NL2000115C2 - Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers - Google Patents

Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers Download PDF

Info

Publication number
NL2000115C2
NL2000115C2 NL2000115A NL2000115A NL2000115C2 NL 2000115 C2 NL2000115 C2 NL 2000115C2 NL 2000115 A NL2000115 A NL 2000115A NL 2000115 A NL2000115 A NL 2000115A NL 2000115 C2 NL2000115 C2 NL 2000115C2
Authority
NL
Netherlands
Prior art keywords
tungsten carbide
layers
substrate
carbon
adjacent layers
Prior art date
Application number
NL2000115A
Other languages
Dutch (nl)
Inventor
Braulio Rafael Pujada Bermudez
Guido Cornelis Antoniu Janssen
Original Assignee
Netherlands Inst For Metals Re
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netherlands Inst For Metals Re filed Critical Netherlands Inst For Metals Re
Priority to NL2000115A priority Critical patent/NL2000115C2/en
Application granted granted Critical
Publication of NL2000115C2 publication Critical patent/NL2000115C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Abstract

Two adjacent layers in the assembly have a specific thickness in the nano-scale region. A wear-resistant assembly comprises alternating layers of tungsten carbide (A) and diamond-like carbon (DLC) stabilized with tungsten carbide (B). The thickness of two adjacent layers in the assembly is 5-10 nm. An independent claim is also included for a method for producing the assembly by sputtering, in which the sputtering conditions are changed in order to obtain the respective layers (A) and (B), the time in between these changes being 0.5-1 minute.

Description

Meerlaags WC-WC gestabiliseerd DLCMulti-layer WC-WC stabilized DLC

De onderhavige uitvinding heeft betrekking op een slijtvast meerlaags samenstel omvattende afwisselend wolfraamcarbide-wolfraamcarbide gestabiliseerd diamantach-5 tige koolstoflagen. Meerlaagse structuren omvattende wolfraamcarbide, wolfraam-carbide gestabiliseerde diamantachtige koolstof zijn in de stand der techniek bekend en worden op een substraat gesputterd, dat bij voorkeur een stalen substraat omvat. Op deze wijze kunnen slijtvaste lagen verkregen worden. Dergelijke slijtvaste en wrijving verminderende bekledingen zijn voor allerlei soorten toepassingen van belang en kun-10 nen onder de meeste omstandigheden smering ten minste gedeeltelijk vervangen. Wolfraamcarbide gestabiliseerd diamantachtige koolstof heeft een lage wrijvingscoëffi-ciënt, is chemisch inert, heeft hoge slijtvastheid en hoge hardheid in vergelijking met algemeen bekende conventionele beschermende bekledingen.The present invention relates to a wear-resistant multi-layer assembly comprising alternately tungsten carbide-tungsten carbide stabilized diamond-like carbon layers. Multi-layer structures comprising tungsten carbide, tungsten carbide-stabilized diamond-like carbon are known in the art and are sputtered onto a substrate, which preferably comprises a steel substrate. Wear-resistant layers can be obtained in this way. Such wear-resistant and friction-reducing coatings are important for all kinds of applications and can at least partially replace lubrication under most circumstances. Tungsten carbide stabilized diamond-like carbon has a low coefficient of friction, is chemically inert, has high abrasion resistance and high hardness compared to well-known conventional protective coatings.

Hechting tussen het substraat en het meerlaagse samenstel is van wezenlijk be-15 lang en gebleken is dat in het bijzonder bij de wisselende temperatuur aanzienlijke spanningen aanwezig zijn tussen het substraat en het meerlaags samenstel.Adhesion between the substrate and the multilayer assembly is of substantial importance and it has been found that considerable stresses are present between the substrate and the multilayer assembly, in particular at the varying temperature.

Om de hechting te vergroten tussen het meerlaags samenstel en het substraat wordt het gebruik van hechtingslagen voorgesteld.To increase the adhesion between the multi-layer assembly and the substrate, the use of adhesive layers is proposed.

In de stand der techniek wordt aangenomen dat door het verminderen van de 20 dikte van de lagen van het meerlaags samenstel de totale spanning in de richting van drukspanning verschuift, omdat elk scheidingsvlak tussen twee lagen verdere druk-spanning zal geven. Bij het verminderen van de behandelingstijd om elk van de lagen aan te brengen, zullen vanaf een bepaald punt niet langer afzonderlijke lagen ontstaan maar zal een gemengde structuur verkregen worden. Een dergelijke gemengde structuur 25 voldoet echter niet aan de eisen van dichtheid, hardheid en drukspanning.It is assumed in the prior art that by reducing the thickness of the layers of the multi-layer assembly, the total stress shifts in the direction of compressive stress, because each interface between two layers will give further compressive stress. When reducing the treatment time to apply each of the layers, separate layers will no longer arise from a certain point, but a mixed structure will be obtained. However, such a mixed structure does not meet the requirements of density, hardness and compressive stress.

Gezien het bovenstaande is het doel van de uitvinding in een wolfraamcarbide-wolfraamcarbide gestabiliseerd diamantachtige koolstof meerlaagse structuur te voorzien die geoptimaliseerde sterkte-eigenschappen heeft.In view of the above, the object of the invention is to provide a tungsten carbide-tungsten carbide stabilized diamond-like carbon multilayer structure that has optimized strength properties.

Volgens de uitvinding wordt een slijtvast meerlaags samenstel voorgesteld zoals 30 hierboven beschreven, waarbij de dikte van twee aangrenzende lagen van dat meerlaagse samenstel ligt tussen 5 en 10 nm.According to the invention, a wear-resistant multi-layer assembly is described as described above, wherein the thickness of two adjacent layers of said multi-layer assembly is between 5 and 10 nm.

Verrassenderwijs is gebleken dat indien de dikte van de laag verhoudingsgewijs dichtbij het mengpunt van de lagen gekozen wordt, de spanning in de meerlaagse 2 00 0 1 15 2 structuur aanzienlijk minder compressief zal zijn. Gebaseerd op proeven uitgevoerd in de stand der techniek werd aangenomen dat de druksterkte in een meerlaagse constructie langzaam zou afhemen naar het punt waar mengen van de structuren ontstaat. Echter bleek uit proeven van aanvraagster dat dit niet juist is en dat 5 verrassenderwijs een minimum in drukspanning bestaat nabij het punt waar het mengen van de structuren plaatsvindt.Surprisingly, it has been found that if the thickness of the layer is chosen relatively close to the mixing point of the layers, the tension in the multilayer structure will be considerably less compressive. Based on tests conducted in the prior art, it was believed that the compressive strength in a multilayer construction would slow down to the point where mixing of the structures occurs. However, tests by the applicant showed that this is not correct and that surprisingly a minimum pressure pressure exists near the point where the mixing of the structures takes place.

Volgens een voorkeursuitvoering van de uitvinding heeft de dunste van de aangrenzende lagen van de meerlaagse structuur een dikte van ten minste 2,5 nm. Bij voorkeur hebben beide aangrenzende lagen dezelfde dikte.According to a preferred embodiment of the invention, the thinnest of the adjacent layers of the multilayer structure has a thickness of at least 2.5 nm. Both adjacent layers preferably have the same thickness.

10 De uitvinding heeft eveneens betrekking op een werkwijze voor het vervaardigen van een dergelijk slijtvast meerlaags samenstel. Bij voorkeur wordt dit door sputteren verwezenlijkt en tijdens het sputteren wordt een wijziging in omstandigheden verwezenlijkt om de meerlaagse structuur voort te brengen. Dit kan bijvoorbeeld verwezenlijkt worden door het toevoegen van acetyleen, dat periodiek aan- en uitgeschakeld 15 wordt. Een andere mogelijkheid is het plaatsen van het substraat op een draaiende tafel waarbij het substraat periodiek aan het effect van sputteren onderworpen wordt. Sputteren kan met een of twee targets verwezenlijkt worden. Volgens de uitvinding wordt de verandering in sputteromstandigheden elke 30 sec -1 min verwezenlijkt. Dit betekent dat elke sputterperiode van een of twee lagen van de meerlaagse constructie 30 sec - 1 20 min duurt.The invention also relates to a method for manufacturing such a wear-resistant multi-layer assembly. This is preferably achieved by sputtering and during sputtering a change in circumstances is realized to produce the multilayer structure. This can be achieved, for example, by adding acetylene, which is periodically switched on and off. Another possibility is to place the substrate on a rotating table whereby the substrate is periodically subjected to the effect of sputtering. Sputtering can be achieved with one or two targets. According to the invention, the change in sputtering conditions is realized every 30 seconds -1 minutes. This means that each sputtering period of one or two layers of the multi-layer construction lasts 30 seconds - 1 20 minutes.

Volgens een verdere voorkeursuitvoering van de uitvinding wordt een op chroom gebaseerde hechting bevorderende laag aangebracht op het (stalen) substraat alvorens het meerlaags samenstel neer te slaan.According to a further preferred embodiment of the invention, a chromium-based adhesion promoting layer is applied to the (steel) substrate before depositing the multi-layer assembly.

De uitvinding zal verder verduidelijkt worden verwijzend naar de grafieken ge-25 toond in de figuren, waarbij:The invention will be further clarified with reference to the graphs shown in the figures, wherein:

Fig. 1 de resultaten van proeven toont om meerlaagse structuren te verkrijgen met wisselende acetyleenstroommodulaties in minuten;FIG. 1 shows the results of tests to obtain multi-layer structures with varying acetylene flow modulations in minutes;

Fig. 2 dezelfde grafiek toont waarbij de dikte van de ontstaande lagen is weergegeven; en 30 Fig. 3 een experimentele opstelling voor het sputteren toont.FIG. 2 shows the same graph showing the thickness of the layers formed; and FIG. 3 shows an experimental arrangement for sputtering.

Uit fig. 1 en 2 kan geconcludeerd worden dat de druksterkte niet geleidelijk daalt vanaf lagen met grotere dikte in een meerlaagse constructie naar -1,6 GPa bij volledig mengen maar een onverwachte piek heeft die een lagere drukspanning tot gevolg heeft.It can be concluded from Figs. 1 and 2 that the compressive strength does not gradually decrease from layers of greater thickness in a multi-layered structure to -1.6 GPa with full mixing, but has an unexpected peak that results in a lower compressive stress.

33

Nabij deze piek kan steeds duidelijk onderscheid gemaakt worden tussen wolffaamcar-bide en met wolffaamcarbide gestabiliseerde diamantachtige koolstoflagen. De spanning werd gemeten zoals beschreven in het artikel "Measurement and Interpretation of Stress in Aluminium-Based Metallization as a Function of Thermal History in IEEE 5 Transactions on Electron Devices, Vol. ED-34, nr. 3, maart 1987.Near this peak, a clear distinction can always be made between wolffaam carbide and wolffaam carbide stabilized diamond-like carbon layers. The voltage was measured as described in the article "Measurement and Interpretation of Stress in Aluminum-Based Metallization as a Function of Thermal History in IEEE 5 Transactions on Electron Devices, Vol. ED-34, No. 3, March 1987.

Dergelijke lagen of bekledingen kunnen bijvoorbeeld vervaardigd worden via niet gebalanceerd reactief magnetronsputteren in het ATC 1500 F sputterstelsel (AJA Int.).Such layers or coatings can be made, for example, via unbalanced reactive microwave sputtering in the ATC 1500 F sputtering system (AJA Int.).

In fig. 3 is schematisch een experimentele opstelling getoond gebruikt bij het 10 vervaardigen van de monsters volgens grafiek 1 en 2. Een lagedrukkamer heeft verwij-zingscijfer 1 terwijl een wolfraamcarbidetarget 2 en chroomtarget 3 aanwezig zijn. Het substraat moet geplaatst worden op een draaitafel 4, waarbij een gasinlaat voor acetyleen met 5 aangegeven is.Fig. 3 schematically shows an experimental arrangement used in the production of the samples according to graphs 1 and 2. A low-pressure chamber has reference numeral 1 while a tungsten carbide target 2 and chromium target 3 are present. The substrate must be placed on a turntable 4, with a gas inlet for acetylene indicated by 5.

Proeven werden uitgevoerd waarbij als substraat een siliciumwafer gebruikt 15 wordt. Een dergelijke siliciumwafer is zeer gevoelig voor spanningen en kan gemakkelijk gebogen worden. De kromming is een maat voor de daarin ingebrachte spanning. Een 4 inch wafer werd gebruikt tijdens de beproevingen en de totale sputtertijd was 2 uur. De druk in de kamer voor neerslag was 10 maal 10'5 Pa en het wafersubstraat werd verwarmd tot een temperatuur van 160aC gedurende 90 min. Tijdens de neerslag werd 20 de temperatuur op ongeveer 160eC gehandhaafd en het HF-vermogen op het wolfraamcarbidetarget is 148 W. De diameter van het target was 5,04 cm. Om hechting te bevorderen werd eerst een chroomlaag neergeslagen op de siliciumwafer met een dikte van ongeveer 300 nm. De argongasflow werd constant op 35 sccm gehouden, terwijl 5 sccm acetyleengasstroming tussen 4 sec en 10 min gemoduleerd werd. Benadrukt moet 25 worden dat de juistheid van de theorie achter het waargenomen verschijnsel met de onderhavige uitvinding als gevolg niet doorslaggevend is met betrekking tot de geldigheid van de bijgevoegde conclusies. Bovendien is het duidelijk dat de omvang van de bescherming van de onderhavige aanvrage zich uitbreidt tot de conclusies en combinatie van de conclusies met andere uit de stand der techniek bekende maatregelen, die 30 voor de hand liggend zijn gezien het bovenstaande voor degene bekwaam in de stand der techniek.Tests were carried out using a silicon wafer as substrate. Such a silicon wafer is very sensitive to stresses and can easily be bent. The curvature is a measure of the voltage introduced therein. A 4 inch wafer was used during the tests and the total sputtering time was 2 hours. The pressure in the precipitation chamber was 10 times 10 -5 Pa and the wafer substrate was heated to a temperature of 160 ° C for 90 minutes. During the precipitation, the temperature was maintained at approximately 160 ° C and the HF power on the tungsten carbide target is 148 W The diameter of the target was 5.04 cm. To promote adhesion, a chromium layer was first deposited on the silicon wafer with a thickness of approximately 300 nm. The argon gas flow was kept constant at 35 sccm, while 5 sccm acetylene gas flow was modulated between 4 sec and 10 min. It should be emphasized that the accuracy of the theory behind the observed phenomenon with the present invention is consequently not decisive with regard to the validity of the appended claims. Moreover, it is clear that the scope of the protection of the present application extends to the claims and combination of claims with other measures known from the prior art, which are obvious in view of the above for those skilled in the art. engineering.

2 00 0 1 152 00 0 1 15

Claims (11)

1. Slijtvast meerlaag samenstel omvattende afwisselend wolfraamcarbide-wolfraam-carbide gestabiliseerde diamantachtige koolstoflagen, met het kenmerk, dat de 5 dikte van twee aangrenzende lagen van dat meerlaagse samenstel tussen 5 en 10 nmligt.A wear-resistant multi-layer assembly comprising alternately tungsten carbide-tungsten carbide stabilized diamond-like carbon layers, characterized in that the thickness of two adjacent layers of said multi-layer assembly is between 5 and 10 mm. 2. Samenstel volgens conclusie 1, waarbij de dunste van die aangrenzende lagen een dikte van ten minste 2,5 nm heeft. 10An assembly according to claim 1, wherein the thinnest of said adjacent layers has a thickness of at least 2.5 nm. 10 3. Samenstel volgens een van de voorgaande conclusies, waarbij de aangrenzende lagen dezelfde dikte hebben.An assembly according to any one of the preceding claims, wherein the adjacent layers have the same thickness. 4. Slijtvast voorwerp omvattende een stalen substraat waarop een meerlaags samen- 15 stel volgens een van de voorgaande conclusies aangebracht is.4. Wear-resistant article comprising a steel substrate on which a multi-layer assembly according to one of the preceding claims is applied. 5. Werkwijze voor het voorzien in slijtvast meerlaagse constructie omvattende afwisselend wojfraamcarbide-wolfraamcarbide gestabiliseerd diamantachtige koolstoflagen omvattende sputteren, waarbij de omstandigheden van het sputte- 20 ren gewijzigd worden om wolfraamcarbide resp. wolfraamcaibide gestabiliseerd diamantachtige koolstoflagen te verkrijgen, waarbij de tijd tussen de wisseling van omstandigheden tussen 30 sec en 1 min ligt.5. Method for providing a wear-resistant multi-layered construction comprising alternating void-frame carbide-tungsten carbide comprising diamond-like carbon layers comprising sputtering, wherein the sputtering conditions are changed around tungsten carbide or tungsten carbide. tungsten carbide stabilized diamond-like carbon layers, the time between the change of conditions being between 30 seconds and 1 minute. 6. Werkwijze volgens conclusie 5, waarbij de verandering in omstandigheden van 25 het sputteren modulatie van acetyleengasstroming omvat.6. Method according to claim 5, wherein the change in sputtering conditions comprises modulation of acetylene gas flow. 7. Werkwijze volgens conclusie 6, waarbij slechts een wolfraamcarbidetarget gebruikt wordt.The method of claim 6, wherein only one tungsten carbide target is used. 8. Werkwijze volgens een van de conclusies 5-7, waarbij de verandering in de omstandigheden van het sputteren omvat het reciproceren van een substraat waarop de meerlaagse structuur neergeslagen wordt. 2 00 0 1 15The method of any one of claims 5-7, wherein the change in sputtering conditions comprises reciprocating a substrate on which the multilayer structure is deposited. 2 00 0 1 15 9. Werkwijze volgens een van de conclusies 5-8, waarbij die meerlaagse structuur neergeslagen wordt op een substraat en waarbij tussen die meerlaagse structuur en dat substraat een hechtlaag aangebracht is.The method according to any of claims 5-8, wherein said multi-layer structure is deposited on a substrate and wherein an adhesive layer is provided between said multi-layer structure and said substrate. 10. Werkwijze volgens conclusie 9, waarbij die hechtlaag chroom omvat.The method of claim 9, wherein said adhesive layer comprises chromium. 11. Werkwijze volgens een van de conclusies 5-10, waarbij de tijd voor de eerste behandeling ongeveer hetzelfde is als de tijd voor de tweede behandeling. 2 00 0 1 15The method of any one of claims 5-10, wherein the time for the first treatment is approximately the same as the time for the second treatment. 2 00 0 1 15
NL2000115A 2006-06-27 2006-06-27 Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers NL2000115C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2000115A NL2000115C2 (en) 2006-06-27 2006-06-27 Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2000115 2006-06-27
NL2000115A NL2000115C2 (en) 2006-06-27 2006-06-27 Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers

Publications (1)

Publication Number Publication Date
NL2000115C2 true NL2000115C2 (en) 2008-01-02

Family

ID=37714428

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2000115A NL2000115C2 (en) 2006-06-27 2006-06-27 Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers

Country Status (1)

Country Link
NL (1) NL2000115C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611613A (en) * 2018-06-09 2018-10-02 中国科学院兰州化学物理研究所 A kind of preparation method of nano-multilayered structures carbon-base film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947710A (en) * 1995-12-07 1999-09-07 Carrier Corporation Rotary compressor with reduced lubrication sensitivity
EP1123989A2 (en) * 2000-02-09 2001-08-16 Hauzer Techno Coating Europe Bv Method for producing coatings as well as object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947710A (en) * 1995-12-07 1999-09-07 Carrier Corporation Rotary compressor with reduced lubrication sensitivity
EP1123989A2 (en) * 2000-02-09 2001-08-16 Hauzer Techno Coating Europe Bv Method for producing coatings as well as object

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PAULEAU Y ET AL: "Structure and mechanical properties of hard W-C coatings deposited by reactive magnetron sputtering", SURFACE AND COATINGS TECHNOLOGY SWITZERLAND, vol. 54-55, no. 1-3, 16 November 1992 (1992-11-16), pages 324 - 328, XP002420460, ISSN: 0257-8972 *
PUJADA B R ET AL: "Density, stress, hardness and reduced Young's modulus of W-C:H coatings", SURF. COAT. TECHNOL.; SURFACE AND COATINGS TECHNOLOGY DEC 20 2006, vol. 201, no. 7 SPEC. ISS., 20 December 2006 (2006-12-20), pages 4284 - 4288, XP002420461 *
RINCON C ET AL: "Effects of carbon incorporation in tungsten carbide films deposited by r.f. magnetron sputtering: single layers and multilayers", SURFACE & COATINGS TECHNOLOGY ELSEVIER SWITZERLAND, vol. 163-164, 30 January 2003 (2003-01-30), pages 386 - 391, XP002420459, ISSN: 0257-8972 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611613A (en) * 2018-06-09 2018-10-02 中国科学院兰州化学物理研究所 A kind of preparation method of nano-multilayered structures carbon-base film

Similar Documents

Publication Publication Date Title
Castanho et al. Effect of ductile layers in mechanical behaviour of TiAlN thin coatings
Ou et al. Hard yet tough CrN/Si3N4 multilayer coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering
Menthe et al. Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding
Okumiya et al. Mechanical properties and tribological behavior of TiN–CrAlN and CrN–CrAlN multilayer coatings
Rodriguez-Baracaldo et al. High temperature wear resistance of (TiAl) N PVD coating on untreated and gas nitrided AISI H13 steel with different heat treatments
Cunha et al. Microstructure of CrN coatings produced by PVD techniques
Stewart et al. Rolling contact fatigue of surface coatings—a review
Libório et al. Surface modification of M2 steel by combination of cathodic cage plasma deposition and magnetron sputtered MoS2-TiN multilayer coatings
Dalibon et al. Evaluation of the mechanical behaviour of a DLC film on plasma nitrided AISI 420 with different surface finishing
JP4805255B2 (en) DLC hard coating for copper bearing materials
Avelar-Batista et al. Triode plasma nitriding and PVD coating: A successful pre-treatment combination to improve the wear resistance of DLC coatings on Ti6Al4V alloy
Dalibón et al. Characterization of thick and soft DLC coatings deposited on plasma nitrided austenitic stainless steel
Dahan et al. The development of a functionally graded TiC–Ti multilayer hard coating
Guruvenket et al. Mechanical and tribological properties of duplex treated TiN, nc-TiN/a-SiNx and nc-TiCN/a-SiCN coatings deposited on 410 low alloy stainless steel
Ghasemi et al. Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputtering
Evaristo et al. Influence of the silicon and oxygen content on the properties of non-hydrogenated amorphous carbon coatings
Vercammen et al. A comparative study of state-of-the-art diamond-like carbon films
JPH0340984A (en) Sliding member
Silva et al. Surface modification of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings
Podgornik et al. Influence of substrate treatment on the tribological properties of DLC coatings
Narayan Laser processing of diamond-like carbon–metal composites
NL2000115C2 (en) Wear resistant assembly comprising layers of tungsten carbide and tungsten carbide stabilized diamond like carbon, has specific thickness for two adjacent layers
Podgornik et al. Wear and friction behaviour of duplex-treated AISI 4140 steel
JPS62218549A (en) High abrasion resistant hard substance layer having decorative black inherent color
Benkahoul et al. Tribological properties of duplex Cr–Si–N coatings on SS410 steel

Legal Events

Date Code Title Description
PD2B A search report has been drawn up
TD Modifications of names of proprietors of patents

Owner name: STICHTING MATERIALS INNOVATION INSTITUTE (M2I)

Effective date: 20080818

VD1 Lapsed due to non-payment of the annual fee

Effective date: 20100101