de cycloïdische transmissieschijf aangrijpt op het inwendige profiel van het roteerbaar buitenlichaam voor het overbrengen van de roterende beweging van de uitgaande motoras(6m) aan het roteerbaar buitenlichaam.An integrated motor transmission drive unit, for example an integrated wheel motor drive, for transmitting a rotational movement of an output motor shaft by means of a cycloid reduction to an outer rotatable body, the integrated motor transmission drive unit comprising: a) a mounting support body (3) and a secondary carrier body (2), wherein the mounting carrier body (3) and the secondary carrier body (2) are structurally connected by at least two attachment pin devices (4,11) that form a combined carrier body (2,3,4,11); b) a rotatable outer body (1) which is rotatably supported on the mounting carrier body (3) and the secondary carrier body (2); c) a motor (5) and a rotatable output motor shaft (6m), the motor being mounted on or forming part of the mounted carrier body (3); d) at least one cycloid transmission disk (10) and an eccentric body (8), wherein the eccentric body (8) rotatably supports the cycloid transmission disk (10) and wherein the output motor shaft (6m) can effect the rotation of the eccentric body (8) within the cycloidal transmission disk (10), wherein the cyclical transmission disk (10) has at least two openings (10h) corresponding to the, at least two, fastening pin devices (4,11), each fastening pin device (4,11) protruding through a corresponding opening (10h) ; e) wherein each said at least one cycloid transmission disc (10) is provided with an external profile and the rotatable outer body (1) is provided with an internal profile, the external profile of the cycloid transmission disc engaging the internal profile of the rotatable outer body for transferring the rotary movement of the output motor shaft (6m) to the rotatable outer body. 2. De motor-transmissieaandrijfeenheid volgens conclusie 1, met het kenmerk, dat het inwendige profiel van het roteerbaar buitenlichaamis gevormd als een inwendige vertanding (18)en dat het uitwendige profiel van de cycloïdische transmissieschijfis gevormd als een uitwendige vertanding.The motor transmission drive unit according to claim 1, characterized in that the internal profile of the rotatable outer body is formed as an internal toothing (18) and that the external profile of the cycloid transmission disc is formed as an external toothing. 3. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat het excentrische lichaam (8} roteerbaar en aandrijfbaar is door de uitgaande motoras(6m) en/of door een aandrijfas (6)die is verbonden met de uitgaande motoras (6m), waarbij een externe spline of veelhoekig profiel aanwezig is op de uitgaande motoras (6m) of op de aandrijfas (6) of op een aparte buitenbus (7)welke structureel verbonden is met de aandrijfas en/ofuitgaande motoras (6,6m), waarbij een axiale opening gevormd in hetcorresponderende excentrische lichaam is voorzien van een corresponderende inwendige spline of veelhoekig profiel waardoor het excenterlichaam axiaal gemonteerd kan worden op de extern geprofileerde as of bus, en waarbij bij voorkeur het aantal vlakken van het genoemde profiel gelijk is aan, of een veelvoud van, het aantal cycloïdische transmissieschijven die worden gebruikt, waarbij de extern geprofileerde as of bus in elkaar grijpt met de inwendig geprofileerde excenterlichamen en deze excentrische lichamen(8) roterend aangedreven kunnen worden binnen de cyloïdischetransmissieschij (f) (ven).The motor transmission drive unit according to one of the preceding claims, characterized in that the eccentric body (8} is rotatable and drivable by the output motor shaft (6m) and / or by a drive shaft (6) connected to the output motor shaft (6m), wherein an external spline or polygonal profile is present on the output motor shaft (6m) or on the drive shaft (6) or on a separate outer sleeve (7) which is structurally connected to the drive shaft and / or output motor shaft (6, 6m), wherein an axial opening formed in the corresponding eccentric body is provided with a corresponding internal spline or polygonal profile through which the eccentric body can be mounted axially on the externally profiled shaft or bush, and wherein preferably the number of faces of said profile is equal to, or a multiple of, the number of cycloid transmission disks used, the externally profiled shaft or bush interlocking with the internally profiled The eccentric bodies and these eccentric bodies (8) can be rotationally driven within the cyloidal transmission disk (s) (s). 4. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat de uitgaande motoras(6m)en/of een aandrijfas (6) verbonden met de uitgaande motoras(6m)en/of een lichaam dat op de aandrijfas/uitgaande motoras is bevestigd,roteerbaar is ondersteund in het secundairdragerlichaam (2).The motor transmission drive unit according to any of the preceding claims, characterized in that the output motor shaft (6m) and / or a drive shaft (6) connected to the output motor shaft (6m) and / or a body mounted on the drive shaft / outgoing motor shaft is attached, rotatably supported in the secondary carrier body (2). 5. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat n = drie of meer cycloïdische transmissieschijven worden gebruikt, met name: - n cycloïdische transmissieschijven; en - n overeenkomstige excentrische lichamen met elk een inwendig profiel waarbij het aantal vlakken van genoemd profiel gelijk is aan of een veelvoud van n; worden gebruikt.The motor transmission drive unit according to any of the preceding claims, characterized in that n = three or more cycloid transmission discs are used, in particular: - n cycloid transmission discs; and - n corresponding eccentric bodies, each with an internal profile, wherein the number of faces of said profile is equal to or a multiple of n; are used. 6. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat de lagerloopbanen van het lager ter ondersteuning van het roteerbaar buitenlichaam geproduceerd zijn in hetroteerbaar buitenlichaam, het montagedragerlichaam en het secundairdragerlichaam;en/of dat één, enkele of alle lagerloopbanen aanwezigzijn als afzonderlijke delen.The motor transmission drive unit according to any of the preceding claims, characterized in that the bearing tracks of the bearing for supporting the rotatable outer body are produced in the rotatable outer body, the mounting carrier body and the secondary carrier body, and / or that one, some or all bearing tracks are present as separate parts. 7. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat het montage dragerlichaam(3) een deel is van de motor, zoals een deel van een motorstator of een deel van een motorbehuizing.The motor transmission drive unit according to any of the preceding claims, characterized in that the mounting support body (3) is a part of the motor, such as a part of a motor stator or a part of a motor housing. 8. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat het buitenoppervlak van het roteerbaar buitenlichaamis voorzien van een band (16) ter verbetering van het directe gebruik van het apparaat als een gemotoriseerd wiel in tractietoepassingen, of dat het roteerbaar buitenlichaamis voorzien van een (ketting)tandwiel of dat het roteerbaarbuitenlichaam is aangepast voor gebruik als een wielnaaf voor een spaakwiel, of dat het roteerbaar buitenlichaamis uitgerust voor het aandrijven van een riem.The motor transmission drive unit according to any of the preceding claims, characterized in that the outer surface of the rotatable outer body is provided with a tire (16) for improving the direct use of the device as a motorized wheel in traction applications, or that it rotatable outer body is provided with a (chain) sprocket or that the rotatable outer body is adapted for use as a wheel hub for a spoke wheel, or that the rotatable outer body is equipped for driving a belt. 9. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat het montage dragerlichaam (3) is voorzien van middelen voor het mogelijk maken van de montage van de motor-transmissieaandrijfeenheid door middel vanalleen het montage dragerlichaam (3) aan een apparaat, zoals bijvoorbeeld een mobiele til-lift of een transportkar of enig ander voertuig.The motor transmission drive unit according to one of the preceding claims, characterized in that the mounting carrier body (3) is provided with means for enabling the mounting of the motor transmission drive unit by means of only mounting the mounting carrier body (3) on a device, such as, for example, a mobile lift or a transport cart or any other vehicle. 10. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat de motor (5) een elektrische of pneumatische motor is, met name dat de motor (5) een elektromotor met axiale luchtspleet is, zoals bijvoorbeeld een pancake motor.The motor transmission drive unit according to one of the preceding claims, characterized in that the motor (5) is an electric or pneumatic motor, in particular that the motor (5) is an electric motor with axial air gap, such as, for example, a pancake motor . 11. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat ten minste één cycloïdische transmissieschijf (10) roteerbaar is ondersteund op het overeenkomstige excenterlichaam door middel van een afzonderlijk lager (9)en/of waarbij het overeenkomstige excenterlichaam (8) is vervaardigd op de uitgaande motoras (6b) of op de aandrijfas (6) of op de afzonderlijke buitenbus (7).The motor transmission drive unit according to one of the preceding claims, characterized in that at least one cycloid transmission disc (10) is rotatably supported on the corresponding eccentric body by means of a separate bearing (9) and / or wherein the corresponding eccentric body ( 8) is made on the output motor shaft (6b) or on the drive shaft (6) or on the individual outer sleeve (7). 12. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat de uitgaande motoras kan worden ontkoppeld door een koppeling of een vrijloop tussen de uitgaande motoras en de excenterlichamen en/of dat men met een geïntegreerde rem de relatieve beweging van de uitgaande motoras of van hetroteerbaar buitenlichaamten opzichte van hetmontage dragerlichaamdirect of indirect verhindert.The motor transmission drive unit according to any of the preceding claims, characterized in that the output motor shaft can be disconnected by a coupling or a freewheel between the output motor shaft and the eccentric bodies and / or that the relative movement of the outgoing motor shaft or from the rotatable outer bodies relative to the mounting prevents direct or indirect support from the body. 13. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat elke genoemde bevestigingspen-inrichting (4,11) door een genoemde overeenkomstige opening (lOh) steekt,met een tolerantie waarbij elke bevestigingspen- inrichting zich kan bewegen binnen de overeenkomstige opening (lOh) waarbij de beweging van de cycloïdische transmissieschijf, gedwongen door het roterende excenterlichaam, mogelijk is, maar waarbij rotatie van de cycloïdische transmissieschijf (10) rond zijn eigen as verhinderd is en/of, met het kenmerk, dat de binnendiameter van elke opening (lOh) in de cycloïdische transmissieschijf (10) tenminste gelijk is aan de buitendiameter van de overeenkomende bevestigingspen-inrichtingen (4.11] plus tweemaal de afstand van excentriciteit van het excenterlichaam (8], waardoor de bevestigingspen-inrichtingen bewegen en/of rollen langs de binnenwand van de cilindrische opening in de cycloïdischetransmissieschijf (10).The motor transmission drive unit according to any of the preceding claims, characterized in that each said fastening pin device (4,11) protrudes through said corresponding aperture (10h), with a tolerance whereby each fastening pin device can move within the corresponding opening (10h) at which the movement of the cycloid transmission disc forced by the rotating eccentric body is possible, but where rotation of the cycloid transmission disc (10) about its own axis is prevented and / or characterized in that the inner diameter of each aperture (10h) in the cycloid transmission disc (10) is at least equal to the outer diameter of the corresponding attachment pin devices (4.11] plus twice the eccentricity distance of the eccentric body (8], through which the attachment pin devices move and / or roll along the inner wall of the cylindrical opening in the cycloid transmission disk (10). 14. De motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies, met het kenmerk, dat de bevestigingspen-inrichtingen (4.11) ,bevestigingspennen (4) en bijbehorende bevestigingspen-bussen (ll)omvatten, waarbij elke bevestigingspen-bus (11) bij voorkeur roteerbaar is ondersteund op de bijbehorende bevestigingspen(4).The motor-transmission drive unit according to any of the preceding claims, characterized in that the mounting pin devices (4.11) include mounting pins (4) and associated mounting pin bushings (11), each mounting pin socket (11) preferably is rotatably supported on the associated mounting pin (4). 15. Apparaat zoals bijvoorbeeld een mobiele til-lift of een transportvoertuig of enig ander voertuig, met het kenmerk, dat een motor-transmissieaandrijfeenheid volgens een van de voorgaande conclusies is bevestigdaan het apparaat door middel van/viahet montage dragerlichaam (3).An apparatus such as, for example, a mobile lift-lift or a transport vehicle or any other vehicle, characterized in that a motor-transmission drive unit according to any one of the preceding claims is attached to the apparatus by means of / via the mounting carrier body (3).
NL2011954A 2013-12-13 2013-12-13 Compact integrated motor-gear drive unit with cycloidal reduction. NL2011954C2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL2011954A NL2011954C2 (en) 2013-12-13 2013-12-13 Compact integrated motor-gear drive unit with cycloidal reduction.
PCT/EP2014/077390 WO2015086750A2 (en) 2013-12-13 2014-12-11 Compact integrated motor-gear drive unit with cycloidal reduction and device incorporating this unit
CA2967696A CA2967696C (en) 2013-12-13 2014-12-11 Compact integrated motor-gear drive unit with cycloidal reduction and device incorporating this unit
US15/039,476 US9669701B2 (en) 2013-12-13 2014-12-11 Compact integrated motor-gear drive unit with cycloidal reduction and device incorporating this unit
EP14823923.9A EP3079934B1 (en) 2013-12-13 2014-12-11 Compact integrated motor-gear drive unit with cycloidal reduction and device incorporating this unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2011954A NL2011954C2 (en) 2013-12-13 2013-12-13 Compact integrated motor-gear drive unit with cycloidal reduction.
NL2011954 2013-12-13

Publications (1)

Publication Number Publication Date
NL2011954C2 true NL2011954C2 (en) 2015-06-16

Family

ID=50239898

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2011954A NL2011954C2 (en) 2013-12-13 2013-12-13 Compact integrated motor-gear drive unit with cycloidal reduction.

Country Status (1)

Country Link
NL (1) NL2011954C2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517112A (en) * 1977-03-14 1978-07-12 Newage Engineers Ltd Hub drives
JPS58203250A (en) * 1982-05-20 1983-11-26 Sumitomo Heavy Ind Ltd Rotation converting mechanism
DE8810135U1 (en) * 1988-08-09 1989-01-05 Cyclo-Getriebebau Lorenz Braren Gmbh, 8062 Markt Indersdorf Wheel reduction gear
EP2562006A1 (en) * 2011-08-23 2013-02-27 Sumitomo Heavy Industries, Ltd. Wheel driving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517112A (en) * 1977-03-14 1978-07-12 Newage Engineers Ltd Hub drives
JPS58203250A (en) * 1982-05-20 1983-11-26 Sumitomo Heavy Ind Ltd Rotation converting mechanism
DE8810135U1 (en) * 1988-08-09 1989-01-05 Cyclo-Getriebebau Lorenz Braren Gmbh, 8062 Markt Indersdorf Wheel reduction gear
EP2562006A1 (en) * 2011-08-23 2013-02-27 Sumitomo Heavy Industries, Ltd. Wheel driving device

Similar Documents

Publication Publication Date Title
US9669701B2 (en) Compact integrated motor-gear drive unit with cycloidal reduction and device incorporating this unit
US7530416B2 (en) Motor-driven wheel driving apparatus
US8602145B2 (en) Driving system for electric vehicle
US8540041B2 (en) Driving system for electric vehicle
EP1502798A2 (en) Electric motor and gear drive assembly for driving a vehicle wheel
US9487084B2 (en) Electric drive and drive configuration for a motor vehicle
US9638304B2 (en) Spur differential gear
JP2000053068A (en) Motor driving unit for motor-driven bicycle
CN109578540B (en) Straight tooth planet wheel ball combined type speed reducer
CN108400676B (en) Two-stage constraint type speed reducing motor
EP3738809B1 (en) Motor vehicle transmission, and motor vehicle axle provided with such transmission
US8617024B2 (en) Axle final drive assembly
NL2011954C2 (en) Compact integrated motor-gear drive unit with cycloidal reduction.
CN110962507B (en) Drive axle and vehicle with same
US20220388597A1 (en) Front Motor Drive Bicycle With Side Mounted Wheels
CN113580848A (en) Axle box integral type transaxle
CN109281996B (en) Cascade speed reducer of balance wheel transmission unit
WO2017131141A1 (en) Transmission device
CN218229123U (en) Electric power steering gear and vehicle
CN215970951U (en) Axle box integral type transaxle
JP7499662B2 (en) Wheel mounting structure for traveling cart and traveling cart
CN209833892U (en) Large-torque thin hub motor
CN216742658U (en) Miniaturized cycloid decelerator
CN102003498A (en) Planetary gearbox with supper large speed ratio and small teeth difference
JP6819495B2 (en) Vehicle in-wheel motor drive

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230101