NL2009297C2 - Fluidized bed granulation. - Google Patents

Fluidized bed granulation. Download PDF

Info

Publication number
NL2009297C2
NL2009297C2 NL2009297A NL2009297A NL2009297C2 NL 2009297 C2 NL2009297 C2 NL 2009297C2 NL 2009297 A NL2009297 A NL 2009297A NL 2009297 A NL2009297 A NL 2009297A NL 2009297 C2 NL2009297 C2 NL 2009297C2
Authority
NL
Netherlands
Prior art keywords
nozzles
granulating device
clusters
per
compartments
Prior art date
Application number
NL2009297A
Other languages
Dutch (nl)
Inventor
Wei Wang
Mengguang Wang
Original Assignee
Green Granulation Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Granulation Technology Ltd filed Critical Green Granulation Technology Ltd
Priority to NL2009297A priority Critical patent/NL2009297C2/en
Priority to CN201310442474.7A priority patent/CN103657519A/en
Priority to CN202010673988.3A priority patent/CN111774006A/en
Application granted granted Critical
Publication of NL2009297C2 publication Critical patent/NL2009297C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fertilizers (AREA)
  • Glanulating (AREA)

Abstract

A granulator (1), comprising one or more isolated chamber (2, 3 and 4), wherein one or more isolated chamber (2, 3 and 4) is soleplate (12); the soleplate (12) is supplied fluidization type medium opening and plurality of sprayer (21). The sprayer with granulating liquid supply, a tapered (29) is a a liquid in one or more regions, wherein one or more regions (29) and a one or more atomizing region (30) are.

Description

NL 17744-ZO/an FLUIDIZED BED GRANULATION
The present invention relates to a fluidized bed reactor and a process for the production of granules, such as granules of urea or ammonium nitrate, typically used as a fertilizer material.
5 US 4,619,843 discloses a process for the preparation of solid granules by feeding a urea solution into a fluidized bed of solid nuclei. The liquid solidifies on the nuclei to form the granules, Crystallization of the urea generates heat 10 which is dissipated by the evaporation of water and by air used as a fluidization agent.
To reduce agglomeration problems during storage of urea granules, the water content in the final granules should be 15 low, for instance below 0,25 % by total weight of the granules .
To produce drier granules the residence time in the granulator can be increased, e.g., by using higher bed 20 levels. However, this requires higher pressures of the fluidization air and, consequently, more power consumption.
Alternatively, the water content can be reduced by atomizing the urea solution to finer droplets. This requires 25 more air to atomize the urea solution and, consequently, more power consumption.
2
Lower water contents of the final granules can also be achieved by spraying a more concentrated urea solution. EP-A 0 289 074, for instance, teaches to use a solution with a urea content of 70 - 99, 9 wt%. However, the use of low water 5 content urea concentrates reduces the cooling effect of water evaporation. To compensate for this, cooling by air should be increased by higher flow speeds of the air used for fluidization. Consequently, also this option results in higher energy consumption.
10
It is an object of the invention to provide a fluidized bed granulator and a process resulting in dry granules without requiring high energy consumption.
15 The obj ect of the invention is achieved with a fluidized bed granulator comprising one or more compartments with a floor with openings for the supply of a fluidization medium and a plurality of sprayers connected to a supply of a granulating liquid, such as an aqueous urea solution. The 20 sprayers are configured to spray the liquid in one or more spraying zones next to one or more unsprayed zones of the fluidized bed. By creating unsprayed zones in the compartment outside the scope of the sprayers, the nuclei will swirl down until they swirl back upwards with the flow induced by the 25 sprayers.
Surprisingly, it has been found that such an inhomogeneous distribution of the sprayers results in granules with a very low water content, while the overall 30 energy consumption of the process can be kept low. The water content of the granules produced with the granulator 3 according to the invention can be well below 0,3 wt% by total weight of the granules, or even below 0,25 wt%.
In a specific embodiment, the sprayers are spaced at 5 uneven distances from each other. Optionally, the sprayers are arranged in clusters, wherein the shortest distance between sprayers in a cluster is less than the shortest distance between two clusters. Good results are obtained if these clusters extend parallel in a main flow direction of 10 the nuclei. The main flow direction is the horizontal direction of the nuclei from the granulator inlet to the outlet, without the swirling imparted by the fluidization medium. In such a configuration the distance between parallel clusters may for instance be about 0,5-1 meter, while the 15 distance between sprayers in a cluster can for example be about 0,1 - 0,4 meter. The distance between clusters can for instance be about 2-3 times the distance between sprayers within a cluster. Other distances can also be used, if so desired. Alternatively, or additionally, the unsprayed zones 20 outside the sprayer scope can be created by directing the sprayers in different directions, e.g., away from each other. In that case, the sprayers can be distributed homogeneously or inhomogeneously.
25 In a specific embodiment, the sprayer density in at least one of the compartments is at least 7 sprayers per m2, whereas the density per cluster of sprayers is at least 25 sprayers per m2. Optionally, the granulator comprises a first compartment with a sprayer density of at least 9 sprayers per 30 m2 whereas the density per cluster of sprayers in the first compartment is at least 29 sprayers per m2, and at least one further compartment with a sprayer density of at least 7 ύ sprayers per m2, whereas the density per cluster of sprayers is at least 25 sprayers per m2. Other configurations can also be used, if so desired.
S The sprayers can for example be atomizers or hydraulic sprayers, such as air-assisted hydraulic sprayers. Combinations of these types of sprayers can also be used. A suitable type of sprayer is for instance disclosed in US 4,619,843.
10
When the solution is sprayed into the granulator compartment, the solution may for instance have a temperature substantially above the crystallisation point. If the solution is a urea solution the solution can for instance be 15 sprayed at a temperature of at least about 120°C, or at least about 130°C or at least about 135°C. If the solution is an ammonium nitrate solution the solution can for instance be sprayed at a temperature of at least about 160 °C, or at least about 170 °C or at least about 180 °C. The solution can for 20 example be sprayed under a hydrostatic pressure of 1,5 - 6 bar, e.g., 2-4 bar or other suitable pressures. The sprayed droplets can for example have an average droplet size of about 20 - 120 pm, e.g., about 30 - 60 pm.
25 For granulation of urea, highly concentrated solutions can be used, for example with a urea content of at least 90 wt% by total weight of the urea solution, e.g., at least 95 wt% .
30 The water content of the urea solution is generally low, e.g., less than 5 wt%, by total weight of the urea solution, i e.g., less than 3 wt%. If the water content is less than 2,5 wt% the solution is often referred to as urea melt.
The urea solution may further contain additives such as 5 for example formaldehyde and/or a urea-formaldehyde condensation products as a granulating aid for slowing down crystallisation of the urea and as an anti-caking agent preventing agglomeration of the resultant granules. If for instance 0,1 to 3%, based on total the weight of the urea 10 solution, of formaldehyde is added to the urea aqueous solution, atomized liquid droplets adhere better to the urea nuclei. Other suitable additives can also be used.
For the granulation of ammonium nitrate, Mg(N03)2 and 15 aluminium sulphate, e.g., with NaOH are examples of suitable additives .
The nuclei can be supplied to the granulator via one or more inlets at an inlet side of the granulator. The nuclei 20 can either be supplied continuously or be supplied and processed per batch.
Before being submitted to the granulation process, the nuclei may have any suitable average particle size, generally 25 about at least 0,2 mm, or at least 0,5 mm, generally at most 6 mm.
The nuclei may have any suitable composition. In general they will mainly comprise the same material as the 30 crystallized granulating liquid, in particular crystallized urea, but is also possible to use nuclei of a different composition than the crystallized granulating liquid.
i6
Generally air is used as a fluidization agent. However, other suitable fluidization gases can also be used. For granulating urea the flow velocity of the fluidization gas in the fluidized bed can for example be about 1-8 m/sec, e.g., 5 at least about 2 and /or at most about 3 or 4 m/sec. For granulating ammonium nitrate the flow velocity of the fluidization gas in the fluidized bed can for example be about 1-8 m/sec, e.g., at least about 2 and /or at most about 3,5 or 4,5 m/sec. The fluidization gas can enter the 10 granulator under any suitable pressure, for example 300 - 900 mm water column, e.g., 400 - 600 mm water column, and with any suitable temperature, but preferably below about 140°C or below about 110 °C.
15 For urea granulation the temperature in the compartments of the granulator can for instance be between 90 - 120°C, e.g., between 100 - 106°C. For granulation of ammonium nitrate the temperature in the compartments of the granulator can for instance be between 110 - 140°C, e.g., between 125 -20 130 °C. Typically, the temperature in the first compartment will be lower due to the return flow of recycled material. This can be compensated by using a higher density of sprayers in the first compartment.
25 The fluidized bed may for example have a bed level of 1,5 m or less, e.g., about 1 m or less.
The processed granules are typically discharged via one or more outlets of the granulator, either continuously or per 30 batch. The processed granules typically have an average particle size of about 2-4 mm, but can be made smaller or 7 larger if so desired. The water content of the granules can be kept well below 0,3 wt% by total weight of the granules, e.g., below 0,25 wt%.
i: Granules with a particle size above a given limit can be separated from the outflow. Optionally, these particles can be crushed and recycled to the granulator, e.g., together with granules with a particle size considered to be too small and/or with material separated from air discharged from the 10 granulator.
The granulator can have one or more granulator compartments in a serial and/or parallel arrangement. In a specific embodiment, the granulator has at least two, e.g., 15 three or more serially arranged compartments.
The floors of the granulator compartments provide inlets for a fluidization agent. To this end, the floor can for instance be a grid above an air supply.
20
Optionally, the granulator may comprise an aftercooler, such as a fluidized bed cooler receiving discharged granules from the granulator compartments. The aftercooler can for example be used to cool the granules to a temperature of 25 about 40 °C.
The granulator according to the invention is particularly useful for a process for the production of granules wherein a granulating liquid is sprayed into the 30 compartment in spraying zones of the fluidized bed alternated with non-spraying zones.
8
Each spraying zone can for example generated by a cluster of sprayers. In the spraying zones the granulating liquid flows upwardly. The unsprayed zones are not within the scope of a sprayer and allow the nuclei to flow down. It has 5 been found that the nuclei flow faster through the spraying areas, so less fresh solution settles down on the nuclei each time they pass a spraying zone. The thinner layers of solution allow better evaporation of the water content. In the unsprayed zones the nuclei flow down and recycle to the 10 spraying zones. As a result, the nuclei pass the spraying zones a large number of times. Each time they pass a spraying zone, they collect a further coating of the sprayed solution. Eventually this results in a granulate of the desired size with low residual moisture content. As a consequence, the 15 mean residence time of the nuclei in the granulator can be reduced, so the level of the fluidized bed can be kept low, which in turn requires less pressure of the fluidization air and less power consumption.
20 The process can for example be carried out as a continuous process with the material of the fluidized bed moving in a flow direction from one or more inlets to one or more outlets of the granulator, the spraying zones being parallel to the flow direction.
25
Good results are obtained if the process is carried out in such a way that the shortest distance between two sprayers at opposite sides of a non-spraying zone is at least half the height of the fluidized bed contained in the respective 30 compartment.
An exemplary embodiment of a granulator according to the invention will be explained under reference to the accompanying drawings .
5 Figure 1: shows a cross section along flow direction of a granulator according to the invention;
Figure 2: shows a cross section perpendicular to flow direction of the granulator of Figure 1;
Figure 3: shows the granulator of Figure 1 in plan view.
10
Figure 1 shows an exemplary embodiment of a granulator 1 for the production of urea granules, or ammonium nitrate granules. The granulator 1 is divided into three compartments 2, 3, 4 for granulation and a compartment 5 for subsequent 15 cooling and drying the granules.
The first compartment 2 of the granulator 1 comprises an inlet 7 for the supply of nuclei. Opposite to the inlet 7 is a first passage 8, leading to the second compartment 3. The 20 second compartment 3 comprises a second passage 9 opposite to the first passage 8 and leading to the third compartment 4. The third compartment 4 comprises an outlet 10 opposite to the second passage 9. As a result, the nuclei can flow from the inlet 7 to the outlet 10 in a straight flow path, 25 indicated in Figure 1 by arrow A.
The granulator 1 comprises a floor 12 made of a grid which supports a bed 13 of nuclei and which permits the passage of a fluidization agent, such as air, supplied from a 30 space 14 below the grid floor 12 and preheated by heaters 15 in the space 14. The heated air fluidizes the bed 13 of nuclei .
10
The space 14 below the grid floor 12 is divided into compartments 17, 18, 19 in line with the compartments 2, 3, 4 above the grid floor 12. In each of the compartments 2, 3, 4 the grid floor 12 of the granulator 1 is provided with 5 clusters of air-assisted sprayers 21 projecting above grid floor 12. The sprayers 21 spray an aqueous solution of urea into the fluidized bed 13. In the granulator compartments 2, 3, 4 water of the sprayed urea solution evaporates and urea crystallizes on the nuclei, which grow to form granules.
10
The aftercooler 5 is a fluidized bed cooler with a grid floor 22 supporting a bed 23 of freshly produced granules and a space below the grid floor 22 with a heater 24 for the supply of air fluidizing and drying the bed 23.
15
Air and air borne dust particles are discharged from the granulator compartments 2, 3, 4 and the aftercooler 5. The air can be stripped, e.g., in a scrubber and/or cyclone or a similar separator. Separated dust particles can be recycled 20 to the granulator.
The aftercooler 5 is provided with an outlet 26 for discharging the dried and cooled granules. Subsequently, undersize and oversize granules are separated from granules 25 of the desired size, which are discharged for storage. The oversize granules can be crushed to finer particles, which can be recycled together with the undersize particles.
Figure 2 shows the granulator 1 in a cross section 30 through a plane perpendicular to the flow direction A. In the shown embodiment, the sprayers 21 in a compartment are 11 arranged in three clusters 27 with spacings 28 between the clusters 27. Each cluster 27 generates a spraying zone 29 where an upward flow of the nuclei is induced by the air assisted sprayers 21. The spacings 28 between the clusters 27 § form unsprayed zones 30 without atomising air where the nuclei tend to flow downward (arrows B in Figure 2).
The arrangement of the sprayers 21 is shown in plan view on Figure 3. In this exemplary embodiment, the first 10 compartment 2 comprises 64 sprayers 21 arranged in three parallel clusters 27. In a compartment with a width of 3 m and a length of 2,35 m, this means an average sprayer density of more than 9 sprayers per m2. The clusters 27 in the first compartment have the same width and the same length. The 15 middle cluster 27 comprises 3 rows of 8 sprayers. The other two clusters comprise 8 columns alternately having two and three sprayers, respectively, adding up to a total of 16 sprayers per cluster. With a cluster width of 0,4 m and a cluster length of 1,7 m, the sprayer density in the middle 20 cluster would be above 35 sprayers per m2, while the sprayer density in the two other clusters would be above 29 sprayers per m2 .
The second and third compartments 3, 4 have three parallel clusters 27 with 18 sprayers per cluster. With a cluster width of 0, 4 m and a cluster length of 1,7 m, the sprayer density in these clusters 27 would be above 26 sprayers per m2. In a compartment with a width of 3 m and a length of 2,35 :m, this means an average sprayer density of more than 7 sprayers per m2. In each cluster 27 of the second and third compartment 3, 4 the clusters 27 have six columns of three sprayers 21. The distances between the second and the third 12 row and the fourth and fifth column are larger than the distances between the other columns.

Claims (15)

1. Een fluïde bed granuleerinrichting (1) omvattende een of meer compartimenten (2, 3, 4) met een vloer (12) met openingen voor de toevoer van een fluïdisatiemedium en een aantal sproeiers (21) verbonden met een toevoer voor een 5 granuleervloeistof, waarbij de sproeiers zijn ingericht om de vloeistof te spuiten in een of meer spuitzones (29) naast een of meer onbespoten zones (30) van het fluïde bed.A fluid bed granulating device (1) comprising one or more compartments (2, 3, 4) with a floor (12) with openings for the supply of a fluidization medium and a number of nozzles (21) connected to a supply for a granulating liquid wherein the nozzles are arranged to spray the liquid into one or more spray zones (29) adjacent to one or more un sprayed zones (30) of the fluid bed. 2. Granuleerinrichting volgens conclusie 1, waarin de 10 sproeiers (21) zijn verdeeld op ongelijke afstanden van elkaar.A granulating device according to claim 1, wherein the nozzles (21) are distributed at uneven distances from each other. 3. Granuleerinrichting volgens conclusie 2, waarbij de sproeiers (21) zijn aangebracht in clusters (27), waarbij de 15 kortste afstand tussen naburige sproeiers in een cluster kleiner is dan de kortste afstand tussen twee aangrenzende clusters.3. Granulating device according to claim 2, wherein the nozzles (21) are arranged in clusters (27), wherein the shortest distance between neighboring nozzles in a cluster is smaller than the shortest distance between two adjacent clusters. 4. Granuleerinrichting volgens conclusie 3 waarbij de 20 clusters (27) parallelle clusters zijn zich uitstrekken in stromïngsrichting (A).The granulating device of claim 3 wherein the 20 clusters (27) are parallel clusters extending in flow direction (A). 5. Granuleerinrichting volgens conclusie 4, waarbij de afstand tussen evenwijdige clusters (27) ongeveer 0,4 - 1 25 meter is.The granulating device of claim 4, wherein the distance between parallel clusters (27) is approximately 0.4-125 meters. 6. Granuleerinrichting volgens een der voorgaande conclusies 3 - 5, waarbij de afstand tussen sproeiers (21) binnen een cluster (27) ongeveer 0,1 - 0,4 meter is. 30Granulating device according to one of the preceding claims 3 - 5, wherein the distance between nozzles (21) within a cluster (27) is approximately 0.1 - 0.4 meters. 30 7. Granuleerinrichting volgens een der voorgaande conclusies 3-6, waarbij voor ten minste een deel van de sproeiers (21) de afstand tussen de clusters (27) overeenkomt met ongeveer 2 - 3 maal de afstand tussen sproeiers in een cluster. 5A granulating device according to any one of the preceding claims 3-6, wherein for at least a part of the nozzles (21) the distance between the clusters (27) corresponds to approximately 2-3 times the distance between nozzles in a cluster. 5 8. Granuleerinrichting volgens een der voorgaande conclusies, waarbij de sproeiers (21) zijn aangebracht in clusters (27) en waarbij de sproeierdichtheid in tenminste een van de compartimenten ten minste 7 sproeiers per m2 is, terwijl de 10 dichtheid per cluster van sproeiers ten minste 25 sproeiers per m2 is.A granulating device according to any one of the preceding claims, wherein the nozzles (21) are arranged in clusters (27) and wherein the nozzle density in at least one of the compartments is at least 7 nozzles per m2, while the density per cluster of nozzles is at least 25 nozzles per m2. 9. Granuleerinrichting volgens conclusie 8 omvattende een eerste compartiment (2) met een sproeierdichtheid van 15 tenminste 9 sproeiers (21) per m2 terwijl de dichtheid per cluster van sproeiers in het eerste compartiment ten minste 29 sproeiers per m2 is, en ten minste één verder compartiment (3, 4) met een sproeierdichtheid van ten minste 7 sproeiers per m2, terwij1 de dichtheid per cluster van sproeiers 20 tenminste 25 sproeiers per m2 is.9. Granulating device according to claim 8, comprising a first compartment (2) with a nozzle density of at least 9 nozzles (21) per m2, while the density per cluster of nozzles in the first compartment is at least 29 nozzles per m2, and at least one further compartment (3, 4) with a nozzle density of at least 7 nozzles per m2, while the density per cluster of nozzles is at least 25 nozzles per m2. 10. Granuleerinrichting volgens een der voorgaande conclusies, waarbij de vloer (12) een roostervloer is.A granulating device according to any one of the preceding claims, wherein the floor (12) is a slatted floor. 11. Granuleerinrichting volgens een der voorgaande conclusies, waarbij de afvoer van de granuleerinrichting (1) uitmondt in een nakoeler (15).A granulating device according to any one of the preceding claims, wherein the discharge from the granulating device (1) opens into an aftercooler (15). 12. Granuleerinrichting volgens conclusie 11, waarbij de 30 nakoeler een fluïde bed koeler (15) is.12. Granulating device according to claim 11, wherein the aftercooler is a fluid bed cooler (15). 13. Werkwijze voor de productie van een granulaat met behulp van een fluïde bed granuleerinrichting (1) omvattende een of meer compartimenten (2, 3, 4) met een bed van nuclei, waarbij een fluïdisatiemedium in de compartimenten wordt geblazen via 5 openingen in de vloer (12) van de compartimenten, terwijl een granuleervloeistof wordt gesproeid in het compartiment in spuitzones (29) van het fluïde bed die zijn afgewisseld met onbespoten zones (30) .13. Method for the production of a granulate using a fluid bed granulating device (1) comprising one or more compartments (2, 3, 4) with a bed of nuclei, wherein a fluidization medium is blown into the compartments via 5 openings in the compartments floor (12) of the compartments, while a granulating fluid is sprayed into the compartment into fluid bed spray zones (29) interspersed with non-sprayed zones (30). 14. Werkwijze volgens conclusie 13 uitgevoerd als een continu proces waarbij het materiaal van het fluïde bed beweegt in een stromingsrichting (A) van een of meer inlaten (7) naar een of meer uitlaten (10) van de granuleerinrichting, waarbij de spuitzones (29) evenwijdig zijn aan de stromingsrichting 15 (A) .A method according to claim 13 performed as a continuous process wherein the fluid bed material moves in a flow direction (A) from one or more inlets (7) to one or more outlets (10) of the granulating device, the spray zones (29) ) are parallel to the flow direction 15 (A). 15. Werkwijze volgens conclusie 14, waarbij de kortste afstand tussen twee sproeiers (21) aan weerszijden van een onbespoten zone (30) overeenkomt met tenminste de halve hoogte van het fluïde bed in het desbetreffende compartiment (2, 3, 4).The method of claim 14, wherein the shortest distance between two nozzles (21) on either side of an un-sprayed zone (30) corresponds to at least half the height of the fluid bed in the respective compartment (2, 3, 4).
NL2009297A 2012-08-08 2012-08-08 Fluidized bed granulation. NL2009297C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2009297A NL2009297C2 (en) 2012-08-08 2012-08-08 Fluidized bed granulation.
CN201310442474.7A CN103657519A (en) 2012-08-08 2013-08-08 Fluidized bed granulator
CN202010673988.3A CN111774006A (en) 2012-08-08 2013-08-08 Fluidized bed granulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2009297A NL2009297C2 (en) 2012-08-08 2012-08-08 Fluidized bed granulation.
NL2009297 2012-08-08

Publications (1)

Publication Number Publication Date
NL2009297C2 true NL2009297C2 (en) 2014-02-11

Family

ID=47146588

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2009297A NL2009297C2 (en) 2012-08-08 2012-08-08 Fluidized bed granulation.

Country Status (2)

Country Link
CN (2) CN111774006A (en)
NL (1) NL2009297C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544064B2 (en) 2014-10-28 2020-01-28 Yara International Asa Fluidized bed granulation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193504A (en) * 2014-08-07 2014-12-10 安徽省荆涂机电工程有限公司 Method for fluidized coating of fertilizer
EP3315192B1 (en) * 2016-10-27 2021-12-15 YARA International ASA Fluidized bed granulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077147A1 (en) * 2008-01-04 2009-07-08 Urea Casale S.A. Fluid bed granulation process and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2303212C2 (en) * 1973-01-24 1975-04-24 Basf Ag, 6700 Ludwigshafen Discharge device for granulating fluidized bed apparatus
JPS61257229A (en) * 1985-05-09 1986-11-14 Okawara Mfg Co Ltd Granulating method for liquid material
EP1491251A1 (en) * 2003-06-26 2004-12-29 Urea Casale S.A. Fluid bed granulation process and apparatus
AU2007266308B2 (en) * 2006-05-26 2012-09-06 Corky's Carbon And Combustion Pty Ltd A horizontal fluidised bed reactor
JP4455643B2 (en) * 2007-10-30 2010-04-21 東洋エンジニアリング株式会社 Granulating apparatus and granulating method using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077147A1 (en) * 2008-01-04 2009-07-08 Urea Casale S.A. Fluid bed granulation process and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544064B2 (en) 2014-10-28 2020-01-28 Yara International Asa Fluidized bed granulation

Also Published As

Publication number Publication date
CN111774006A (en) 2020-10-16
CN103657519A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
CA2722000C (en) Method and device for processing of granules
US20240042480A1 (en) Fluid Bed Granulation Process and Apparatus
US9868098B2 (en) Fluidized bed granulation
US4686115A (en) Process for granulating chemical products and apparatus therefor
JP4852270B2 (en) Method for producing granular urea product
NL2009297C2 (en) Fluidized bed granulation.
US10544064B2 (en) Fluidized bed granulation
AU2017349189B2 (en) Fluidized bed granulation
RU2794925C1 (en) Fluidized-bed granulator
JP2022547340A (en) fluid bed granulator

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: GREEN GRANULATION LIMITED; CN

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: GREEN GRANULATION TECHNOLOGY LIMITED

Effective date: 20190311

HC Change of name(s) of proprietor(s)

Owner name: CASALE LIMITED; CN

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: GREEN GRANULATION LIMITED

Effective date: 20230214