NL2002892C2 - Method and device for signal time of arrival determination. - Google Patents

Method and device for signal time of arrival determination. Download PDF

Info

Publication number
NL2002892C2
NL2002892C2 NL2002892A NL2002892A NL2002892C2 NL 2002892 C2 NL2002892 C2 NL 2002892C2 NL 2002892 A NL2002892 A NL 2002892A NL 2002892 A NL2002892 A NL 2002892A NL 2002892 C2 NL2002892 C2 NL 2002892C2
Authority
NL
Netherlands
Prior art keywords
time
signal
dependent
input signal
dependent signal
Prior art date
Application number
NL2002892A
Other languages
Dutch (nl)
Inventor
Giovanni Bellusci
Gerard Johannes Maria Janssen
Original Assignee
Univ Delft Tech
Stichting Tech Wetenschapp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech, Stichting Tech Wetenschapp filed Critical Univ Delft Tech
Priority to NL2002892A priority Critical patent/NL2002892C2/en
Priority to PCT/NL2010/050281 priority patent/WO2010131966A1/en
Application granted granted Critical
Publication of NL2002892C2 publication Critical patent/NL2002892C2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Analogue/Digital Conversion (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

METHOD AND DEVICE FOR SIGNAL TIME OF ARRIVAL DETERMINATION
FIELD
5 The invention relates to a method and a device for determining time of arrival (TOA) values of received wireless signals. The invention further relates to devices and systems for geolocation.
BACKGROUND
10 In recent years, the use of geo location systems such as the Global Positioning
System (GPS) has become ubiquitous.
However, GPS technology has limitations. It does not work, or not very well, inside buildings, in some urban locales, or when a GPS receiver is surrounded by foliage. In addition, the precision of currently available GPS technology is limited to 15 approximately 1 meter resolution. Geolocation using ultra-wideband (UWB) technology overcomes some of these limitations.
UWB technology in combination with algorithms based on measurement of Time of Arrival (TOA) or Time Difference of Arrival (TDOA) can be applied in geolocation systems to reach centimeter level accuracy, since the relatively large 20 bandwidth of UWB pulse signals allows a fine time resolution and accurate estimation of the time of flight along the direct path from the transmitter. See e.g., S. Gezici, Zhi Tian, G.B. Giannakis, H. Kobayashi, A.F. Molisch, H.V. Poor, and Z. Sahinoglu, ’’Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks”, IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70-84, Jul. 2005.
25 Figure 1 schematically shows a prior art UWB geolocation system. Such a system is for example disclosed in US6054950 and will be discussed here briefly, in particular concerning the use of TOA measurements.
The system in Figure 1 comprises a receiver 1 located at coordinates (xl,yl,zl), and transmitters 2, 3, and 4. In a known embodiment, the receiver 1 and transmitters 2, 30 3, and 4 are UWB devices, and the transmitters 2, 3, and 4 send out pulsed signals.
Care is taken to make sure that the transmitters 2, 3, and 4 send out pulses one at a time, and that the receiver 1 “knows” which transmitter 2, 3, or 4 is broadcasting at 2 which moment. This can be achieved by pre-configuring each device accordingly, or by enabling additional communications between the various devices, or in another manner. In addition, care must be taken to make sure the receiver 1 knows at which coordinates (x2,y2,z2; x3,y3,z3; x4,y4,z4) each transmitter 2, 3, and 4 is located. These data may 5 also be pre-conflgured, communicated, or otherwise made known to the receiver 1.
The receiver 1 will receive an input signal from the transmitters 2, 3, and 4 and record arrival times of pulses in that input signal.
This signal transmitted by the transmitters 2, 3, and 4 will consist of a series of pulses. Due to the wideband nature of UWB technology, these pulses can have a 10 relatively short time duration, in the order of tens or hundreds of picoseconds. Due to reflections, scattering, and other disturbances the input signal as received by the receiver can be a series of relatively broad pulses with many peaks. Each received pulse contains the contributions of many replicas of a transmitted pulse that arrive via different paths, so-called multipath components, and thus each received pulse can have 15 a duration in the tens or hundreds of nanoseconds. It is common to define the arrival time of the first main peak in the received pulse as the TOA. In the following, with “received” or “input” pulse is meant the combination of all multipath contributions, as it is received at the receiver 1.
When an input signal pulse is received, the receiver 1 will use its knowledge of 20 the transmitters to determine which transmitter sent the pulse and at which time it was sent. From the TOA of that pulse, here defined as the time difference between sending and receiving the pulse, and the known speed of light the receiver 1 can calculate its distance from the transmitter. E.g., if transmitter 2 sends a pulse that is recorded by receiver 1, receiver 1 can then calculate distance dl 2 to transmitter 2. The similar 25 procedure for transmitters 3 and 4 will give values for distances d 13 and dl4, respectively.
Information from three transmitters is enough to determine the coordinate values (xl, yl, zl). Adding more transmitters will make the system more robust, and give an indication of the error in the measured location (xl, yl, zl), or can be used to 30 solve an unknown reference time in TDOA systems. Sources of error can be for example electromagnetic interference from other electromagnetic sources, or multiple reflections and scatterings of the signals making TOA determinations more difficult.
3
However, while the problems of TOA based UWB ranging have been widely addressed in literature and most of the main theoretical issues have been investigated, the proposed solutions are still difficult to implement in practical systems. In particular, complex signal processing and very high sampling rates, in the order of several GHz, 5 usually required for these signals, are today the main obstacles for the realization of cheap and affordable UWB positioning systems.
A prior art alternative to using costly high frequency sampling means is presented by estimators based on energy detection (ED). These can be implemented simply at sub-Nyquist sampling rates, see for example I. Guvenc and Z. Sahinoglu, 10 ‘Threshold-based TOA estimation for impulse radio UWB systems”, Proc. IEEE Int. Conf. on Ultra-Wideband (ICU), Zurich, Switzerland, September 2005, pp 420-425.
In ED based estimators, the energy in small time intervals (“bins”) is determined. A drawback is that TOA precision is reduced due to the bin size and that integrator banks are needed, which are also costly.
15 In “Low Complexity Frequency Domain TOA Estimation for IR-UWB
Communications” by Monica Navarro et al., presented at the 2006 IEEE 64th vehicular technology conference, a number of TOA estimation approaches, including frequency domain TOA estimation procedures are presented. The article further presents a frequency domain TOA estimation procedure using a bank of orthogonal analog filters 20 for a frequency-domain sampling of the input signal.
It is an object of this invention to provide a method and unit for determining the TOA of wireless signals in a manner that overcomes or reduces some or all of the drawbacks from the prior art.
25 SUMMARY OF THE INVENTION
The object is achieved by a device for determining a time-of-arrival of an input signal, comprising a first derived signal generation device, a second derived signal generation device, a first sampler device, a second sampler device, and a calculation device; 30 the device for determining time-of-arrival of the input signal being arranged for receiving the input signal; the first derived signal generation device being arranged to generate a first time dependent signal with a first time dependence from the received input signal and being 4 connected to an input of the first sampler device; the second derived signal generation device being arranged to generate a second time dependent signal with a second time dependence from the received input signal and being connected to an input of the second sampler device, the first time dependence of 5 the first time dependent signal being different from the second time dependence of the second time dependent signal; the first and second sampler device being arranged for sampling at least once the first time dependent signal and the second time dependent signal, respectively; the calculation device being arranged for receiving the at least once sampled first time 10 dependent signal and the at least once sampled second time dependent signal and for d etermining a value of the time-of-arrival from the received at least once sampled first time dependent signal and at least once sampled second time dependent signal.
In an embodiment, the first time dependence is a first predetermined decrease rate and the second time dependence is a second predetermined decrease rate.
15 In an embodiment, the first time dependent signal is a first exponential decay function with a first time constant (xl) and the second time dependent signal is a second exponential decay function with a second time constant (x2).
In an embodiment, the device as described above further comprises a controller device, wherein the controller device is arranged for receiving the input signal and the 20 controller device is arranged for controlling, based on the received input signal, the generation of the first time dependent signal and the second time dependent signal from the received input signal.
In an embodiment, the controller device is arranged to establish from the received input signal if a first condition of the input signal is fulfilled, the first 25 condition being a test if a value of the input signal increasing and exceeding a threshold value; if the first condition is fulfilled the controller device being arranged for enabling the first derived signal generation device to generate the first time dependent signal and the second derived signal generation device to generate the second time dependent signal.
30 In an embodiment, the controller device is arranged to establish from the received input signal if a second condition of the input signal is fulfilled, the second condition being a test if a value of the input signal is decreasing in time after reaching a maximum value; if the second condition is fulfilled the controller device being 5 arranged for disabling the first derived signal generation device to generate the first time dependent signal and the second derived signal generation device to generate the second time dependent signal.
In an embodiment, the controller device is arranged for receiving either the first 5 or the second time dependent signal and the controller device is arranged to establish from either the first or the second time dependent signal if a second condition of the input signal is fulfilled, the second condition being a test if a value of the input signal is decreasing in time after reaching a maximum value; if the second condition is fulfilled the controller device being arranged for disabling the first derived signal generation 10 device to generate the first time dependent signal and the second derived signal generation device to generate the second time dependent signal.
In an embodiment, the device as described above further compries a clock, wherein the controller device is arranged for controlling the sampling of the first and second time dependent signals by a clock signal from the clock, the sampling being 15 enabled if the second condition is fulfilled.
In an embodiment, the device further comprises a logic element arranged for receiving the input signal and for passing the input signal to the first and second derived signal generation device; the first derived signal generation device comprises a first envelope detector block 20 comprising a first diode, a first capacitor, a first resistor, and a first switch element, and the second derived signal generation device comprises a second envelope detector block comprising a second diode, a second capacitor, a second resistor, and a second switch element; the first diode having an anode connected to an output of the logic element for 25 receiving the input signal, a cathode of the first diode being connected to one terminal of the first capacitor, to one terminal of the first resistor and to one terminal of the first switch element, the other terminals of the first capacitor, the first resistor and the first switch element each being connected to ground; the second diode having an anode connected to the output of the logic element for receiving the input signal, a cathode of 30 the second diode being connected to one terminal of the second capacitor, to one terminal of the second resistor and to one terminal of the second switch element, the other terminals of the second capacitor, the second resistor and the second switch element each being connected to ground, wherein a product of a resistance of the first 6 resistor and a capacitance of the first capacitor is proportional to the first time constant and a product of a resistance of the second resistor and a capacitance of the second capacitor is proportional to the second time constant.
In an embodiment, the device comprises a third capacitor; the cathode of the 5 first diode having a connection with an input terminal of the first sampling device and with a terminal of the third capacitor; the cathode of the second diode having a connection with an input terminal of the second sampling device .
In an embodiment, the device for determining a time-of-arrival of an input signal comprises an operational amplifier; in the connection between the cathode of the 10 first diode with the input terminal of the first sampling device and with the third capacitor a positive input (+) of the operational amplifier being connected to the cathode of the first diode, an output of the operational amplifier being connected to the negative input (-) of the operational amplifier and the output of the operational amplifier being connected to the input terminal of the first sampling device and the 15 input of the third capacitor,
In an embodiment, the device for determining a time-of-arrival of an input signal comprises a third switch element and a signal slope detection block comprising the third capacitor, a third resistor and a further logic element; the output of the operational amplifier further being connected to a terminal of third 20 capacitor, the other terminal of the third capacitor being connected to an input of the further logic element and to a terminal of third resistor, the other terminal of the third resistor being connected to ground; the third switch element having one terminal connected to the anode of first diode and to the anode of the second diode, the other terminal of the third switch element being 25 connected to ground; the further logic element being arranged for controlling the third switch element based on a detection of a peak of the input signal by the slope detection block.
In an embodiment, the device further comprises a coarse detection circuit for determining a repetition pattern of the input signal, a repetition time of the repetition 30 pattern being used for coarse estimation of the time-of-arrival.
In an embodiment, the input signal is selected from a group comprising radio signals, acoustic signals and optical signals.
7
Further, the object is achieved by a method for determining a time-of-arrival of an input signal, comprising: receiving the input signal; 5 generating a first time dependent signal with a first time dependence from the received input signal; generating a second time dependent signal with a second time dependence from the received input signal, the first time dependence of the first time dependent signal being different from the second time dependence of the second time dependent signal; 10 sampling at least once the first time dependent signal and the second time dependent signal; determining a value of the time-of-arrival from the at least once sampled first time dependent signal and at least once sampled second time dependent signal.
In an embodiment, the method comprises controlling, based on the received 15 input signal, the generation of the first time dependent signal and the second time dependent signal from the received input signal.
In an embodiment, the method further comprises establishing from the received input signal if a first condition of the input signal is fulfilled, the first condition being a test if a value of the input signal increasing and exceeding a threshold value, if the first 20 condition is fulfilled, enabling the generation of the first time dependent signal and the second time dependent signal.
In an embodiment, the method further comprises establishing from the received input signal if a second condition of the input signal is fulfilled, the second condition being a test if a value of the input signal is decreasing in time after reaching a 25 maximum value; if the second condition is fulfilled, the method comprising disabling the generation of the first time dependent signal and the second time dependent signal.
In an alternative embodiment, the method further comprises establishing from either the first or the second time dependent signal if a second condition of the input signal is fulfilled, the second condition being a test if a value of the input signal is 30 decreasing in time after reaching a maximum value; if the second condition is fulfilled, the method comprising disabling the generation of the first time dependent signal and the second time dependent signal.
8
In an embodiment, the method comprises controlling of the sampling of the first and second time dependent signals, the sampling being enabled if the second condition is fulfilled.
In an embodiment, determining the value of the time-of-arrival from the at least 5 once sampled first time dependent signals and second time dependent signals comprises solving an equation iSj cxp^i-r)/^) = S2, where t is the time at which first and second time dependent signal samples are taken, T is point of time-of-arrival TOA, Si is the value of the first time dependent signal 10 sample, S2 is the value of the second time dependent signal sample, and xl is the first time constant.
In an alternative embodiment, determining the value of the time-of-arrival from the at least once sampled first time dependent signals and second time dependent signals comprises solving a set of equations 15 Sliexp((t,-T)/Tl) = S2., where t, is the time at which first and second time dependent signal sample i are taken,
Si,i is the value of the first time dependent signal sample i at time h, and S2,i is the value of the second time dependent signal sample i at time h, T is point of time-of-arrival TOA, and τΐ is the first time constant.
20 In yet another alternative embodiment, determining the value of the time-of- arrival from the at least once sampled first time dependent signals and second time dependent signals comprises solving a set of equations si,i exP((h -Τ)Ιτι) = S2,i exp((h ~Τ)/τ21 where f is the time at which first and second time dependent signal sample i are taken, 25 Si,i is the value of the first time dependent signal sample i at time f, and S2,i is the value of the second time dependent signal sample i at time f, T is point of time-of-arrival TOA, τΐ is the first time constant, and τ2 is the second time constant.
In an embodiment, the method further comprises determining a repetition pattern of the input signal, a repetition time of the repetition pattern being used for 30 coarse estimation of the time-of-arrival, the determination of the repetition pattern preceding the generation of the first time dependent signal and of the second time dependent signal.
9
Further the invention relates to an electromagnetic signal detector, comprising: - a Time Of Arrival determining unit comprising a device for determining a time-of-arrival of an input signal as described above, - an electromagnetic signal receiver arranged to provide an input signal to the Time Of 5 Arrival determining unit.
Additionally the present invention relates to a system for determining the position of a remote object, comprising: - a plurality of electromagnetic signal transmitters each arranged for transmitting electromagnetic signals, 10 - a electromagnetic signal detector as described above, the electromagnetic signal detector being arranged for receiving the electromagnetic signals as input signal from each of the electromagnetic signal transmitters, the electromagnetic signal detector being associated with the remote object.
15 BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be explained in more detail below with reference to a few drawings in which illustrative embodiments of the invention are shown. It will be appreciated by the person skilled in the art that other alternative and equivalent embodiments of the invention can be conceived and reduced to practice without 20 departing from the true spirit of the invention, the scope of the invention being limited only by the appended claims.
Figure 1 schematically shows a prior art UWB geo location system; figure 2 schematically shows a TOA determination unit according to an embodiment of the invention; 25 Figure 3 schematically shows an electrical circuit embodiment of the unit according to an embodiment of the invention;
Figure 4 schematically shows an electromagnetic detector according to an embodiment of the invention;
Figure 5A-B schematically shows a single UWB pulse, with first and second derived, 30 or time dependent, signals according to an embodiment of the invention;
Figure 6 schematically shows a train of UWB pulses and corresponding energy density measurements;
Figure 7 schematically shows a single UWB pulse with TOA estimates according to an 10 embodiment of the invention;
Figure 8 schematically shows a flow diagram for the TOA determination method according to an embodiment of the invention.
The figures are not necessarily drawn to scale. In the figures identical 5 components are denoted by the same reference numerals.
DETAILED DESCRIPTION
Figure 2 schematically shows a device 78 for determining TOA of an input signal pulse according to an embodiment of the invention.
10 The device 78 comprises a controller device 73, a first derived signal generation device 71, a second derived signal generation device 72, a first sampler device 74, a second sampler device 75, and a calculation device 76.
An input signal 70 is received on an input 79 which is connected to controller device 73. The controller device 73 is arranged for controlling the first derived signal 15 generation device 71, the second derived signal generation device 72, the first sampler device 74, the second sampler device 75, and the calculation device 76 depending on a condition of the input signal 70.
Further, the input 79 is shared with the first derived signal generation device 71 and the second derived signal generation device 72 for receiving the input signal 70 20 In an embodiment, the controller device 73 can be described as being in one of three states: “zero”: awaiting an input signal pulse, “tracking”: receiving an input signal pulse, and awaiting the maximum of the pulse that signifies the TOA, 25 “decreasing”: the period after the TOA.
The reasons for the names of the states will become clear in the following description of the drawings.
In the “tracking” state the derived signal generation devices 71 and 72 will each generate a derived signal which increases in value in proportion to an increasing input 30 signal strength, generally tracking the value of the input signal. Below, the derived signal may also be referred to as time dependent signal.
11
An output of the first derived signal generation device 71 is connected to an input of the first sampler device 74 and an output of the second derived signal generation device 72 is connected to an input of the second sampler device 75.
The generated signals of the first 71 and second 72 derived signal generation 5 devices are made available to a first sampler device 74 and a second sampler device 75, respectively.
In the “decreasing” state, the first 74 and second 75 sampler devices will sample derived signal strength values of the first 71 and second 72 derived signal devices, thus recording first and second signal samples, respectively.
10 The first and second sampler devices 74 and 75 each have an output which is connected to an input of the calculation device 76. Thus, first and second signal samples from the first and second sampler devices are fed to the calculation device 76. The calculation device 76 is arranged for calculating the TOA 77 from the first and second signal samples taken by the sampler devices 74 and 75. This calculation may be 15 done according to the principles described in connection with Figure 5B.
In another embodiment, the controller 73 is arranged for controlling the first derived signal generation device 71, the second derived signal generation device 72, the first sampler device 74, the second sampler device 75, and the calculation device 76 depending on conditions of the input signal and the first and/or the second derived 20 signals from the first and second derived signal generation device, respectively. In this embodiment, the input signal 70 and the signal from the first and/or the second derived signal generation devices 71 and 72 is available to the controller device 73 for controlling. In the “tracking” state, when the signals of the derived signal generation devices track the input signal, these first and second derived signals may be used by the 25 controller device instead of the input signal.
Figure 3 schematically shows an electrical circuit as an embodiment according to the invention.
The electrical circuit as device for determining time-of-arrival comprises a logic element 81.
30 It further comprises a first envelope detector block R1 comprising a first diode 87, a first capacitor 88, a first resistor 89, and a first switch element 90, and a second envelope detector block R2 comprising a second diode 82, a second capacitor 83, a second resistor 84, and a second switch element 85.
12
In the first envelope detector block Rl, the first diode 87 has an anode connected to an output of the logic element 81. The cathode of the first diode 87 is connected to one terminal of the first capacitor 88, one terminal of the first resistor 89 and one terminal of the first switch element 90. The other terminals of the first 5 capacitor 88, the first resistor 89 and the first switch element 90 are each connected to ground.
In the second envelope detector block R2, the second diode 82 has an anode connected to an output of the logic element 81. The cathode of the second diode 82 is connected to one terminal of the second capacitor 83, one terminal of the second 10 resistor 84 and one terminal of the second switch element 85. The other terminals of the second capacitor 83, the second resistor 84 and the second switch element 85 are each connected to ground.
The electrical circuit further comprises a first sampling device 91 and a second sampling device 86. The electrical circuit also comprises a timer 98, and a signal slope 15 detection block comprising a third capacitor 95, a third resistor 96 and a further logic element 97.
In the embodiment shown in Figure 3 the electrical circuit comprises an operational amplifier 94 as buffer amplifier.
A positive input (+) of the operational amplifier 94 is connected to the cathode 20 of the first diode 87. The output of the operational amplifier 94 is connected to the negative input (-) of the operational amplifier.
The first sampling device 91 is connected with an input to the output of the operational amplifier 94, the second sampling device 86 is connected with an input to the cathode of second diode 82. Further, both the first and second sampling devices are 25 connected to a clock 92.
Also, the output of the operational amplifier 94 is connected to a terminal of capacitor 95. The other terminal of the capacitor 95 is connected to an input of logic element 97 and to a terminal of third resistor 96. The other terminal of the third resistor 96 is connected to ground.
30 The logic element 97 is arranged for controlling a third switch element 99 which has one terminal connected to the anode of first diode 87 and the anode of the second diode 82. The other terminal of the third switch element 99 is connected to ground.
13
Referring to Figure 2, the first derived signal generation device 71 is implemented in the circuit of Figure 3 as the first envelope detector block R1 circuit with first capacitor 88, first resistor 89, and with first diode 87 preventing current flowing back out of the first envelope detector block R1.
5 Similarly, the second signal generation device 72 is implemented as the second envelope detector block R2, with second capacitor 83, second resistor 84, and second diode 82.
The input signal 70 is available as an electrical voltage at point 80. Logic element 81 conducts current if the voltage at 80 exceeds a threshold value. Beyond 10 block 81, the first and second envelope detector blocks R1, R2 are placed in parallel.
As long as the voltage exceeds the threshold value, and third switch element 99 does not connect the signal to ground, first and second capacitors 88 and 83 will become increasingly charged. In an embodiment, the TOA determination unit comprising the electrical circuit of Figure 7 can then be said to be in the state “tracking”.
15 In an embodiment, a first time constant xl of the first envelope detector block
Rl obtained as the product of the resistance of first resistor 89 and capacitance of first capacitor 88 is of the order of half the sampling time of the analog-to-digital converter. For example, if the signal is sampled with a sampling frequency 50 MHz, a suitable value for rl can be 10 ns. A second time constant i2 of the second envelope detector 20 block R2 obtained as the product of the resistance of second resistor 84 and capacitance of second capacitor 83 is significantly larger than the first time constant xl.
The operational amplifier 94, which acts as a buffer amplifier, is arranged to prevent the first envelope detector block (Rl) and the signal slope detection block from loading each other.
25 As such, in the absence of an input voltage, a voltage at the input of first sampling device 91 will be determined by first resistor 89 and first capacitor 88, whereas a voltage at the input of the second sampling device 86 will be determined by the second resistor 84 and second capacitor 83.
An output of the operational amplifier 94 is connected to a resistor-capacitor 30 (RC) circuit 95, 96.
The RC circuit 95, 96 formed by capacitor 95 and resistor 96 is used as a differentiator. In combination with a sign detector or logic element 97, a peak detector is formed. When the differentiated signal obtained from the output of the amplifier 94 14 goes from positive to negative, a peak in the received input signal is detected and a peak received signal is output to the third switch element 99.
After a peak has been detected and the peak received signal is output to the third switch element 99, the third switch element 99 will connect the input signal 70 to 5 ground, thus stopping the flow of current to the first and second envelope detector block R1, R2 . The first and second diodes 87 and 82 will each prevent that the first and second envelope detector block, respectively, discharges to ground via the third switch element 99.
The voltage at the input side of the sampling devices 91 and 86 will now 10 decrease exponentially, with time constants rl and τ2, respectively. In an embodiment, the TO A determination unit comprising the electrical circuit of Figure 3 can then be said to be in the state “decreasing”.
In an embodiment, time constant x2 can be approximated as infinity, so that the voltage at the input side of the second sampling device 86 is substantially constant.
15 Alternatively, however, this is not required. As long as xl and x2 are different, the method can be used to determine TOA as will be illustrated below.
Connecting the RC circuit 95, 96 which is used as a differentiator to the output of the envelope detector block with the lowest time constant, in this case Rl, is advantageous since the exponential decay of the voltage at the output side of Rl 20 ensures that the differentiated signal remains negative, and thus the third switch element will continue connecting the input signal 70 to ground. It is noted that from this signal it is easier to detect the peak, since it will decrease after reaching the peak. The duration of short-circuiting the input to ground is preferably determined by a predetermined timing circuit.
25 The sampling devices 91 and 86 operate on a clock 92. On an output 93, the values from the sampling devices will be available for further processing in a calculation device (not shown in Figure 3) to calculate the TOA value. The sample values may be first stored in a memory connected to the output 93. The details of the TOA calculation based on the recorded sample values will be discussed in more detail 30 with reference to Figure 5B.
In the embodiment of the invention shown in Figure 3, a timer 98 sends a reset signal after a predetermined time interval to the first and second switch elements 90, 85. The first and second switch elements 90 and 85 are arranged when receiving the 15 reset signal, to connect the first and second capacitors 89 and 84 to ground, thus providing a reset of the first and second envelope detector circuits.
It is noted that resetting the circuit can be done by using other means than timer 98. The circuit of Figure 3 can be implemented as an Integrated Circuit (TC).
5 It is further noted that the operational amplifier 94 as buffer amplifier is optional and may be omitted and be replaced by wired connections between the cathode of the first diode 87 and the first sampling device 91 and the third capacitor 95.
Figure 4 schematically shows an electromagnetic receiver 100 according the invention. The electromagnetic receiver 100 comprises a signal receiver 101. In an 10 embodiment the signal receiver 101 is an U WB receiver.
The electromagnetic receiver 100 further comprises a TOA determination unit 102, as is embodied by a device for determining time-of-arrival of an input signal according to the present invention, for example as represented by the device shown in Figure 2.
15 The electromagnetic receiver 100 also comprises a location calculator device 103.
An output of the signal receiver 101 is connected to an input of the TOA determinat ion unit 102. An output of the TOA determination unit 102 is connected to an input of the location calculator device 103.
20 In an embodiment, the signal receiver 101 receives the input signal 70 and presents the received input signal to the TOA determination unit 102, which in turn provides TOA values to the location calculator device 103.
In an embodiment, the TOA determination unit 102 is further arranged for performing a coarse TOA estimate. In a further embodiment, the TOA determination 25 unit 102 is arranged for coarse TOA determination following the approach outlined with reference to Figure 6.
In a further embodiment, the TOA determination unit 102 is arranged for performing statistical processing of the determined TOA values.
In a further embodiment, the TOA determination unit 102 is arranged for 30 performing statistical processing of the determined TOA values following the approach outlined with reference to Figure 7.
16
In an alternative embodiment, the location calculator device 103 is arranged for performing statistical processing of the determined TOA values and/or of the calculated positions.
It is noted that the TOA determination unit 102 may comprise a calculation 5 device to calculate TOA values from the measured samples (obtained as explained with reference to Figure 2). However, it may also be advantageous to place a single calculation device such as a microprocessor coupled to a memory, in the location calculator device 103 for calculation of both TOA values and positions from TOA values. Likewise, the control functions discussed in connection with Figure 2 may be 10 handled by dedicated hardware components, or by a programmable device such as a processor.
In an embodiment, the electromagnetic receiver 100 is arranged and configured for use in a geolocation system. For example the geolocation system may be arranged as the one schematically shown in Figure 1.
15 It is noted that the invention allows that the electromagnetic radiation used complies with governmental guidelines, such as for example Federal Communications
Commission (FCC) guidelines.
In an embodiment, frequency ranges and bandwidths of UWB standards, such as for example a (future) IEEE standard, are used in devices and systems according to 20 the invention. However, the invention is not limited to use by means of only UWB standards. In particular, use of signals with bandwidths larger than those common in UWB (typically 500 MHz) may be advantageous, for example due to increased location precision and/or improved signal-to-noisc ratios.
Another application can involve the use of light pulses. In this embodiment the 25 device for determining a time-of-arrival of an input signal, is arranged for using light pulses (i.e. an optical signal) as input signal, in which a photo sensitive device is arranged as input device for receiving the input signal.
The light pulses may have a wavelength in the infrared range or the visible range of the spectrum.
30 In some embodiments, the light pulses may have a wavelength in the ultraviolet range of the spectrum.
17
In an embodiment the device for determining a time-of-arrival of an input signal, is arranged for using acoustic signal as input signal, in which a microphone or hydrophone is arranged as input device for receiving the input signal.
The method for determining TOA values according to the invention will now be 5 illustrated in more detail.
Figure 5 A schematically shows a received input signal pulse 70 using UWB signals. On the horizontal axis, time is plotted. On the vertical axis, received input signal strength is indicated.
A typical time duration for the emitted UWB pulses is tens or hundreds of 10 picoseconds (ps), whereas the received, multipath, signal as depicted in Figure 5A, composed of contributions from the same original pulse arriving via different paths, can be tens to hundreds of nanoseconds (ns) in width. The received signal is a multipath signal since each emitted UWB pulse may follow a number of paths due to reflections of the pulse signal with relevant obstacles between the emitter and the receiver.
15 Figure 5B shows the same input signal as Figure 5A, but now representations of the first 31 and the second 32 derived, or time dependent, signal are overlaid.
As indicated earlier, what was transmitted as a relatively narrow pulse signal can due to reflections, scattering, and other disturbances, be received by the receiver as a relatively broad signal with many peaks. It is common to define the arrival time of the 20 first main peak in the received pulse as the TOA.
In Figure 5B, the TOA is indicated by point in time 43, and the corresponding peak value by 41. The threshold value, the exceeding of which at time 42 causes the change from “zero” to “tracking” state, is indicated by 44. The threshold value is used as a tuning parameter. A relatively too high threshold value will cause low peak values 25 to be missed, whereas a relatively too low threshold value may trigger measurements by noise rather than the main peak.
After the peak that occurs at point in time 43, the slope of the input signal 70 turns negative, and the state will go from “tracking” to “decreasing”. The first and second derived signals, which have been overlapping up to point in time 43, will now 30 start to diverge, since the first and second derived signal generators 71 and 72 differ in such a way that the first derived signal has a different decrease rate than the second derived signal. In an embodiment, the first and second derived signal are each controlled to decrease at a respective predetermined rate. In a further embodiment, the 18 first and second derived signals are each controlled to decay exponentially with a first time constant rl and a second time constant τ2, respectively. Expressed in a mathematical formula, the first derived signal value will be proportional to exp 5 where exp indicates the exponential function, t is the time, and T the TOA value. The second derived signal value will be proportional to exp (~(β-Τ)Ιτ2).
It is advantageous to set the first time constant τΐ to a value that is in the order of half the sampling time of the analog-to-digital converter, i.e. about 10 nanoseconds 10 for a sampling frequency of 50 MHz, whereas the second time constant x2 is set to a much larger value. This will cause the second derived signal value to be approximately constant in the time frame of the pulse width, whereas the first derived signal value significantly decreases in the same time frame.
A first 37 and a second 33 sample value are taken of the first and the second 15 derived signal, respectively.
In an embodiment, the sampling may be done at a sampling rate which is low compared to the rate at which the input signal fluctuates. Such a strategy may provide cost savings. However, due to the low sampling rate, it is unlikely that at exactly the TOA point in time 43 the first and second samples 33 and 37 will be recorded. In such 20 a case, the invention advantageously provides that from the known decay rate of the first derived signal and the constant second derived signal, respectively, the TOA point in time 43 may be calculated by solving the equation [1] 51cxp((/-r)/r1) = 52, [1] where t is the time at which samples 37 and 33 are taken, T is TOA, Si is the 25 value of sample 37, S2 is the value of sample 33, and rl is the first time constant rl.
In an embodiment, the first 31 and second 32 derived signals are sampled multiple times, for example giving samples 37, 38, 39, and 40 of the first derived signal, and 33,34,35, and 36 of the second derived signal. TOA can then be determined by solving the system of equations [2] 30 Sucxp{(ti-T)/Tl) = Sv, where fi is the time at which sample i is taken, Si,j is the value of sample i at time tj of the first derived signal, and S24 is the value of sample i at time of the second 19 derived signal. The advantage is that in this system of equations [2] the effects of the sampling error, schematically represented by error bars in Figure 5B, can be reduced. Also the effects of clock jitter in the sampler control, giving uncertainty in the times h at which samples are taken, can be reduced.
5 The skilled in the art will appreciate that by solving the system of equations with a first and a second set of samples, a TOA value is obtained, optionally also including an estimate of the TOA error.
A further advantage is that solving a system of equations allows solving for τΐ as well as for TOA. In this manner, the system can be made robust against fluctuations 10 in the time constant τ 1. For example, in certain embodiments of the invention the decay function may be implemented using electrical resistance and capacitor elements, in which the time constant may be generally temperature dependent.
In an embodiment, the time constant τ2 is not taken to be effectively infinite. The equations [3] then become of the form 15 Sy exp((f;-Τ)!τχ) = Sy exp((ti-Τ)/τ2), ^
In an embodiment, the time constants τΐ and τ2 values arc checked by introducing a periodic calibration based on a known input voltage. Again, multiple samples can be used to reduce the quantization error.
In a further embodiment, the first and second sampling devices used to record 20 samples 33 and 37, or sets 33,34,35,36 and 37,38,39,40 are only active in the state “decreasing”, in other words after TOA, to save power. This is advantageous in low power devices, for example, battery powered mobile devices to increase battery lifetime.
In an alternative embodiment, the first 31 and second 32 derived signals are not 25 sampled synchronously. For example, a single sampling device combined with an input multiplexer, the input multiplexer in an alternating manner connecting an input of the single sampling device to the output of the first and second derived signal generation devices, can sample value 33 and 38. Assuming that the not sampled value 34 is approximately equal to the sampled value 33, equation [1] can still be used to solve for 30 TOA with Si having the value of sample 38 and S2 the value of sample 33.
Alternatively, multiple samples may be taken in an alternating manner with a single sampling device, for example resulting in a first sample set Si,; containing samples 37 and 39, and a second sample set S24 containing samples 34 and 36. The intersection of 20 the first curve formed by plotting the first sample set values against sampling time and the second curve formed by plotting the second sample set values against sampling time will also give TOA. Figure 6 schematically illustrates a coarse selection method according to an embodiment of the invention.
5 With a plurality of transmitters sending pulses 50,51, and 52, in a properly configured geolocation system pulses will be received one after another in a relatively regular sequence.
It is advantageous that the device for determining TOA of an input signal pulse is capable to coarsely determine when to expect a pulse, especially if the threshold 10 mechanism as explained in reference to Figure 3, Figure 5B, and Figure 8 is employed.
Ideally, for reception of each of the received multipath pulses 50, 51, and 52 from the respective transmitters, the system receives a reset signal and is therefore brought into the “zero” state at or around points in time 56, 57, and 58.
In an embodiment, a coarse energy detection scheme is used with a binning 15 method to measure the energy in a number of relatively broad time bins. With broad is meant typically one tenth of the time between successive input pulses. For example, if input pulses arrive each 800 ns, the bin width would be 80 ns.
The energy measured in the bins can be represented by a histogram, see 53, 54, and 55 in Figure 6. These bins can be implemented, as a skilled person will know, for 20 example using banks of integrators. The histograms constructed from the bin measurements are relatively too imprecise to derive the TOA from, but advantageously, the histograms can be used to predict suitable reset times 56, 57, and 58 at which the reset signal is to be generated and entered in the system. Thus a coarse TOA estimate is made, to be refined by the method according to the invention.
25 The time axis in Figure 6 is not necessarily drawn to scale. For example, the received pulses may arrive at 800 ns intervals, with each received pulse having a width of approximately 100 ns. With bins of 80 ns wide, this would means that eight bins would likely contain only noise, while two, at most three, bins would contain contributions from the received pulse. Reset times 56,57, and 58 may then be picked 30 by selecting a suitable time prior to the central time of the bin with the highest value.
Alternatively, the method provides a prediction of suitable reset times based on a fixed time interval after the previous determined TOA. In a further embodiment, the 21 method provides a prediction of suitable reset time based on the input pulse width as fixed time interval.
The reset signal can be generated by an external controller (not shown).
Figure 7 schematically shows the effects of statistical processing of the 5 determined TOA values. Curve 60 represents one of the received input pulses. For the previously received pulses, a number of TOA values 61, 62, 63, 64, and 65 are determined.
For example, value 61 is an so-called outlier, likely due to an erroneous triggering of the system. Value 65 is also an outlier. Values 62, 63, and 64 are near the 10 actual TOA value. From a statistical processing of the determined values, including possibly elimination of outliers, a final estimate 66 of the TOA can be made.
Optionally the statistical processing may provide an estimate of the error.
Figure 8 schematically shows a flow diagram 200 for a TOA determination method according to an embodiment of the invention. In the embodiment, the device 15 for determining TOA of an input signal pulse is embodied as a state machine having at least three specific states.
In a first state “zero”, the expected input signal pulse has not been received yet.
In a second state “tracking”, the input signal strength is increasing, and the time at which the next maximum in the signal occurs will be taken to be the TOA point in 20 time.
In a third state “decreasing”, the abovementioned maximum in the signal has occurred.
In a first stage of the flow diagram a selection 20 is made based on the current state.
25 If the selection 20 shows that the state is “zero”, then in a next stage 21 an inspection is carried out if the input signal exceeds the predetermined threshold value. If this is not the case, the state remains unchanged. If the inspection 21 evaluates that the input signal exceeds the predetermined threshold value, then the state changes from ‘zero’ and is set to “tracking” 22.
30 Next, the flow then passes back to the initial selection point 20.
If at the selection stage 20 the state is “tracking”, then in a next stage 23 a second inspection is carried out if the slope of the input signal’s derivative is negative.
22
If the second inspection 23 evaluates that the slope is negative, then in next stage 24 the state will be set to “decreasing”.
Next, the flow again passes back to the initial selection point 20.
If at the selection stage 20 the state is “decreasing”, then in a next stage 25 a 5 third inspection is carried out if a reset signal has been received. If a reset signal has been received, then in a next stage 26, the state is reset to “zero” and the system is cleared.
Clearing the system may involve resetting derived signal generation devices, clearing timers, etc, generally bringing the system back in the condition it was in before 10 the input signal exceeded the threshold value 21.
Next, the flow passes back to the initial selection point 20.
The reset signal can be generated by an external controller performing a coarse selection as described above with reference to Figure 6. It can also be automatically triggered after a predetermined period of time in the “decreasing” state.
15 It will be clear to a person skilled in the art that a signal processing flow as described above can be implemented in an electrical circuit using standard analog and/or digital components, or in an integrated circuit, or in a computer program for a suitable processing unit coupled to such electrical circuit or such integrated circuit.
Such a computer program that comprises instructions for the processing unit, allows the 20 processing unit, after being loaded in a memory coupled to the processing unit, to carry out an embodiment of the method according to the invention. Alternatively, the processing unit may be embodied as a system on chip which comprises the electrical or integrated circuit on chip,
It should be noted that the abovementioned embodiments and examples 25 illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. The invention, or at least parts thereof, can be implemented in hardware and/or software. The hardware may comprise digital or digital and analog components.
30

Claims (29)

1. Inrichting (78) voor het vaststellen van een aankomsttijd van een invoersignaal, omvattend een eerste afgeleid signaalgeneratorinrichting (71), een tweede 5 afgeleid signaalgeneratorinrichting (72), een eerste bemonsteringsinrichting (74), een tweede bemonsteringsinrichting (75), en een berekeningsinrichting (76); waarbij de inrichting voor het bepalen van de aankomsttijd van het invoersignaal is ingericht voor het ontvangen van het invoersignaal; waarbij de eerste afgeleid signaalgeneratorinrichting (71) is ingericht voor 10 het genereren van een eerste tijdsafhankelijk signaal met een eerste tijdsafhankelijkheid vanuit het ontvangen invoersignaal en die verbonden is met een invoer van de eerste bemonsteringsinrichting (74); waarbij de tweede afgeleid signaalgeneratorinrichting (72) ingericht is voor het genereren van een tweede tijdsafhankelijk signaal met een tweede 15 tijdsafhankelijkheid vanuit het ontvangen invoersignaal en die verbonden is aan een invoer van de tweede bemonsteringsinrichting (75), waarbij de eerste tijdsafhankelijkheid van het eerste tijdsafhankelijke signaal een eerste vooraf bepaalde afnamesnelheid is, en waarbij de eerste tijdsafhankelijkheid van het eerste tijdsafhankelijke signaal verschilt van de tweede tijdsafhankelijkheid van 20 het tweede tijdsafhankelijke signaal; waarbij de eerste en tweede bemonsteringsinrichtingen (74; 75) zijn ingericht voor het ten minste eenmaal bemonsteren van het eerste tijdsafhankelijk signaal, respectievelijk het tweede tijdsafhankelijk signaal; waarbij de berekeningsinrichting (76) is ingericht voor het ontvangen van 25 het ten minste eenmaal bemonsterde eerste tijdsafhankelijke signaal en het ten minste eenmaal bemonsterde tweede tijdsafhankelijke signaal en voor het bepalen van een waarde van de aankomsttijd vanuit het ontvangen ten minste ene bemonsterde tijdsafhankelijke signaal en het ten minste ene bemonsterde tweede tijdsafhankelijke signaal. 30A device (78) for determining an arrival time of an input signal, comprising a first derived signal generator device (71), a second derived signal generator device (72), a first sampling device (74), a second sampling device (75), and a calculating device (76); wherein the device for determining the time of arrival of the input signal is adapted to receive the input signal; wherein the first derived signal generator device (71) is adapted to generate a first time-dependent signal with a first time-dependence from the received input signal and which is connected to an input from the first sampling device (74); wherein the second derived signal generator device (72) is arranged to generate a second time-dependent signal with a second time-dependent signal from the received input signal and which is connected to an input of the second sampling device (75), the first time-dependent signal of the first time-dependent signal signal is a first predetermined take-off speed, and wherein the first time dependence of the first time-dependent signal differs from the second time dependence of the second time-dependent signal; wherein the first and second sampling devices (74; 75) are arranged to sample the first time-dependent signal at least once, respectively the second time-dependent signal; wherein the calculating device (76) is adapted to receive the at least once sampled first time-dependent signal and the at least once sampled second time-dependent signal and to determine a value of the arrival time from the received at least one sampled time-dependent signal and the at least one sampled second time-dependent signal. 30 2. Inrichting volgens conclusie 1, waarbij de eerste tijdsafhankelijkheid een eerste vooraf bepaalde afnamesnelheid is en de tweede tijdsafhankelijkheid een tweede vooraf bepaalde afnamesnelheid is.The device of claim 1, wherein the first time dependence is a first predetermined take-off rate and the second time dependence is a second predetermined take-off rate. 3. Inrichting volgens conclusie 2, waarbij het eerste tijdsafhankelijk signaal een eerste exponentiële afnamefunctie met een eerste tijdsconstante (τΐ) is en het tweede tijdsafhankelijke signaal een tweede exponentiële afnamefunctie met een tweede 5 tijdsconstante (x2) is.3. Device as claimed in claim 2, wherein the first time-dependent signal is a first exponential decrease function with a first time constant (τΐ) and the second time-dependent signal is a second exponential decrease function with a second time constant (x2). 4. Inrichting volgens conclusie 1, verder omvattend een besturingsinrichting (73), waarbij de besturingsinrichting (73) is ingericht voor het ontvangen van het invoersignaal en is ingericht voor het op basis van het ontvangen invoersignaal 10 besturen van het genereren van het eerste tijdsafhankelijke signaal en het tweede tijdsafhankelijke signaal vanuit het ontvangen invoersignaal.The apparatus of claim 1, further comprising a control device (73), wherein the control device (73) is adapted to receive the input signal and is adapted to control the generation of the first time-dependent signal based on the received input signal 10 and the second time-dependent signal from the received input signal. 5. Inrichting volgens conclusie 4, waarbij de besturingsinrichting (73) is ingericht voor het vaststellen vanuit het ontvangen invoersignaal of aan een eerste voor- 15 waarde van het invoersignaal is voldaan, waarbij de eerste voorwaarde een test is of een waarde van het invoersignaal toeneemt en een drempelwaarde overschrijdt; waarbij als aan de eerste voorwaarde is voldaan de besturingsinrichting is ingericht voor het in staat stellen van de eerste afgeleid signaalgeneratorin-richting om het eerste tijdsafhankelijke signaal te genereren en om de tweede 20 afgeleid signaalgeneratorinrichting in staat te stellen om het tweede tijdsafhanke lijke signaal te genereren.5. Device as claimed in claim 4, wherein the control device (73) is adapted to determine from the received input signal whether a first condition of the input signal has been met, the first condition being a test whether a value of the input signal increases and exceeds a threshold value; wherein if the first condition is met the control device is adapted to enable the first derived signal generator device to generate the first time-dependent signal and to enable the second derived signal generator device to generate the second time-dependent signal . 6. Inrichting volgens conclusie 5, waarbij de besturingsinrichting (73) is ingcricht voor het vaststellen vanuit het ontvangen invoersignaal of aan een tweede voor- 25 waarde van het invoersignaal is voldaan, waarbij de tweede voorwaarde een test is of een waarde van het invoersignaal afneemt in de tijd na het bereiken van een maximum waarde; waarbij als aan de tweede voorwaarde is voldaan de besturingsinrichting is ingericht voor het blokkeren van de eerste afgeleid signaalgeneratorinrichting om het eerste tijdsafhankelijke signaal te genereren en 30 het blokkeren van de tweede afgeleid signaalgeneratorinrichting om het tweede tijdsafhankelijke signaal te genereren.6. Device as claimed in claim 5, wherein the control device (73) is arranged for determining from the received input signal whether a second condition of the input signal has been met, the second condition being a test or a value of the input signal decreasing in time after reaching a maximum value; wherein if the second condition is met, the control device is arranged to block the first derived signal generator device to generate the first time-dependent signal and to block the second derived signal generator device to generate the second time-dependent signal. 7. Inrichting volgens conclusie 5, waarbij de besturingsinrichting (73) is ingericht voor het ontvangen van ofwel het eerste ofwel het tweede tijdsafhankelijke signaal en waarbij de besturingsinrichting is ingericht voor het vaststellen vanuit ofwel het eerste ofwel het tweede tijdsafhankelijke signaal of aan een tweede 5 voorwaarde van het invoersignaal is voldaan, waarbij de tweede voorwaarde een test is of een waarde van het invoersignaal afneemt in de tijd na het bereiken van een maximum waarde; waarbij als aan de tweede voorwaarde is voldaan de besturingsinrichting is ingericht voor het blokkeren van het eerste afgeleid signaalgeneratorinrichting voor het genereren van het eerste tijdsafhankelijke 10 signaal en het blokkeren van de tweede afgeleid signaalgeneratorinrichting om het tweede tijdsafhankelijke signaal te genereren.7. Device as claimed in claim 5, wherein the control device (73) is adapted to receive either the first or the second time-dependent signal and wherein the control device is adapted to determine from either the first or the second time-dependent signal or to a second condition of the input signal is met, the second condition being a test or a value of the input signal decreases in time after reaching a maximum value; wherein if the second condition is met, the control device is arranged to block the first derived signal generator device to generate the first time-dependent signal and to block the second derived signal generator device to generate the second time-dependent signal. 8. Inrichting volgens één van de voorgaande conclusies 6-7, verder omvattende een klok, waarbij de besturingsinrichting is ingericht voor het besturen van het be- 15 monsteren van de eerste en tweede tijdsafhankelijke signalen door middel van een kloksignaal vanuit de klok, waarbij de bemonstering is geactiveerd als aan de tweede voorwaarde wordt voldaan.8. Device as claimed in any of the foregoing claims 6-7, further comprising a clock, the control device being adapted to control the sampling of the first and second time-dependent signals by means of a clock signal from the clock, the sampling is activated if the second condition is met. 9. Inrichting volgens één van de voorgaande conclusies 4-8, waarbij de inrichting 20 een logisch element (81) omvat voor het ontvangen van het invoersignaal en voor het doorgeven van invoersignaal naar de eerste en tweede afgeleid signaalgeneratorinrichting; waarbij de eerste afgeleid signaalgeneratorinrichting (71) ccn eerste omhullende dctcctorblok (Rl) die ccn eerste diode (87), ccn eerste condensator (88), een eerste weerstand (89) en een eerste schakelelement (90) 25 omvat, en de tweede afgeleid signaalgeneratorinrichting (72) een tweede omhullende detectorblok (R2) die een tweede diode (82), een tweede condensator (83), een tweede weerstand (84), en een tweede schakelelement (85) omvat; waarbij de eerste diode (87) een anode heeft die verbonden is aan een uitvoer van het logisch element (81) voor het ontvangen van het invoersignaal, waarbij een 30 kathode van de eerste diode (87) verbonden is aan een aansluitpunt van de eerste condensator (88), aan een aansluitpunt van de eerste weerstand (98) en aan een aansluitpunt van het eerste schakelelement (90), waarbij de andere aansluitpunten van de eerste condensator (88), de eerste weerstand (89) en de eerste schakelelement (90) elk zijn verbonden aan aarde; waarbij de tweede diode (82) een anode heeft die verbonden is aan de uitvoer van het logisch element (81) voor het ontvangen van het invoersignaal, waarbij een kathode van de tweede diode (82) verbonden is aan een aansluitpunt van de tweede condensator (83), aan een 5 aansluitpunt van de tweede weerstand (84) en aan een aansluitpunt van het tweede schakelelement (85), waarbij de andere aansluitpunten van de tweede condensator (83), de tweede weerstand (84) en het tweede schakelelement (85) elk verbonden zijn aan aarde, waarbij een product van een weerstand van de eerste weerstand (89) en een capaciteit van de eerste condensator (88) evenredig 10 is aan de eerste tijdconstante (τΐ) en een product van de weerstand van de tweede weerstand (84) en een capaciteit van de tweede condensator (83) evenredig is met de tweede tijdconstante (τ2).Device according to any of the preceding claims 4-8, wherein the device 20 comprises a logic element (81) for receiving the input signal and for transmitting input signal to the first and second derived signal generator device; wherein the first derived signal generator device (71) comprises a first envelope detector block (R1) comprising a first diode (87), a first capacitor (88), a first resistor (89) and a first switching element (90), and the second derived signal generator device (72) a second envelope detector block (R2) comprising a second diode (82), a second capacitor (83), a second resistor (84), and a second switching element (85); the first diode (87) having an anode connected to an output of the logic element (81) for receiving the input signal, a cathode of the first diode (87) being connected to a terminal of the first capacitor (88), to a terminal of the first resistor (98) and to a terminal of the first switching element (90), the other terminals of the first capacitor (88), the first resistor (89) and the first switching element (90) ) are each connected to earth; the second diode (82) having an anode connected to the output of the logic element (81) for receiving the input signal, a cathode of the second diode (82) being connected to a terminal of the second capacitor ( 83), to a terminal of the second resistor (84) and to a terminal of the second switching element (85), the other terminals of the second capacitor (83), the second resistor (84) and the second switching element (85 ) are each connected to ground, a product of a resistor of the first resistor (89) and a capacitance of the first capacitor (88) being proportional to the first time constant (τΐ) and a product of the resistor of the second resistor (84) and a capacitance of the second capacitor (83) is proportional to the second time constant (τ2). 10. Inrichting volgens één van de voorgaande conclusies 4-9, waarbij de inrichting 15 een derde condensator (95) omvat; waarbij de kathode van de eerste diode een verbinding heeft met een invoeraansluiting van de eerste bemonsteringsinrichting (91) en met een aansluiting van de derde condensator; waarbij de kathode van de tweede diode (82) een verbinding heeft met een invoeraansluiting van de tweede bemonsteringsinrichting (86). 20Device according to any of the preceding claims 4-9, wherein the device 15 comprises a third capacitor (95); wherein the cathode of the first diode has a connection with an input terminal of the first sampling device (91) and with a terminal of the third capacitor; wherein the cathode of the second diode (82) has a connection with an input terminal of the second sampling device (86). 20 11. Inrichting volgens conclusie 10, waarbij de inrichting voor het bepalen van een aankomsttijd van een invoersignaal een operationele versterker (94) omvat die is opgcnomcn in de verbinding tussen dc kathode van dc eerste diode (87) met dc invoeraansluiting van de eerste bemonsteringsinrichting en met de derde conden- 25 sator (95); waarbij in de verbinding tussen de kathode van de eerste diode (87) met de invoeraansluiting van de eerste bemonsteringsinrichting en met de derde condensator (95) een positieve invoer (+) van de operationele versterker (94) verbonden is aan de kathode van de eerste diode (87), waarbij een uitvoer van de operationele versterker (94) verbonden is aan de negatieve invoer (-) van de 30 operationele versterker en waarbij de uitvoer van de operationele versterker (94) verbonden is aan de invoeraansluiting van de eerste bemonsteringsinrichting (91) en de invoer van de derde condensator.The device of claim 10, wherein the device for determining an arrival time of an input signal comprises an operational amplifier (94) included in the connection between the cathode of the first diode (87) and the input terminal of the first sampling device and with the third capacitor (95); wherein in the connection between the cathode of the first diode (87) with the input terminal of the first sampling device and with the third capacitor (95) a positive input (+) of the operational amplifier (94) is connected to the cathode of the first diode (87), wherein an output from the operational amplifier (94) is connected to the negative input (-) of the operational amplifier and wherein the output from the operational amplifier (94) is connected to the input terminal of the first sampling device ( 91) and the input of the third capacitor. 12. Inrichting volgens conclusie 10 of 11, waarbij de inrichting voor het bepalen van een aankomsttijd van een invoersignaal een derde schakelelement (99) en een signaalhellingdetectieblok (95, 96, 97) omvat welke de derde condensator (95), een derde weerstand (96) en een verder logisch element (97) omvat; 5 waarbij de uitvoer van de operationele versterker (94) verder verbonden is aan een aansluiting van de derde condensator, waarbij een andere aansluiting van de derde condensator (95) verbonden is aan een invoer van het verdere logisch element (97) en aan een aansluiting van de derde weerstand (96), waarbij een andere aansluiting van de derde weerstand (96) verbonden is aan aarde; 10 waarbij de derde schakelelement (99) een aansluiting heeft die verbonden is aan de anode van de eerste diode (87) en aan de anode van de tweede diode (82), waarbij de andere aansluiting van het derde schakelelement (99) verbonden is aan aarde; en waarbij het verdere logisch element (97) is ingericht voor het besturen van het derde schakelelement (99) op basis van een detectie van een 15 piek van het invoersignaal door middel van het hellingdetectieblok.The device according to claim 10 or 11, wherein the device for determining an arrival time of an input signal comprises a third switching element (99) and a signal slope detection block (95, 96, 97) which the third capacitor (95), a third resistor ( 96) and a further logical element (97); 5 wherein the output of the operational amplifier (94) is further connected to a terminal of the third capacitor, wherein another terminal of the third capacitor (95) is connected to an input of the further logic element (97) and to a terminal from the third resistor (96), wherein another terminal of the third resistor (96) is connected to ground; 10 wherein the third switching element (99) has a terminal connected to the anode of the first diode (87) and to the anode of the second diode (82), the other terminal of the third switching element (99) being connected to soil; and wherein the further logic element (97) is adapted to control the third switching element (99) based on a detection of a peak of the input signal by means of the slope detection block. 13. Inrichting volgens één van de conclusies 1-12, waarbij de inrichting verder een schakeling voor grove detectie omvat voor het vaststellen van een herhalingspatroon van het invoersignaal, waarbij een herhalingstijd van het herhalingspatroon 20 wordt gebruikt voor een grove schatting van de aankomsttijd.13. Device as claimed in any of the claims 1-12, wherein the device further comprises a coarse detection circuit for determining a repeat pattern of the input signal, wherein a repeat time of the repeat pattern is used for a rough estimate of the arrival time. 14. Inrichting volgens één van conclusies 1-13, waarbij het invoersignaal wordt gekozen uit een groep die radiosignalen, akoestische signaal en optische signalen omvat. 25The device of any one of claims 1-13, wherein the input signal is selected from a group comprising radio signals, acoustic signal, and optical signals. 25 15. Werkwijze voor het bepalen van een aankomsttijd van een invoersignaal, omvattend: het ontvangen van het invoersignaal; het genereren van een eerste tijdsafhankelijk signaal met een eerste tijdsafhan-30 kelijkheid vanuit het ontvangen invoersignaal, waarbij de eerste tijdsafhankelijkheid van het eerste tijdsafhankelijke signaal een eerste vooraf bepaalde afnamesnelheid is; het genereren van een tweede tijdsafhankelijk signaal met een tweede tijdsafhankelijkheid vanuit het ontvangen invoersignaal, waarbij de eerste tijdsafhankelijkheid van het eerste tijdsafhankelijke signaal verschilt van de tweede tijdsafhankelijkheid van het tweede tijdsafhankelijke signaal; 5 het ten minste eenmaal bemonsteren van het eerste tijdsafhankelijke signaal en het tweede tijdsafhankelijke signaal; het vaststellen van een waarde van de aankomsttijd vanuit het ten minste ene bemonsterde eerste tijdsafhankelijke signaal en het ten minste ene bemonsterde tweede tijdsafhankelijke signaal. 10A method for determining an arrival time of an input signal, comprising: receiving the input signal; generating a first time-dependent signal with a first time-dependent from the received input signal, wherein the first time-dependent of the first time-dependent signal is a first predetermined take-off rate; generating a second time-dependent signal with a second time-dependent signal from the received input signal, wherein the first time-dependent signal of the first time-dependent signal differs from the second time-dependent signal of the second time-dependent signal; 5 sampling the first time-dependent signal and the second time-dependent signal at least once; determining a value of the arrival time from the at least one sampled first time-dependent signal and the at least one sampled second time-dependent signal. 10 16. Werkwijze volgens conclusie 15, verder omvattend het besturen van het genereren van het eerste tijdsafhankelijke signaal en het tweede tijdsafhankelijke signaal op basis van het ontvangen invoersignaal.The method of claim 15, further comprising controlling the generation of the first time-dependent signal and the second time-dependent signal based on the received input signal. 17. Werkwijze volgens conclusie 16, verder omvattend het vaststellen vanuit het ont vangen invoersignaal of aan een eerste voorwaarde van het invoersignaal is voldaan, waarbij de eerste voorwaarde een test is of een waarde van het invoersignaal toeneemt en een drempelwaarde overschrijdt, waarbij als aan de eerste voorwaarde is voldaan, de werkwijze omvat het in staat stellen van het genereren 20 van het eerste tijdsafhankelijk signaal en het tweede tijdsafhankelijk signaal.The method of claim 16, further comprising determining from a received input signal whether a first condition of the input signal is met, the first condition being a test or a value of the input signal increasing and exceeding a threshold value, wherein if the first condition is met, the method comprises enabling generation of the first time-dependent signal and the second time-dependent signal. 18. Werkwijze volgens conclusie 16 of 17, verder omvattend het vaststellen vanuit het ontvangen invoersignaal of aan een tweede voorwaardc van het invoersignaal wordt voldaan, waarbij de tweede voorwaarde een test is of een waarde van het 25 invoersignaal afneemt in de tijd na het bereiken van een maximum waarde; waar bij als aan de tweede voorwaarde is voldaan de werkwijze omvat het blokkeren van het genereren van het tijdsafhankelijk signaal en het tweede tijdsafhankelijk signaal.18. A method according to claim 16 or 17, further comprising determining from the received input signal whether a second condition of the input signal is met, the second condition being a test or a value of the input signal decreases in time after reaching a maximum value; where if the second condition is met, the method comprises blocking the generation of the time-dependent signal and the second time-dependent signal. 19. Werkwijze volgens conclusie 16, verder omvattend het vaststellen vanuit ofwel het eerste ofwel het tweede tijdsafhankelijk signaal of aan een tweede voorwaarde van het invoersignaal wordt voldaan, waarbij de tweede voorwaarde een test is of een waarde van het invoersignaal afneemt in de tijd na het bereiken van een maximum waarde; waarbij als aan de tweede voorwaarde wordt voldaan de werkwijze omvat het blokkeren van het genereren van het eerste tijdsafhankelijke signaal en het tweede tijdsafhankelijke signaal.The method of claim 16, further comprising determining from either the first or the second time-dependent signal or a second condition of the input signal is met, the second condition being a test or a value of the input signal decreasing in time after the reaching a maximum value; wherein if the second condition is met, the method comprises blocking the generation of the first time-dependent signal and the second time-dependent signal. 20. Werkwijze volgens conclusie 18 of 19, omvattend het besturen van het bemonste ren van de eerste en tweede tijdsafhankelijke signalen, waarbij de bemonstering wordt geactiveerd als aan de tweede voorwaarde is voldaan.A method according to claim 18 or 19, comprising controlling the sampling of the first and second time-dependent signals, wherein the sampling is activated if the second condition is met. 21. Werkwijze volgens één van de conclusies 15-20, waarbij het vaststellen van de 10 waarde van de aankomsttijd vanuit het ten minste eenmaal bemonsterde eerste tijdsafhankelijke signaal en het tweede tijdsafhankelijke signaal omvat het oplossen van een vergelijking Sj exp((f-7^/^) = 5,, waarbij t het tijdstip is waarop eerste en tweede tijdsafhankelijke signaalbemon-15 steringen worden genomen, T het aankomsttijdstip TOA is, Si de waarde is van het eerste tijdsafhankelijke signaalmonster, S2 de waarde is van het tweede tijdsafhankelijke signaalmonstcr, cn τΐ de eerste tijdconstante is.21. Method as claimed in any of the claims 15-20, wherein determining the value of the arrival time from the first time-dependent signal sampled at least once and the second time-dependent signal comprises solving an equation Sj exp ((f-7 ^) Where t is the point in time when first and second time-dependent signal samples are taken, T is the time of arrival TOA, S1 is the value of the first time-dependent signal sample, S2 is the value of the second time-dependent signal sample, cn τΐ is the first time constant. 22. Werkwijze volgens één van de conclusies 15-20, waarbij het vaststellen van de 20 waarde van het aankomsttijdstip vanuit het ten minste eenmaal bemonsterde eer ste tijdsafhankelijke signaal en het ten minste eenmaal bemonsterde tweede tijdsafhankelijke signaal omvat het oplossen van een verzameling van vergelijkingen Sutxp((ti-T)/Tl) = S2J, 25 waarbij t; het tijdstip is waarop eerste en tweede tijdsafhankelijke signaalmonsters i worden genomen, Sy de waarde is van het eerste tijdsafhankelijke signaalmonster i op tijdstip th en S2.1 de waarde van het tweede tijdsafhankelijke signaalmonster i op tijdstip Ti is, T het aankomsttijdstip TOA is, en xl de eerste tijdconstante is. 3022. Method as claimed in any of the claims 15-20, wherein determining the value of the arrival time from the at least once sampled first time-dependent signal and the at least once sampled second time-dependent signal comprises resolving a set of comparisons of Sutxp ((ti-T) / T1) = S2J, where t; is the time at which first and second time-dependent signal samples i are taken, Sy is the value of the first time-dependent signal sample i at time th and S2.1 is the value of the second time-dependent signal sample i at time T1, T is the arrival time TOA, and xl is the first time constant. 30 23. Werkwijze volgens één van conclusies 15-20, waarbij het vaststellen van de waarde van het aankomsttijdstip vanuit het ten minste eenmaal bemonsterde eer ste tijdsafhankelijke signaal en het tweede tijdsafhankelijke signaal omvat het oplossen van een verzameling van vergelijkingen 5Mexp((ti-r)/r1) = 52., waarbij t; het tijdstip is waarop eerste en tweede tijdsafhankelijke signaalmonsters 5 i worden genomen, Si,i de waarde is van het eerste tijdsafhankelijke signaalmon- ster i op tijdstip h, en S2.1 de waarde van het tweede tijdsafhankelijke signaalmon-ster i op tijdstip Tj is, T het aankomsttijdstip TO A is, en τ2 de tweede tijdconstante is.The method of any one of claims 15-20, wherein determining the value of the time of arrival from the first time-dependent signal sampled at least once and the second time-dependent signal comprises solving a set of comparisons 5Mexp ((ti-r) / r1) = 52, where t; is the time at which first and second time-dependent signal samples 5 are taken, Si, i is the value of the first time-dependent signal sample i at time h, and S2.1 is the value of the second time-dependent signal sample i at time Tj , T is the time of arrival TO A, and τ2 is the second time constant. 24. Werkwijze volgens één van conclusies 15-23, waarbij de werkwijze verder omvat het bepalen van een herhalingspatroon van het invoersignaal, waarbij een herha-lingstijd van het herhalingspatroon wordt gebruikt voor een grove schatting van de aankomsttijd, waarbij de bepaling van het herhalingspatroon voorafgaat aan het genereren van het eerste tijdsafhankelijke signaal en van het tweede tijdsaf-15 hankclij kc signaal.A method according to any of claims 15-23, wherein the method further comprises determining a repeat pattern of the input signal, wherein a repeat time of the repeat pattern is used for a rough estimate of the arrival time, the determination of the repeat pattern preceding generating the first time-dependent signal and the second time-dependent signal. 25. Werkwijze volgens één van conclusies 15-24, waarbij het invoersignaal geselecteerd wordt uit een groep die radiosignalen, akoestische signalen en optische signalen omvat. 20The method of any one of claims 15-24, wherein the input signal is selected from a group comprising radio signals, acoustic signals, and optical signals. 20 26. Werkwijze volgens conclusie 15, waarbij de radiosignalen Ultra Wide Band signalen zijn.The method of claim 15, wherein the radio signals are Ultra Wide Band signals. 27. Elektromagnetische signaaldetector, omvattend: 25. een aankomsttijdbepalingseenheid omvattend een inrichting voor het vaststellen van een aankomsttijd van een invoersignaal volgens één van de conclusies 1-13, - een elektromagnetische signaalontvanger die ingericht is om een invoersignaal aan de aankomsttijdbepalingseenheid te verschaffen.An electromagnetic signal detector, comprising: 25. an arrival time determining unit comprising a device for determining an arrival time of an input signal according to any one of claims 1-13, - an electromagnetic signal receiver adapted to provide an input signal to the arrival time determining unit. 28. Systeem voor het bepalen van een verwijderd object, omvattend: - een veelheid van elektromagnetische signaalzenders die elk ingericht zijn voor het verzenden van elektromagnetische signalen, - een elektromagnetische signaaldetector volgens conclusie 27, waarbij de elektromagnetische signaaldetector is ingericht voor het ontvangen van de elektromagnetische signalen als invoersignaal vanuit elk van de elektromagnetische signaalzenders, en waarbij de elektromagnetische 5 signaaldetector geassocieerd is met het verwijderde object.A system for determining a deleted object, comprising: - a plurality of electromagnetic signal transmitters each adapted to send electromagnetic signals, - an electromagnetic signal detector as claimed in claim 27, wherein the electromagnetic signal detector is adapted to receive the electromagnetic signal signals as input signal from each of the electromagnetic signal transmitters, and wherein the electromagnetic signal detector is associated with the removed object. 29. Systeem volgens conclusie 28, waarbij de verzonden elektromagnetische signalen Ultra Wide band signalen zijn.The system of claim 28, wherein the transmitted electromagnetic signals are Ultra Wide band signals.
NL2002892A 2009-05-14 2009-05-14 Method and device for signal time of arrival determination. NL2002892C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2002892A NL2002892C2 (en) 2009-05-14 2009-05-14 Method and device for signal time of arrival determination.
PCT/NL2010/050281 WO2010131966A1 (en) 2009-05-14 2010-05-12 Method and device for signal time of arrival determination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2002892A NL2002892C2 (en) 2009-05-14 2009-05-14 Method and device for signal time of arrival determination.
NL2002892 2009-05-14

Publications (1)

Publication Number Publication Date
NL2002892C2 true NL2002892C2 (en) 2010-11-18

Family

ID=41718711

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2002892A NL2002892C2 (en) 2009-05-14 2009-05-14 Method and device for signal time of arrival determination.

Country Status (2)

Country Link
NL (1) NL2002892C2 (en)
WO (1) WO2010131966A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054950A (en) * 1998-01-26 2000-04-25 Multispectral Solutions, Inc. Ultra wideband precision geolocation system
US20070036241A1 (en) * 2005-08-11 2007-02-15 Zafer Sahinoglu Energy threshold selection for UWB TOA estimation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054950A (en) * 1998-01-26 2000-04-25 Multispectral Solutions, Inc. Ultra wideband precision geolocation system
US20070036241A1 (en) * 2005-08-11 2007-02-15 Zafer Sahinoglu Energy threshold selection for UWB TOA estimation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GEZICI S ET AL: "Localization via ultra-wideband radios", IEEE SIGNAL PROCESSING MAGAZINE, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 22, no. 4, 1 July 2005 (2005-07-01), pages 70 - 84, XP011135197, ISSN: 1053-5888 *
MONICA NAVARRO ET AL: "Low Complexity Frequency Domain TOA Estimation for IR-UWB Communications", 2006 IEEE 64TH VEHICULAR TECHNOLOGY CONFERENCE : VTC 2006-FALL ; 25 - 28 SEPTEMBER 2006, MONTREAL, QUEBEC, CANADA, PISCATAWAY, NJ : IEEE OPERATIONS CENTER, 1 September 2006 (2006-09-01), pages 1 - 5, XP031051163, ISBN: 978-1-4244-0062-1 *
SAHINOGLU Z ET AL: "Threshold-Based TOA Estimation for Impulse Radio UWB Systems", ULTRA-WIDEBAND, 2005 IEEE INTERNATIONAL CONFERENCE ON ZURICH, SWITZERLAND 05-08 SEPT. 2005, PISCATAWAY, NJ, USA,IEEE, 5 September 2005 (2005-09-05), pages 420 - 425, XP010873336, ISBN: 978-0-7803-9397-4 *
STOICA L ET AL: "A Low-Complexity Noncoherent IR-UWB Tranceiver Architecture With TOA Estimation", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 54, no. 4, 1 April 2006 (2006-04-01), pages 1637 - 1646, XP001524323, ISSN: 0018-9480 *

Also Published As

Publication number Publication date
WO2010131966A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP7134988B2 (en) Accurate photodetector measurements for lidar
US11320514B2 (en) Method and device for measuring a distance to a target in a multi-user environment by means of at least one detector
US11125863B2 (en) Correction device, correction method, and distance measuring device
JP5138854B2 (en) Optical distance measurement
US7230980B2 (en) Method and apparatus for impulse radio transceiver calibration
US7432847B2 (en) Ultra-wideband transceiver
US20140307248A1 (en) Distance-measuring device
CN108139481A (en) The LIDAR system measured with reflected signal strength
De Angelis et al. Characterization of a flexible UWB sensor for indoor localization
JP2006521536A (en) High-precision distance measuring apparatus and method
CA2918895A1 (en) Locating a tag in an area
CN110741281B (en) LiDAR system and method using late lock cover mode detection
EP2591321A1 (en) Calibration of a distance measuring device
CN103293947A (en) Satellite-ground laser time comparison system
WO2006038832A1 (en) Method for stabilising time position of an ultrabandwidth signal and a live object monitoring locator for carrying out said method
CN105793726B (en) receiver with programmable gain for UWB radar
US7817978B2 (en) Method for eliminating interference in measuring signals
Fujii et al. Impulse radio UWB positioning system
CN112559382B (en) Storage of active ranging systems
NL2002892C2 (en) Method and device for signal time of arrival determination.
Farnsworth et al. High precision narrow-band rf ranging
JP2006329690A (en) Pulse radar system
EP3833991A1 (en) Systems and methods for detecting an electromagnetic signal in a constant interference environment
De Angelis et al. Design and characterization of an ultrasonic indoor positioning technique
CN203338015U (en) Satellite-ground laser time comparison system

Legal Events

Date Code Title Description
V1 Lapsed because of non-payment of the annual fee

Effective date: 20121201