NL1037461C2 - Method, device and fuel for hydrogen generation. - Google Patents

Method, device and fuel for hydrogen generation. Download PDF

Info

Publication number
NL1037461C2
NL1037461C2 NL1037461A NL1037461A NL1037461C2 NL 1037461 C2 NL1037461 C2 NL 1037461C2 NL 1037461 A NL1037461 A NL 1037461A NL 1037461 A NL1037461 A NL 1037461A NL 1037461 C2 NL1037461 C2 NL 1037461C2
Authority
NL
Netherlands
Prior art keywords
fuel
activator
water
hydrogen
liquid
Prior art date
Application number
NL1037461A
Other languages
Dutch (nl)
Other versions
NL1037461A (en
Inventor
Gerardus Wilhelmus Lugtigheid
Original Assignee
Inhaleness B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL1036471A external-priority patent/NL1036471C2/en
Application filed by Inhaleness B V filed Critical Inhaleness B V
Priority to NL1037461A priority Critical patent/NL1037461C2/en
Priority to CA3062505A priority patent/CA3062505C/en
Priority to JP2011547837A priority patent/JP5805540B2/en
Priority to PCT/NL2010/000014 priority patent/WO2010087698A2/en
Priority to CN201611078319.1A priority patent/CN106966358B/en
Priority to EA201170984A priority patent/EA027014B1/en
Priority to EP10720205A priority patent/EP2382153A2/en
Priority to EP21212636.1A priority patent/EP3984947A1/en
Priority to CN201510158726.2A priority patent/CN104821409B/en
Priority to EP21212640.3A priority patent/EP3984949A1/en
Priority to CN201080005666.6A priority patent/CN102300804B/en
Priority to EP21212638.7A priority patent/EP3984948A1/en
Priority to EA201790053A priority patent/EA038883B1/en
Priority to CA2750720A priority patent/CA2750720C/en
Priority to US13/146,622 priority patent/US8636975B2/en
Priority to CA3031477A priority patent/CA3031477C/en
Publication of NL1037461A publication Critical patent/NL1037461A/en
Publication of NL1037461C2 publication Critical patent/NL1037461C2/en
Application granted granted Critical
Priority to US14/160,392 priority patent/US9540238B2/en
Priority to US15/368,138 priority patent/US10486966B2/en
Priority to US17/536,676 priority patent/US20220081288A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

5
Method, device and fuel for hydrogen generation
The present invention relates to a method and a device for generating hydrogen from a fluid fuel comprising a metal hydride MHX and/or a metal borohydride M(BH4)X. The present invention also relates to a fluid fuel comprising a metal hydride MHX and/or a metal borohydride 10 M(BH4)x. Moreover, the invention relates to a (re-) fuelling method for a hydrogen generation device.
Several processes are known to generate hydrogen from a fuel containing a metal hydride or a metal borohydride.
15
For example, EP 1 369 947 discloses a hydrogen generating method in which a solution A comprising 5 - 50 % NaBH4, 5-40 % NaOH and the balance water is mixed with a solution B comprising 51-100 % water, and 49-0 % of a water soluble water additive. Solution B has a pH preferably in the range of 2 to 7. After mixing solution A and B, the molar ratio 20 NaBH4: H20 preferably is larger than 1 : 5, or, even more preferred, larger than 1 : 6. Solution A and B are preferably separately metered to a reaction chamber where they are mixed and react. The decomposition reaction of borohydride is
NaBH4 + 2 H20 -> 4 H2 + NaB02 25
In this example, solution A is stabilized due to its alkali (NaOH), and the reaction is started by decreasing the pH of the resulting aqueous mixture when adding solution B.
The U.S. Department of Energy (DoE) defined technical targets for hydrogen delivery and 30 storage. By 2010, the gravimetric energy capacity should be 1.8 kWh/kg. By 2015 the gravimetric energy capacity should be 3 kWh/kg = 10.8 MJ/kg, The latter value corresponds to 9.0 wt.-% of hydrogen. The operating ambient temperature should be in the range of -40°C to 60°C.
35 In an attempt to meet the 2010 targets, from FY 2006 Annual Progress Report, p. 377 ff., tests on a magnesium hydride (MgH2) slurry made within a DoE project are reported. The 1037461 -2- tested slurry is a dispersion of MgH2 particles having a size of 100 microns down to 1 micron in oils with a 70 % MgH2 load in the dispersion. The slurry provides a fresh material capacity of 3.6 kWh/kg. The oils of the slurry protect the MgH2 from inadvertent contact with moisture in the air, and the MgH2 reacts very slowly at room temperature, so it is relatively safe to 5 handle and can be handled in the air. By adding water to the slurry and mixing it with the slurry the reaction is started. The decomposition reaction of MgH2 is:
MgH2 + 2 H20 -> Mg(OH)2 10 However, in both examples, it seems not to be possible to induce an instantaneous reaction at which immediately after the start of the reaction hydrogen is generated in sufficient amounts for running e.g. the hydrogen fuel cell of an automobile.
Thus, the object underlying the present invention is to provide a method and a device for the 15 generation of hydrogen with which an instantaneous release of hydrogen in considerable amounts is possible. It is a further object of the present invention to provide a fuel being suitable to be used for hydrogen production with a method and/or device according to the invention. Another object is to provide an easy method for refuelling a hydrogen generating device, in particular of refuelling a hydrogen generating device according to the invention.
20
These and other objects are solved with a method according to claim 1, a device according to claim 20, a fuel according to claim 34 and a (re-) fuelling method according to claims 41 and 43. Further advantageous embodiments are referred to in the subclaims.
25 According to the method of the invention, a solution or a liquid dispersion is used as a fuel, the solution or dispersion being comprised by hydrogen carrier particles, e.g. micro particles of a metal hydride or a metal borohydride, which are dissolved or dispersed in an inert fluid dissolution or dispersion medium. The fuel and the activator fluid are injected into a reaction chamber, the injection of the solution or dispersion and the activator fluid causing an inten- 30 sive mixing of the fuel with the activator fluid, causing an intimate contact between the hydrogen carrier molecules and the activator fluid. The injection of a dispersion also causes the hydrogen carrier particles to be separated from the dispersion medium and to be exposed to the activator fluid. The injection of the fuel and the activator fluid is highly preferred to be an inline injection of both the fuel and the activator fluid.
35 -3-
With this method it is possible to obtain a large contact area between the surfaces of the hydrogen carrier droplets or particles and the activator fluid, and any hindrance to the reaction due to dissolution medium shielding the hydrogen carrier or dispersion medium adhering to the surfaces of the particles is minimized or even totally prevented since the dissolution me-5 dium will be divided in tiny droplets in the activator fluid and the dispersion medium will be washed off the surface of the hydrogen carrier particles. Thus, after having injected both the solution or dispersion and the activator fluid into the reaction chamber, the surface of the tiny droplets or particles is exposed to the activator and the hydrogen generating reaction will start immediately and will release hydrogen at a high reaction rate.
10
In many cases the method will be even more efficient, when the solution or dispersion and the activator fluid are injected under high pressure, the suitable pressure, however, depending on the solution or dispersion, in particular the droplet or particle size of the hydrogen carrier, the carrier load in the solution or dispersion, the viscosity of the solution or dispersion, 15 and the type of activator fluid used. By using high pressure for the injection of the solution or dispersion, the injection rate of the dissolution or dispersion fluid and/or the activator fluid is increased, thereby increasing the efficiency of dividing the dissolution medium into tiny droplets or separating the dispersion medium from the surface of the hydrogen carrier particles.
20 Moreover, the division of the dissolution medium into tiny droplets or the separation of the dispersion medium from the hydrogen carrier particle may be promoted by adding an emulsifier to the dissolution or dispersion medium and/or the activator fluid, since it eases emulsification of the dissolution medium and washing off the dispersion medium from the particle surface.
25
With the above measures the reaction can start in less than a second after the injection of the solution or dispersion and the activator fluid into the reaction chamber.
In a preferred embodiment, the mixture of any remaining hydrogen carrier particles, disper-30 sion medium, activator fluid and reaction products is additionally mixed in a second mixing stage. In that stage, the reaction between the remaining hydrogen carrying particles and the activator may be completed up to 99% or more, so that basically all the hydrogen carrier particles are reacted and the reaction products remain dispersed in the dispersion medium such that they can easily be removed from the container where they are stored. In this context, it 35 can be advantageous to intermittently or continuously add additional activator fluid to the -4- mixture. This second mixing stage may be preferably performed in a high shear mixer having a stator and a rotor.
It can be advantageous to employ separating means to separate hydrogen from the reaction 5 residues, in particular a membrane, in order to release all of the generated hydrogen. Such separating means are in particular useful at and after the second mixing stage.
It is further preferred that the total amount of activator fluid slightly exceeds the stoichiometric amount for the reaction with the amount of hydrogen carrier.
10 A suitable hydrogen carrier is one or more selected from the group consisting of metal hydrides MHX and metal borohydrides M(BH4)X, where M is a metal and x denotes the valence of the particular metal. Preferably, the metal of the hydrogen carrier is selected from the group consisting of Li, Na, Be, Mg, Ca and Al, and the hydrogen carrier in particular preferred 15 is Ca(BH4)2 and/or AI(BH4)3.
In order to provide a large surface area for reaction, particle sizes of the hydrogen carrier of 10 microns or smaller, preferably of about 1 micron or smaller are considered to be advantageous. Completely dissolved hydrogen carriers are considered to be particularly advanta-20 geous.
As inert dissolution or dispersion mediums, fluids or a combination of fluids selected from the group consisting of mineral oils, copolymers of ethylene and propylene, poly(alpha)olefins and ether alkoxylates are preferred.
25 The use of a solution or a dispersion having a concentration of the hydrogen carrier, or hydrogen carrier particles in the dispersion, of at least 60% is preferred in order to secure a suitable energy capacity. A concentration in the range of 70 to 75 % seems to give an advantageous balance between energy capacity, the viscosity of the solution or dispersion and protection of the hydrogen carrier against unintentional reaction under ambient conditions. 30 However, depending on the hydrogen carrier or the particle size of the hydrogen carrier, also higher concentrations may be suitable.
The viscosity of the solution or dispersion is critical insofar as an efficient injection is more difficult at higher viscosity is. The power required for a fuel pump also is proportional to the 35 viscosity of the fuel pumped and the power input to any pump may be used as a quality control parameter throughout the entire product chain. Thus, viscosities of from 1 to 50 times -5- that of water at room temperature, preferably of 1 to 25 times that of water at room temperature, more preferably of from 1 to 10 times that of water at room temperature, even more preferred of from 1 to 5 times that of water at room temperature, and most preferred of from 1 to 2 times that of water at room temperature are considered to be advantageous.
5 A preferred activator is or comprises mainly water. The reaction rate between a hydrogen carrier and water may dramatically increase with the purity of the water. For some boro-hydrides it was found out that the reaction rate increases in the following order of type of water used: tap water < demineralised water < demineralised water treated with reverse osmo-10 sis < demineralised water treated with reverse osmosis and subsequently passed through an electrostatic filter.
Alcohols, such as methanol, ethanol and propanol may also be used as suitable activator fluids.
15
In particular when using water it is useful to add an anti-freeze agent, in particular glycol in order to decrease its freezing point. The addition of an anti-freeze agent is not necessary when using an alcohol as an activator fluid. Heating and/or insulating means may be provided to prevent water from freezing.
20
The device of the invention comprises a reaction chamber, at least one fuel injector for injecting a fuel and an activator fluid into the reaction chamber, and outlets for hydrogen and for the reaction residues. The at least one injector of the device of the invention is adapted to induce an immediate hydrogen generating reaction in the reaction chamber when injecting 25 the fuel and the activator fluid.
The device of the invention preferably comprises - a fuel pump upstream of the fuel injector; and/or - a fuel compartment which is in fluid connection with the fuel injector; and/or 30 - an activator fluid pump upstream of the activator fluid injector; and/or - an activator fluid compartment which is in fluid connection with the activator fluid injector; and/or - a second stage mixer, in particular a high shear mixer; and/or - a fuel pump for the reaction residues downstream of the reaction chamber; and/or 35 - a compartment for the reaction residues downstream of the reaction chamber.
-6- A second stage mixer, when used, is preferably arranged within the reaction chamber, in particular within the reaction chamber at its bottom, where the dispersion medium, the fuel and the spent fuel as well as activator fluid gather after having been injected into the reaction chamber. However, a second stage mixer can also be located in a second reaction chamber 5 downstream of the first reaction chamber. A second stage mixer is not used when the fuel is a solution.
Separating means are preferably provided for separating the hydrogen from the reaction residues. Such separating means can e.g. comprise a semi-permeable membrane.
10
The compartments for the fuel, the activator fluid and the reaction residues preferably are separate flexible containers arranged within one fuel container provided with a hard shell which - for safety reasons - can be operated at low pressure in order to avoid, that any fluid within the compartments escapes the container. As a further safety precaution, membranes 15 are preferably provided to separate the flexible containers for fuel, activator fluid and spent fuel. As a still further safety measure, each of the flexible containers and the hard shell container is preferably provided with a line for supplying nitrogen as a blanketing gas and for venting any excessive pressure arising in any of the containers. This line is preferably provided with a control valve and a mechanical safety valve. In addition, the flexible containers 20 and/or the hard shell container may be provided with sensing means for sensing and monitoring the pressure in the containers, the output of which is preferably communicated to a user interface.
In a preferred embodiment, each of the fluid lines for providing fuel and activator fluid from 25 the fuel container and activator container to the reaction chamber is provided with a bypass and a control valve in that bypass, allowing the fuel pump to continuously recirculate fuel through the bypass to the fuel container and the activator fluid pump to continuously recirculate activator fluid through the bypass to the activator fluid fuel container. Upon actuation of the control valves in each bypass, fuel and activator fluid are fed to the reaction chamber.
30
In another preferred embodiment of the invention a hydrogen output regulation valve is arranged downstream the hydrogen outlet of the reaction chamber for regulating the hydrogen output of hydrogen from the reaction chamber.
35 For the operation of the device a controller may be provided which is adapted to control in particular the output pressure of the hydrogen, the operation of the fuel pump, the operation -7- of the activator fluid pump, the actuation of the control valves in fuel and activator fluid bypass, the operation of the pump for reaction residues and/or the liquid level within the reaction chamber.
5 In a preferred embodiment, the reaction chamber is provided with a first heat exchanger, for removing a first portion of the heat of reaction between fuel and activator from the reaction chamber, and a second heat exchanger, for removing a second portion of the heat of reaction between fuel and activator from the mixer in the reaction chamber. By means of a suitable heat transfer fluid the heat from the first heat exchanger is provided to a heat conversion 10 cycle, such as an Organic Rankine Cycle (ORC) or a Kalina cycle, which is connected to a steam turbine and drives a generator for generating electrical energy. Alternatively the heat form the first heat exchanger may be used in a thermo-electric device for direct conversion of heat into electrical energy, or may be shared between a heat conversion cycle and a thermoelectric device.
15
The heat from the second heat exchanger is used for heating purposes and/or is dissipated to the environment. The maximum temperature of the hydrogen from the reaction chamber preferably is limited to 40°C in order to prevent damage to downstream equipment such as fuel cel! membranes.
20 The device of the invention may be preferably used for combinations of dispersions containing hydrogen carrier particles as a fuel and water or alcohol as activator fluids. However, the device can also be used for solutions containing metal hydrides or metal borohydrides as fuel and an aqueous activator fluid.
25 The fuel of the invention consists of a solution or dispersion and an activator fluid, the preferred composition and physical properties of which have already been described above.
Two specific examples exemplifying the fuel of the invention are discussed in the following: 30 As a first example, Calcium borohydride is dispersed in a medium preferably selected from the group of (mineral) oils, having a density in the range of 0.7 - 0.8. The colloidal fuel dispersion preferably is a viscous liquid free of volatile organic substances (VOS), i.e. low molecular weight ethers, alcohols and hydrocarbons.
35 As already stated above, water of the highest available purity as an activator for the fuel dispersion will give the fastest reaction with the fuel and the lowest amount of impurities.
-8-
Preferably the dispersion and the water are mixed under pressure, in order to flush the oil from the surface of the dispersed solid and exposing the solid surface to water, which will then react to form hydrogen. The interaction between the oil and the solids should be re-5 versible. By adding an emulsifier, the solid surface may be rapidly degreased, allowing an instant reaction with water and instant hydrogen gas formation.
Preferably a slight excess of water is added in order to ensure the complete conversion of all fuel.
10 A 70% dispersion of calcium borohydride in mineral oil has an energy density of 5.4 kWh / kg. Mixing with an equivalent amount of water (0.7 kg/kg) results in a system energy density of 5.4/1.7 = 3.2 kWh / kg. This meets the DoE requirement of 3 kWh /kg.
15 In order to meet the lower operating ambient temperature, a substance such as ethylene glycol (C2H602, relative density 1.1, boiling point 197.3°C, molecular mass 62.07) may be added. The general formula for calculating the freezing point depression is: ΔΤ = K —
M
wherein: 20 ΔΤ = freezing point depression in K, K = molar freezing point coefficient (1.86 K/mol for glycol in water), m = mass of dissolved substance in 1.0 kg of water M = molar mass of dissolved substance (62.07 for glycol) 25 Rearranging the general formula gives: ΔΓ ·Μ
m- K
Thus a freezing point depression of 20°C requires the addition of 667,4 g of glycol per kg of water. This dilutes the water by 1000/1667.4 = 599,3 g water per kg (~60%). Having a 70% 30 dispersion of calcium borohydride in mineral oil, an equivalent amount of water (0.7 kg/kg) thus requires 0.7/60% = 1.167 kg of the water/glycol winter mixture. The resulting system energy density is 2,5 kWh/kg.
-9-
At ambient temperature the vapor pressure of ethylene glycol is 0.5 kPa. Theoretically this would result in hydrogen gas containing 0.5% glycol, which has to be separated from the gas.
5 Alternatively the activator container may be heated by heating means such as an electrical heating coil.
As a second example, Aluminum borohydride contains 33.8% hydrogen by weight corresponding to 11.3 kWh / kg. This must be mixed with one and a half times the amount of wa-10 ter to release all hydrogen, resulting in a fuel and activator system hydrogen content of 13.5% by weight with an energy content of 4.5 kWh / kg. Thus, a 70% dispersion of aluminum borohydride in mineral oil has an energy density of 6.6 kWh / kg. Mixing with water (0.7 * 1.5 kg/kg) results in a system energy density of 3,2 kWh / kg (9.6% hydrogen).
15 The amount of water (1.05 kg/kg) for the winter mixture becomes 1.05/60% = 1.75 kg, resulting in a system energy density of 2.4 kWh / kg (7.2% hydrogen).
Alternative fuels include lithium borohydride and magnesium borohydride. Assuming a 70% dispersion of these fuels in mineral oil, fuel systems with an energy density of 3.9 kWh / kg 20 (11.8% hydrogen) and 3.6 kWh / kg (10.9% hydrogen) respectively may be provided. Winter mix in that case will give an energy density of 3.3 kWh / kg (9.9% hydrogen) for lithium and 3.1 kWh / kg (9.3% hydrogen) for magnesium.
Typically, the fuel may be obtained by starting from a solid fuel, preferably in powder or 25 granulate form, adding the appropriate amount of (preferably self-dispersing) dispersion medium (and a nonionic dispersant e.g. a nonionic surfactant such as nonylphenol ethoxylate containing approximately 8 ethyleneoxide units and the terminal OH group is preferably capped with a methylgroup to prevent reaction of the OH Group with the fuel.) The target fuel concentration is 70 - 75%, dispersant concentration 1 - 10%, preferably 1 - 5% most pref-30 erably 1 - 2%. The components are mixed in a high shear mixer, such as a rotor stator type mixer. The particle size of the solid fuel particles may be diminished to approximately 1 micron using e.g. a ball mill.
The residual products from the reaction of metal hydrides with water are metal hydroxides 35 M(OH)x, and the residual products from the reaction of metal borohydrides with water are metal borates M(B02)x. These residual products are solids, that preferably are dispersed in -10- the dispersion medium. The residual products may be regenerated. Therefore, spent fuel may be collected in a compartment from which it may be removed during a refuelling of a fuel tank. The collected spent fuel may be processed in a dedicated processing unit, where the individual components may be separated e.g. by centrifugal separation.
5
The hydrogen generated from the fuel of the invention, using the device of the invention may be used in a fuel cell for generating electrical power and/or in an internal combustion engine for generating driving power. The hydrogen may also be used in a catalytic converter for generating heat. In all cases hydrogen combines with oxygen from ambient air to form water 10 and heat.
The water formed in a fuel cell may be recovered by providing a third heat exchanger in the outlet of the fuel cell. Ambient air contains 20.95% of oxygen, which at ambient conditions (20°C, 1 bar) corresponds with 8.6 moles. Under the same conditions 1 m3 of air corresponds 15 with 41.05 moles. Conversion of one kg of hydrogen (496 moles) with ambient air at an equal air-to-fuel ratio then requires 28.8 m3 of air, of which 20.95% is consumed. Assuming the fuel cell outlet to be 40°C at 1 bar, this results in a release of 24.4 m3 of air containing 8.9 kg of water or 367 g/m3. At 60°C the volume of released air will be 25.9 m3 containing 345 g/m3 of water and at 80°C: 27.5 m3 containing 325 g/m3 of water.
20 From table 1 it is clear that at an equal air-to-fuel ratio, a fuel cell, even when operated at 80eC, produces an amount of water that exceeds the air saturation level. For complete conversion of all hydrogen, the air-to-fuel ratio normally is kept between 1.1 and 1.5.
By further increasing the air-to-fuel ratio, the water content may be reduced to the saturation level. At 40°C this ratio must be increased by a factor of 7.3, at 60°C it must be increased by 25 a factor of 2.7, and at 80°C it must be increased by a factor of 1.1. These values correspond very well with the air-to-fuel ratios required for cooling the heat production of the fuel cell, which assuming a fuel cell efficiency of 80%, will amount to 24 MJ.
Cooling the air released from the fuel cell will condense water vapor and prevent excessive vapor losses. A more efficient way of cooling the fuel cell is by using a cooling circuit.
30 By condensing most of the water produced by the fuel cell, the quantity of water that has to be carried in the tank may be limited to the excess water used for activating the fuel and the losses due to evaporation.
-11 - T(°C) -20 -10 0 10 20 30 40 50 $0 70 80 H20 (g/m3) 0,9 2,2 4,8 9,4 17 30 51 82 128 195 287 100%RH '18,6 9,4 29 57 97 157 247 379 573 850 80% RH -18,9 -6,9 7,6 25 49 84 134 207 316 472 696 60% RH -19,2 -7,7 5,7 22 42 70 110 168 252 372 542 40% RH -19,5 -8,5 3,8 18 35 57 87 129 188 271 388 20% RH -19,8 -9,3 1,9 14 27 44 64 90 124 171 234
Table 1
Assuming an air-to-fuel ratio of 1.2 and outlet conditions: 40°C at 1 bar, the amount of air 5 required per kg of hydrogen equals 34.6 m3. In that case the amount of air released equals 30.5 m3, having a moisture content of 293 g/m3. In order to recover 95% of the water, the moisture content of the outlet must be reduced to 15 g/m3, so the air must be cooled to a temperature of 20°C. This may be accomplished by connecting a plate condenser and a control valve to an airco system, for cooling the air from the fuel cell.
10
Hydrogen may be used in an internal combustion engine for generating driving power. In that case a considerable amount of heat is released in the exhaust of the engine.
The exhaust may be provided with a fourth heat exchanger, for removing the heat released during the combustion of hydrogen. By means of a suitable heat transfer fluid the heat from 15 the fourth heat exchanger may be provided to a thermal electrical module as previously described for recovering part of the heat.
The exhaust may be further cooled for water recovery as previously described. This will require considerable cooling. The exhaust will furthermore contain residues from the combus-20 tion of the lubricants used for lubricating the pistons of the engine.
Preferably a filter is provided in the activator line to remove impurities in the water as a result of ambient air used in the conversion of hydrogen.
25 The electric motor (or motors) of an electric vehicle may in addition to a battery be powered by a fuel cell. In a fuel cell hydrogen (fuel) and air (oxygen) are combined to produce an electrical current and water. In contrast with a battery, which can deliver up to its electrical charge -12- before it goes dead, a fuel cell will continue to generate power, provided fuel and oxygen are supplied.
In order to maximize the vehicle’s driving range, the energy onboard, including any braking energy, has to be used efficiently. To that effect, the vehicle has to be provided with an ad-5 vanced power management system, which selects and controls the optimum combination of power sources to drive the vehicle under varying electrical loads.
The voltage of a fuel cell depends on the load, the supply of hydrogen and the controlled current. Power electronics controlled by algorithms are used to regulate the power output of 10 the engine by regulating the voltage that is delivered to the electric motor based on the load variation required by the user and the current fuel cell output.
The power output of a fuel cell has an optimum near full load. Therefore the capacity of a fuel cell system for varying loads is preferably provided by a discrete number of stacks, each hav-15 ing e.g. 10% of the total capacity, such that 80% of the power may be controlled by switching 8 stacks on or off. Two further stacks preferably are provided with a fully controlled hydrogen flow, making 20% of the power continuously controlled.
If the load increases from Q up to 15% of the total capacity, the hydrogen flow of the 2 ad-20 justable stacks is controlled and if necessary adjusted. If the load increases to a value >15%, an additional fuel cell stack is switched on and the hydrogen flow of one adjustable stack is reduced in proportion. At each further load increment of 10%, this sequence is repeated until all stacks are in operation.
25 When operating the accelerator, a present day fuel cell will typically have a delay of the order <5 seconds in switching power on or off. The resulting power gap during acceleration has to be compensated by alternative power sources such as a battery and/or a capacitor fed by a kinetic energy recovery system (KERS) and/or excess power.
30 Considering the 200 kW electric power of a Tesla roadster, which is currently supplied by a 375 V battery pack having a capacity of 53 kWh, the maximum power translates to a maximum current of 533 A. The capacity translates to 141 Ah, which at 533 A may be delivered for a maximum period of 16 minutes.
35 If the Tesla would be equipped with e.g. 10 fuel cell stacks of 20kW each, then within 5 seconds after switching the nominal power would be available, during which time the battery -13- has to provide the maximum current. For practical purposes, including battery life and operational smoothness, the battery may have a design capacity of e.g. 10% of its current capacity.
The breaking energy of an electric vehicle is preferably recovered by using the electric motor 5 as a generator (KERS). The generated electricity may be stored in a battery and/or a capacitor for later use. A power controller preferable controls the charging and discharging cycles of the battery and capacitor. The battery charge is preferably held between 20% and 80% of full charge. The capacitor is used with priority for charging and discharging.
10 In the following, the invention is further described by way of several figures showing several aspects of preferred embodiments of the device of the invention as well as of fuelling related aspects of the invention.
Fig. 1 shows a scheme of a preferred fuel system according to the invention; 15 Fig. 2 shows a cross section of a preferred reaction chamber of a fuel system ac cording to the invention;
Fig. 3 shows a cross section of a part of a high shear mixer;
Fig. 4 shows a diagram regarding the delivery of the fuel; and Fig. 5 shows a diagram regarding a service station supply with fuel.
20 A preferred fuel system according to the invention as depicted in figure 1 comprises a reaction chamber 1, to which a fuel and an activator fluid can be provided. For example, the reaction chamber can be a medium pressure container allowing pressures of up to 5 bar.
25 The fuel to be provided to the reaction chamber is stored in a fuel compartment 2 of a fuel tank 3. The fuel tank 3 also comprises an activator fluid compartment 4 for storing the activator fluid which is to be provided to the reaction chamber 1, and a compartment for spent fuel 5 for storing the reaction products (except the generated hydrogen), which are released from the reaction chamber. All compartments 2, 4, 5 are arranged in a fuel tank, the outer part of 30 which can be at least partly evacuated via a pressure regulating valve V1 and a compressor C. A preferred pressure within the fuel tank is 150 hPa. The fuel tank can also be vented via an ambient venting valve V2.
The reaction chamber can be provided with fuel from the fuel compartment 2 via line 6 and 35 fuel pump 7, and can be provided with activator fluid from the activator fluid compartment 4 via line 8 and activator fluid pump 9. The reaction residues can be released form the reaction -14- chamber 1 via line 11 and pump 12 to be stored within the spent fuel compartment 5. The pumps preferably are membrane pumps. For the lines and the pumps, preferably hydrogen tight membranes and seals are used.
5 Any lines preferably consist of tubing having flashback and flame arresters and can contain sintered ceramic filters.
Both the fuel and the activator fluid are injected into the reaction chamber 1 inline through several injection nozzles.
10
The reaction chamber 1 comprises liquid level sensors to monitor the liquid level within the reaction chamber. In particular, a sensor L| for a lower liquid level, a sensor l_E for an upper liquid level and a sensor LA for an alarm level are arranged at adequate levels of the reaction chamber.
15
At the top the reaction chamber comprises an outlet for hydrogen which is separated from the rest of the chamber by a (hydrogen) gas permeable membrane 13. Hydrogen can be released from the reaction chamber 1 through the hydrogen outlet 14 to either a hydrogen buffer (not shown) or a hydrogen consumer (not shown) via line 15, a pressure regulator 16 20 and an output regulating valve V0. The pressure regulator may comprise mechanical bellows and shall be hydrogen tight.
Moreover, filter and check valves V3 and V4, both including hydrogen gas permeable membranes, are located at the top of the fuel compartment 2 and the spent fuel compartment 5, 25 which are connected via line 17 to the hydrogen outlet 14 for the release of hydrogen from the fuel compartment 2 and the spent fuel compartment 5.
Two sensors P1, P2 are provided for monitoring the pressure in the fuel tank and the hydrogen gas pressure at the outlet of the reaction chamber 16.
30
The fuel system is controlled by a controller 18. The controller 18 uses the information from the pressure sensors P1, P2, the liquid level sensors LA, LE, LA, to control either the pumps 6, 9,12 and the valves V0, V,, V2, V3. In particular, by separately controlling the pumps 6 and 9 the mixing ratio of fuel and activator fluid provided to the reaction chamber can be closely 35 controlled which enables the close control of the hydrogen generating reaction in the reaction -15- chamber 1. A processor arrangement for controlling fuel and activator may have standard pre-selected settings for various fuels.
The reaction chamber shown in figure 2 shows that the injectors are arranged to inject the 5 mixture of fuel and activator fluid in an upwards direction to induce a circle flow from a central part off the axis 21 of the reaction chamber upwards and downwards at the sides of the reaction chamber. A high shear mixer is arranged below the injectors and below the liquid level 22 within the reaction chamber.
10 A suitable high shear mixer is partly shown in figure 3. The high shear mixer comprises a circular stator 31 and concentrically thereto a rotor 32 having a smaller diameter than the stator. The rotation axis of the rotor 32 is arranged vertically. The inner wall of the stator 31 and the outer wall of the rotor 32 define a reaction area 33 for the reaction of hydrogen carrier particles in the fuel which have not yet been spent with activator fluid. Additional activator 15 fluid may be provided to the reaction area 33 through openings 34 in the wall of rotor 32, and spent fuel may be released from the reaction area through openings 35 in the wall of the stator 31.
(Partly) spent fuel may be recirculated over the mixer to ensure complete conversion of all 20 fuel and to prevent the occurrence of local high and/or local low concentrations of fuel particles (hot and cold spots).
In order to secure the purity of the generated hydrogen the adjacent low pressure stage (pressure regulator 16) may require an entry filter. Furthermore for safety reasons a flame 25 arrester should be provided to prevent flash back. Both filter and flame arrester may be combined.
The one and two stage mixing processes as well as the fuel system described above for example may be suitable for providing hydrogen for an automotive vehicle.
30
Figures 4 and 5 show schemes for service station delivery of fuel, and for service station supply of fuel.
The service station delivery of fuel to an automotive vehicle may comprise the steps of con-35 necting a connector line to the fuel tank of the automotive vehicle, the connector line providing a joint connection for fuel, water and spent fuel between a fuel tank, a water tank and a -16- spent fuel tank of the service station to the fuel compartment, the water compartment and the spent fuel compartment of the vehicle’s fuel tank, then first removing spent fuel from the spent fuel compartment of the fuel tank, followed by an automatic rinsing of the respective spent fuel part of the connector line with water, next filling of the fuel and activator fluid com-5 partments of the fuel tank with fuel and (e.g.) water via the water and the fuel part of the connector line, rinsing the respective water and fuel part of the connector line with water, and finally disconnecting the connector line.
In the same sequence of steps, the fuel, water and spent fuel may be exchanged between a 10 road tanker and the service station. However, it is also feasible, that a service station prepares its own activator fluid, i.e. has own possibilities of purifying water to the needed purity by any measures as described above. In this case, the it is not necessary for the service station to be provided with water by a road tanker.
15 The steps previously described are preferably executed using a dispenser provided with separate lines enclosed by a single tubular cover and connected to a unique connector for simultaneously dispensing fuel, activator fluid and nitrogen gas for blanketing, and collecting spent fuel. The connector of the dispenser including each of the sub-connectors can be connected to the connector of a vehicle in one possible way and fuel, activator fluid and nitrogen 20 gas can be dispensed and spent fuel can be collected provided a proper gastight connection is made between the connector of the dispenser and the connector of a vehicle.
Ultrapure water is preferably produced on site at the service station using suitable filters and/or electro-deionization equipment. The quality of the ultrapure water is preferably con-25 trolled using sensors for sensing conductivity. Maximum conductivity is 0.5 microSiemens.
1037461

Claims (45)

1. Werkwijze voor het opwekken van waterstof omvattende de stappen van a) het voorzien in een waterstofdrager vloeistof welke waterstofdrager moleculen 5 of deeltjes omvat die in een vloeibaar inert medium zijn opgelost of gedisper- geerd; b) het voorzien in een activator vloeistof; c) het inspuiten van de waterstofdrager vloeistof en de activator vloeistof in een eerste reactiekamer; 10 d) waarbij de inspuiting van de waterstofdrager vloeistof en de activator vloeistof een intensieve menging van de waterstofdrager deeltjes met de activator vloeistof veroorzaakt.A method for generating hydrogen comprising the steps of a) providing a hydrogen carrier liquid which comprises hydrogen carrier molecules or particles that are dissolved or dispersed in a liquid inert medium; b) providing an activator fluid; c) injecting the hydrogen carrier fluid and the activator fluid into a first reaction chamber; D) wherein the injection of the hydrogen carrier fluid and the activator fluid causes an intensive mixing of the hydrogen carrier particles with the activator fluid. 2. Werkwijze volgens conclusie 1, waarin de waterstofdrager vloeistof en de activator 15 vloeistof onder hoge druk worden ingespoten.2. Method according to claim 1, wherein the hydrogen carrier liquid and the activator liquid are injected under high pressure. 3. Werkwijze volgens conclusie 1 of conclusie 2, waarin het mengsel van de dispersie van de waterstofdrager vloeistof en de activator vloeistof in een tweede mengtrap aanvullend wordt gemengd. 20Method according to claim 1 or claim 2, wherein the mixture of the dispersion of the hydrogen carrier liquid and the activator liquid is additionally mixed in a second mixing step. 20 4. Werkwijze volgens conclusie 3, waarin tijdens de tweede mengtrap aanvullende activator vloeistof wordt toegevoegd aan het mengsel van de waterstofdrager vloeistof en de activator vloeistof.The method of claim 3, wherein additional activator fluid is added to the mixture of the hydrogen carrier fluid and the activator fluid during the second mixing step. 5. Werkwijze volgens conclusie 3 of conclusie 4, waarin de aanvullende menging wordt bewerkstelligd door een menger met hoge afschuifkracht.A method according to claim 3 or claim 4, wherein the additional mixing is effected by a mixer with a high shear force. 6. Werkwijze volgens een van de conclusies 3 tot 5, waarin de aanvullende menging bewerkstelligt dat de reactie van de waterstofdrager vloeistof met de activator 30 vloeistof ten minste voor 99% wordt voltooid.The method according to any of claims 3 to 5, wherein the additional mixing causes the reaction of the hydrogen carrier liquid with the activator liquid to be completed at least for 99%. 7. Werkwijze volgens een van de voorgaande conclusies, waarin de opgewekte waterstof door scheidingmiddelen, in het bijzonder door een membraan wordt afgescheiden van het reactieresidu. 1037461 35 -18-Method according to one of the preceding claims, wherein the hydrogen generated is separated from the reaction residue by separating means, in particular by a membrane. 1037461 35 -18- 8. Werkwijze volgens een van de voorgaande conclusies, waarin de totale hoeveelheid activator vloeistof de equivalente hoeveelheid voor de reactie met de hoeveelheid waterstofdrager vloeistof in geringe mate overschrijdt.A method according to any one of the preceding claims, wherein the total amount of activator liquid slightly exceeds the equivalent amount for the reaction with the amount of hydrogen carrier liquid. 9. Werkwijze volgens een van de voorgaande conclusies, waarin de waterstofdrager wordt geselecteerd uit een of meer leden van de groep bestaande uit metaal hydri-den MHx and metaal boorhydriden M(BH4)X, waarin M een metaal is en x de valentie van het betreffende metaal aanduidt.The method of any one of the preceding claims, wherein the hydrogen carrier is selected from one or more members of the group consisting of metal hydrides MHx and metal borohydrides M (BH4) X, wherein M is a metal and x is the valence of the metal concerned. 10. Werkwijze volgens conclusie 9, waarin het metaal van de waterstofdrager wordt geselecteerd uit de groep bestaande uit Li, Na, Be, Mg, Ca and Al.The method of claim 9, wherein the hydrogen carrier metal is selected from the group consisting of Li, Na, Be, Mg, Ca and Al. 11. Werkwijze volgens conclusie 10, waarin de waterstofdrager Ca(BH4)2 en/of AI(BH4)3 omvat. 15The method of claim 10, wherein the hydrogen carrier comprises Ca (BH4) 2 and / or Al (BH4) 3. 15 12. Werkwijze volgens een van de voorgaande conclusies, waarin de deeltjesgrootte van de waterstofdrager deeltjes 10 micrometer of kleiner is, bij voorkeur ongeveer 1 micrometer of kleiner.The method of any one of the preceding claims, wherein the particle size of the hydrogen carrier particles is 10 microns or smaller, preferably about 1 micrometer or smaller. 13. Werkwijze volgens een van de voorgaande conclusies, waarin het waterstofdrager medium een vloeistof is of een combinatie van vloeistoffen geselecteerd uit de groep bestaande uit minerale oliën, copolymeren van ethyleen and propyleen, po-ly(alfa)olefinen en ether alkoxylaten.A method according to any one of the preceding claims, wherein the hydrogen carrier medium is a liquid or a combination of liquids selected from the group consisting of mineral oils, copolymers of ethylene and propylene, poly (alpha) olefins and ether alkoxylates. 14. Werkwijze volgens een van de voorgaande conclusies, waarin de concentratie van de waterstofdrager moleculen in de waterstofdrager vloeistof ten minste 60% is, en bij voorkeur ligt binnen de reeks van 70 tot 75%.The method of any one of the preceding claims, wherein the concentration of the hydrogen carrier molecules in the hydrogen carrier liquid is at least 60%, and is preferably in the range of 70 to 75%. 15. Werkwijze volgens een van de voorgaande conclusies, waarin de viscositeit van de 30 waterstofdrager vloeistof van 1 tot 50 maal die van water bij kamertemperatuur is, bij voorkeur van 1 tot 25 maal die van water bij kamertemperatuur, in het bijzonder van 1 tot 10 maal die van water bij kamertemperatuur, meer in het bijzonder van 1 tot 5 maal die van water bij kamertemperatuur, met de grootste voorkeur voor 1 tot 2 maal die van water bij kamertemperatuur. 35 -19-15. A method according to any one of the preceding claims, wherein the viscosity of the hydrogen carrier liquid is from 1 to 50 times that of water at room temperature, preferably from 1 to 25 times that of water at room temperature, in particular from 1 to 10 times that of water at room temperature, more particularly from 1 to 5 times that of water at room temperature, most preferably 1 to 2 times that of water at room temperature. 35 -19- 16. Werkwijze volgens een van de voorgaande conclusies, waarin de activator water en/of een alcohol is of omvat en/of gerecycled water uit een brandstofcel.A method according to any one of the preceding claims, wherein the activator is or comprises water and / or an alcohol and / or recycled water from a fuel cell. 17. Werkwijze volgens conclusie 16, waarin het water is gezuiverd, gedemineraliseerd, 5 behandeld met omgekeerde osmose en/of gefiltreerd door een elektrostatisch filter.17. Method as claimed in claim 16, wherein the water is purified, demineralized, treated with reverse osmosis and / or filtered through an electrostatic filter. 18. Werkwijze volgens een van de voorgaande conclusies, waarin de activator een an-tivriesmiddel omvat, in het bijzonder glycol.A method according to any one of the preceding claims, wherein the activator comprises an anti-freeze agent, in particular glycol. 19. Werkwijze volgens een van de voorgaande conclusies, waarin een emulgator wordt toegevoegd aan de waterstofdrager vloeistof en/of de activator vloeistof.A method according to any one of the preceding claims, wherein an emulsifier is added to the hydrogen carrier fluid and / or the activator fluid. 20. Apparaat voor het opwekken van waterstof uit een brandstof welke een waterstofdrager bevat, waarbij de waterstofdrager in het bijzonder wordt geselecteerd uit de 15 groep bestaande uit metaal hydriden MHX en/of metaal boorhydriden ΜίΒΗ^χ, waar in M een metaal is en x de valentie van het betreffende metaal aanduidt, in het bijzonder met een werkwijze volgens een van de conclusies 1 tot 19, gekenmerkt door a) een reactiekamer; 20 b) tenminste een injector om de brandstof en een activator vloeistof in te spuiten in de reactiekamer; c) waarbij de ten minste een injector is aangepast om bij het inspuiten van brandstof en activator vloeistof in de reactiekamer een instantane reactie voor het opwekken van waterstof te veroorzaken; 25 d) waarbij de reactiekamer een uittreedopening omvat voor waterstof en een uit- treedopening voor het reactieresidu.20. Apparatus for generating hydrogen from a fuel containing a hydrogen carrier, the hydrogen carrier being selected in particular from the group consisting of metal hydrides MHX and / or metal borohydrides ΜίΒΗ ^ χ, where M is a metal and x indicates the valence of the metal in question, in particular with a method according to one of claims 1 to 19, characterized by a) a reaction chamber; B) at least one injector to inject the fuel and an activator liquid into the reaction chamber; c) wherein the at least one injector is adapted to cause an instantaneous hydrogen generation reaction upon injection of fuel and activator liquid into the reaction chamber; D) wherein the reaction chamber comprises an exit opening for hydrogen and an exit opening for the reaction residue. 21. Apparaat volgens conclusie 20, gekenmerkt door een brandstofpomp boven-strooms van de ten minste een injector. 30An apparatus according to claim 20, characterized by a fuel pump upstream of the at least one injector. 30 22. Apparaat volgens conclusie 20 of conclusie 21, gekenmerkt door een brandstof-compartiment dat in vloeiende verbinding staat met de ten minste een injector.An apparatus according to claim 20 or claim 21, characterized by a fuel compartment in fluid communication with the at least one injector. 23. Apparaat volgens een van de conclusies 20 tot 22, gekenmerkt door een vloeistof- 35 pomp voor de activator bovenstrooms van de ten minste een injector. -20-23. Device as claimed in any of the claims 20 to 22, characterized by a liquid pump for the activator upstream of the at least one injector. -20- 24. Apparaat volgens een van de conclusies 20 tot 23, gekenmerkt door een vloeistof-compartiment voor de activator welk compartiment in vloeiende verbinding staat met de ten minste een injector.Device according to any of claims 20 to 23, characterized by a liquid compartment for the activator, which compartment is in fluid communication with the at least one injector. 25. Apparaat volgens een van de conclusies 20 tot 24, gekenmerkt door een tweede trap menger, in het bijzonder een menger met hoge afschuifkracht.Device according to one of claims 20 to 24, characterized by a second stage mixer, in particular a mixer with a high shear force. 26. Apparaat volgens conclusie 25, met het kenmerk dat de tweede trap menger is omvat in de reactiekamer. 10An apparatus according to claim 25, characterized in that the second stage mixer is included in the reaction chamber. 10 27. Apparaat volgens conclusie 26, met het kenmerk dat de tweede trap menger benedenstrooms van de eerste reactiekamer is geplaatst.An apparatus according to claim 26, characterized in that the second stage mixer is placed downstream of the first reaction chamber. 28. Apparaat volgens een van de conclusies 20 tot 27, gekenmerkt door scheidingmid- 15 delen, in het bijzonder een halfdoorlaatbaar membraan om de waterstof af te scheiden van het reactieresidu.An apparatus according to any of claims 20 to 27, characterized by separation means, in particular a semi-permeable membrane for separating the hydrogen from the reaction residue. 29. Apparaat volgens een van de conclusies 20 tot 28, gekenmerkt door een brand-stofpomp voor het reactieresidu benedenstrooms van de reactiekamer.Device according to any of claims 20 to 28, characterized by a fuel pump for the reaction residue downstream of the reaction chamber. 30. Apparaat volgens een van de conclusies 20 to 29, gekenmerkt door een compartiment voor het reactieresidu benedenstrooms van de reactiekamer.Apparatus according to any of claims 20 to 29, characterized by a compartment for the reaction residue downstream of the reaction chamber. 31. Apparaat volgens een van de conclusies 20 tot 30, met het kenmerk dat de com- 25 partimenten voor de brandstof, de activator vloeistof en het reactieresidu zijn aan gebracht in een enkele brandstofcontainer.An apparatus according to any of claims 20 to 30, characterized in that the compartments for the fuel, the activator liquid and the reaction residue are arranged in a single fuel container. 32. Apparaat volgens een van de conclusies 20 tot 31, gekenmerkt door een regelklep voor waterstofproductie benedenstrooms van de uittreedopening van waterstof. 30An apparatus according to any of claims 20 to 31, characterized by a control valve for hydrogen production downstream of the hydrogen exit port. 30 33. Apparaat volgens een van de conclusies 20 tot 32, gekenmerkt door een regelaar in het bijzonder aangepast voor het regelen van de productiedruk van de waterstof, de brandstofpomp, de vloeistofpomp voor de activator, de pomp voor het reactieresidu en/of het vloeistofniveau in de reactiekamer. 35 -21 -Device according to one of claims 20 to 32, characterized by a controller adapted in particular to control the production pressure of the hydrogen, the fuel pump, the liquid pump for the activator, the pump for the reaction residue and / or the liquid level in the reaction chamber. 35-21 - 34. Binaire brandstof om waterstof op te wekken met een werkwijze volgens een van de conclusies 1 tot 19 omvattend een waterstofdrager in een inert vloeibaar medium, met het kenmerk dat de waterstofdrager een metaal hydride MHx of een metaal boorhydride M(BH4)X omvat, waarin M een metaal is en x de valentie van het 5 betreffende metaal aanduidt, en de activator vloeistof ultrapuur water is of omvat.A binary fuel for generating hydrogen with a method according to any of claims 1 to 19 comprising a hydrogen carrier in an inert liquid medium, characterized in that the hydrogen carrier comprises a metal hydride MHx or a metal borohydride M (BH4) X, wherein M is a metal and x indicates the valence of the metal in question, and the liquid activator is or comprises ultra pure water. 35. Brandstof volgens conclusie 34, met het kenmerk dat het metaal van de waterstofdrager wordt geselecteerd uit de groep bestaande uit Li, Na, Be, Mg, Ca and Al.A fuel according to claim 34, characterized in that the metal of the hydrogen carrier is selected from the group consisting of Li, Na, Be, Mg, Ca and Al. 36. Brandstof volgens conclusie 35, met het kenmerk dat de waterstofdrager Ca(BH4)2 en/of AI(BH4)3 omvat.A fuel according to claim 35, characterized in that the hydrogen carrier comprises Ca (BH4) 2 and / or Al (BH4) 3. 37. Brandstof volgens een van de conclusies 34 tot 36, met het kenmerk dat de deeltjesgrootte van de waterstofdrager 10 micrometer of kleiner is, bij voorkeur onge- 15 veer 1 micrometer of kleiner.37. A fuel according to any one of claims 34 to 36, characterized in that the particle size of the hydrogen carrier is 10 micrometers or smaller, preferably about 1 micrometer or smaller. 38. Brandstof volgens een van de conclusies 34 tot 37, met het kenmerk dat het waterstofdrager medium een vloeistof is of een combinatie van vloeistoffen geselecteerd uit de groep bestaande uit minerale oliën, copolymeren van ethyieen en propyleen, 20 poly(alfa)olefinen and ether alkoxylaten.38. A fuel according to any one of claims 34 to 37, characterized in that the hydrogen carrier medium is a liquid or a combination of liquids selected from the group consisting of mineral oils, copolymers of ethylene and propylene, poly (alpha) olefins and ether alkoxylates. 39. Brandstof volgens een van de conclusies 34 tot 38, met het kenmerk dat de concentratie van de waterstofdrager moleculen in de waterstofdrager vloeistof ten minste 60% is, en bij voorkeur ligt binnen de reeks van 70 to 75%. 25A fuel according to any of claims 34 to 38, characterized in that the concentration of the hydrogen carrier molecules in the hydrogen carrier liquid is at least 60%, and is preferably in the range of 70 to 75%. 25 40. Brandstof volgens een van de conclusies 34 to 38, met het kenmerk dat de viscositeit van de waterstofdrager vloeistof van 1 tot 50 maal die van water bij kamertemperatuur is, bij voorkeur van 1 tot 25 maal die van water bij kamertemperatuur, in het bijzonder van 1 tot 10 maal die van water bij kamertemperatuur, meer in het bij- 30 zonder van 1 tot 5 maal die van water bij kamertemperatuur, met de grootste voor keur voor 1 tot 2 maal die van water bij kamertemperatuur.The fuel according to any of claims 34 to 38, characterized in that the viscosity of the hydrogen carrier liquid is from 1 to 50 times that of water at room temperature, preferably from 1 to 25 times that of water at room temperature, in particular from 1 to 10 times that of water at room temperature, more particularly from 1 to 5 times that of water at room temperature, most preferably 1 to 2 times that of water at room temperature. 41. Werkwijze voor het vullen van een brandstoftank welke afzonderlijke compartimenten omvat voor het opslaan van brandstof, een activator vloeistof en verbruikte 35 brandstof, in het bijzonder de brandstoftank van een apparaat volgens conclusies -22- 20 to 33 aangebracht in een automobiel voertuig, waarbij de werkwijze de stappen omvat van - het koppelen van een verbindingslijn aan de brandstoftank van het automobiele voertuig, waarbij de verbindingslijn voorziet in een gezamenlijke verbinding 5 voor brandstof, water en verbruikte brandstof tussen een brandstoftank, een watertank en een tank voor gebruikte brandstof van een tankstation en het brandstofcompartiment, het watercompartiment en het compartiment voor verbruikte brandstof van de brandstoftank van het voertuig, dan - het verwijderen van gebruikte brandstof uit het compartiment voor verbruikte 10 brandstof van de brandstoftank via het gedeelte van de verbindingslijn voor gebruikte brandstof, - het vullen van de compartimenten voor brandstof en activator vloeistof van de brandstoftank met brandstof en (bijvoorbeeld) water via de gedeelten van de verbindingslijn voor water en brandstof, en ten slotte 15. het ontkoppelen van de verbindingslijn.41. A method for filling a fuel tank which comprises separate compartments for storing fuel, an activator liquid and spent fuel, in particular the fuel tank of an apparatus according to claims -22-33 arranged in an automobile vehicle, wherein the method comprises the steps of - coupling a connecting line to the fuel tank of the automobile vehicle, the connecting line providing a joint connection for fuel, water and spent fuel between a fuel tank, a water tank and a used fuel tank of a filling station and the fuel compartment, the water compartment and the spent fuel compartment of the fuel tank of the vehicle, then - removing used fuel from the spent fuel compartment of the fuel tank via the part of the used fuel connection line, - filling from the compar fuel and activator timing fluid from the fuel tank with fuel and (for example) water through the portions of the water and fuel connecting line, and finally 15. disconnecting the connecting line. 42. Werkwijze volgens conclusie 41, omvattend de aanvullende stappen van - het spoelen van het gedeelte van de verbindingslijn voor gebruikte brandstof met water nadat verbruikte brandstof uit het compartiment voor verbruikte 20 brandstof is verwijderd; en/of - het spoelen van de gedeelten van de verbindingslijn voor water en brandstof met water nadat het activator vioeistofcompartiment en het brandstofcompartiment van de brandstoftank van het voertuig zijn gevuld.A method according to claim 41, comprising the additional steps of - flushing the portion of the used fuel connecting line with water after spent fuel has been removed from the spent fuel compartment; and / or - rinsing the portions of the water and fuel connecting line with water after the fluid compartment activator and fuel compartment of the vehicle fuel tank have been filled. 43. Werkwijze voor het vullen van een brandstoftank en een tank voor verbruikte brandstof voor het opslaan van brandstof en verbruikte brandstof, in het bijzonder de brandstoftank en de tank voor verbruikte brandstof van een tankstation, waarbij de werkwijze de stappen omvat van - het koppelen van een verbindingslijn aan de brandstoftank van het tankstati- 30 on, waarbij de verbindingslijn voorziet in een gezamenlijke verbinding voor brandstof en verbruikte brandstof tussen een brandstoftank en een tank voor gebruikte brandstof van een tankstation en de compartimenten voor verbruikte brandstof en voor brandstof van een tankwagen of dergelijke, dan - het verwijderen van gebruikte brandstof uit het compartiment voor verbruikte 35 brandstof van de brandstoftank van het tankstation via het gedeelte van de verbindingslijn voor gebruikte brandstof, -23- - het vullen van de brandstoftank van het tankstation via het gedeelte van de verbindingslijn voor brandstof, en ten slotte - het ontkoppelen van de verbindingslijn43. Method for filling a fuel tank and a spent fuel tank for storing fuel and spent fuel, in particular the fuel tank and the spent fuel tank of a gas station, the method comprising the steps of - coupling a connection line to the fuel station of the tank station, the connection line providing a joint connection for fuel and spent fuel between a fuel tank and a used fuel tank of a gas station and the spent fuel and fuel tank compartments, or such, then - removing used fuel from the spent fuel compartment from the fuel tank of the gas station via the part of the used fuel connecting line, -23- - filling the fuel tank of the gas station via the part of the connecting line for fuel, and finally - the o unlink the connecting line 44. Werkwijze volgens conclusie 43, waarin het tankstation een tank heeft voor een ac tivator vloeistof, in het bijzonder een watertank, omvattend de aanvullende stap van het vullen van de activator vloeistoftank van het tankstation met een activator vloeistof uit een activator compartiment van de tankwagen via een gedeelte van de verbindingslijn voor activator vloeistof, bij voorkeur simultaan met het vullen van de 10 brandstoftank van het tankstation.The method of claim 43, wherein the gas station has a tank for an activator fluid, in particular a water tank, comprising the additional step of filling the activator fluid tank of the gas station with an activator fluid from an activator compartment of the tank truck via a part of the connecting line for activator liquid, preferably simultaneously with filling of the fuel station of the gas station. 45. Werkwijze volgens een van de conclusies 41 tot 44, omvattende de aanvullende stappen van - het spoelen van het gedeelte van de verbindingslijn voor gebruikte brandstof 15 met water nadat verbruikte brandstof uit het compartiment voor verbruikte brandstof is verwijderd; en/of - het spoelen van de gedeelten van de verbindingslijn voor water en brandstof met water nadat het activator vloeistofcompartiment en het brandstofcompar- timent van de brandstoftank van het voertuig zijn gevuld, 20 1037461A method according to any of claims 41 to 44, comprising the additional steps of - flushing the portion of the spent fuel connecting line with water after spent fuel has been removed from the spent fuel compartment; and / or - rinsing the portions of the water and fuel connecting line with water after the liquid compartment activator and fuel compartment of the vehicle fuel tank have been filled, 1037461
NL1037461A 2009-01-27 2009-11-11 Method, device and fuel for hydrogen generation. NL1037461C2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
NL1037461A NL1037461C2 (en) 2009-01-27 2009-11-11 Method, device and fuel for hydrogen generation.
CN201080005666.6A CN102300804B (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
EA201790053A EA038883B1 (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
PCT/NL2010/000014 WO2010087698A2 (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
CN201611078319.1A CN106966358B (en) 2009-01-27 2010-01-27 Method, apparatus and fuel for producing hydrogen
EA201170984A EA027014B1 (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
EP10720205A EP2382153A2 (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
EP21212636.1A EP3984947A1 (en) 2009-01-27 2010-01-27 Device for hydrogen generation
CN201510158726.2A CN104821409B (en) 2009-01-27 2010-01-27 Method, apparatus and fuel for hydrogen manufacturing
EP21212640.3A EP3984949A1 (en) 2009-01-27 2010-01-27 Fuel for hydrogen generation
CA3062505A CA3062505C (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
EP21212638.7A EP3984948A1 (en) 2009-01-27 2010-01-27 Method for refuelling a fuel tank, service station and connector line
JP2011547837A JP5805540B2 (en) 2009-01-27 2010-01-27 Methods, devices, and fuels for hydrogen generation
CA2750720A CA2750720C (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
US13/146,622 US8636975B2 (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation
CA3031477A CA3031477C (en) 2009-01-27 2010-01-27 Method, device and fuel for hydrogen generation by inducing turbulant flow mixing of hydrogen carrier and activator fluids
US14/160,392 US9540238B2 (en) 2009-01-27 2014-01-21 Method, device and fuel for hydrogen generation
US15/368,138 US10486966B2 (en) 2009-01-27 2016-12-02 Method, device and fuel for hydrogen generation
US17/536,676 US20220081288A1 (en) 2009-01-27 2021-11-29 Method, device and fuel for hydrogen generation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NL1036471 2009-01-27
NL1036471A NL1036471C2 (en) 2009-01-27 2009-01-27 Method, device and fuel for hydrogen generation.
NL1037461A NL1037461C2 (en) 2009-01-27 2009-11-11 Method, device and fuel for hydrogen generation.
NL1037461 2009-11-11

Publications (2)

Publication Number Publication Date
NL1037461A NL1037461A (en) 2010-07-30
NL1037461C2 true NL1037461C2 (en) 2010-09-03

Family

ID=69528020

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1037461A NL1037461C2 (en) 2009-01-27 2009-11-11 Method, device and fuel for hydrogen generation.

Country Status (1)

Country Link
NL (1) NL1037461C2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346506A (en) * 1963-10-14 1967-10-10 Foote Mineral Co Hydrogen-generating composition and use
CA2308514A1 (en) * 2000-05-12 2001-11-12 Mcgill University Method of hydrogen generation for fuel cell applications and a hydrogen-generating system
TWI260344B (en) * 2001-01-12 2006-08-21 Safe Hydrogen Llc A method of operating a hydrogen-fueled device

Also Published As

Publication number Publication date
NL1037461A (en) 2010-07-30

Similar Documents

Publication Publication Date Title
US11220427B2 (en) Method, device and fuel for hydrogen generation
DK2002032T3 (en) Energy storage and transport
CN100449841C (en) Zero/low discharge and co-production type energy supply station
US11192784B2 (en) Methods and systems for making metal hydride slurries
US6620537B2 (en) Hydrocarbon fueled hydrogen fuel generator system and apparatus in combination with hydrogen fuel cells
NL1037461C2 (en) Method, device and fuel for hydrogen generation.
EP2961683B1 (en) Methods and systems for making metal hydride slurries
NL1036471C2 (en) Method, device and fuel for hydrogen generation.
EA045052B1 (en) METHOD, DEVICE AND FUEL FOR HYDROGEN PRODUCTION

Legal Events

Date Code Title Description
SD Assignments of patents

Effective date: 20110823

V1 Lapsed because of non-payment of the annual fee

Effective date: 20130601