NL1028221C1 - Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum. - Google Patents

Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum. Download PDF

Info

Publication number
NL1028221C1
NL1028221C1 NL1028221A NL1028221A NL1028221C1 NL 1028221 C1 NL1028221 C1 NL 1028221C1 NL 1028221 A NL1028221 A NL 1028221A NL 1028221 A NL1028221 A NL 1028221A NL 1028221 C1 NL1028221 C1 NL 1028221C1
Authority
NL
Netherlands
Prior art keywords
energy
water
fluid
air
passage
Prior art date
Application number
NL1028221A
Other languages
English (en)
Inventor
Eduard Martinus Stoffelen
Original Assignee
Eduard Martinus Stoffelen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eduard Martinus Stoffelen filed Critical Eduard Martinus Stoffelen
Priority to NL1028221A priority Critical patent/NL1028221C1/nl
Application granted granted Critical
Publication of NL1028221C1 publication Critical patent/NL1028221C1/nl

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum
Deze uitvinding heeft betrekking op een inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum. Hierbij denkt men al gauw aan windenergie en S ook dat de hoeveelheid opgewekte energie uitsluitend afhangt van de windsnelheid oftewel de stroomsnelheid van de luchtdeeltjes. Dit is niet helemaal waar, want deze opgewekte energie is ook afhankelijk van de massa van de luchtdeeltjes en de hoeveelheid luchtdeeltjes, die per tijdseenheid tegen de schoepen of wieken van de windmolen aanbotst.
In plaats van stromende lucht, zou men ook stromend water in rivieren kunnen gebruiken, 10 waarbij simpelweg de molen ondersteboven in het water wordt gedompeld. Alhoewel de stroomsnelheid van het water 10 tot 100 keer zo laag is, en de massa van de waterdeeltjes ongeveer anderhalf keer zo laag, is het aantal deeltjes per volume-eenheid ongeveer 1500 keer zo hoog. Dat betekent dat de hoeveelheid opgewekte energie met een zogenaamde watermolen minstens 10 keer zoveel bedraagt als bij een windmolen.
15 Een heel groot voordeel van de watermolen ten opzichte van de windmolen, is dat er minder heftige fluctuaties in de hoeveelheid opgewekte energie optreden, omdat de stroomsnelheden van de waterdeeltjes niet zoveel schommelen als de stroomsnelheden van de luchtdeeltjes. In sommige gevallen levert de windmolen helemaal geen energie omdat het te zacht of te hard waait. Dit in tegenstelling tot de watermolen, die continu 24 uur per dag energie levert.
20 Een groot nadeel van de watermolen is dat er planten en dieren met de stroming van het water meegevoerd worden, die in aanraking met de watermolen er niet ongeschonden vanaf zullen komen. Ook zal met de stroming allerlei soorten afval meegevoerd worden, die de schoepen van de watermolen kunnen beschadigen.
Dat zijn waarschijnlijk de redenen waarom de watermolen momenteel niet gebruikt wordt 25 voor energieopwekking.
Toch is er een manier om energie uit stromend water te halen zonder de nadelige gevolgen van een watermolen en met de genoemde voordelen van een watermolen. Namelijk door gebruik te maken van een eenvoudig natuurkundig principe: als een fluïdum door een steeds nauwer wordende doorgang gevoerd wordt zoals bijvoorbeeld getekend in figuur 1 in een 30 zogenaamde venturibuis 1, dan zal de stroomsnelheid van dat fluïdum verhoogd worden, waardoor plaatselijk de druk verlaagd wordt.
Deze verlaging van de druk kan uitgerekend worden met de Wet van Bemouilli.
1028221 I 2 I Als in deze vernauwing een opening 2 aangebracht wordt, waar via een buis 3 het stromende
I water in de vernauwing in contact komt met de lucht boven het wateroppervlak, dan zal deze I
I lucht de vernauwing ingezogen worden. I
I Dit drukverschil kan aangewend worden om de lucht, die onderweg b van buiten naar de I
I 5 vernauwing toe, een turbine 4 aan te laten drijven. Door de turbine 4 aan een generator 5 te I
I koppelen, kan op deze manier energie opgewekt worden in de vorm van elektriciteit. I
Deze hoeveelheid opgewekte energie is afhankelijk van het drukverschil en de hoeveelheid I
aangezogen lucht. Dit drukverschil is op zijn beurt weer afhankelijk van de stroomsnelheid I
van het stromende water en de dichtheid van het water.
I 10 Hetzelfde principe om energie op te wekken kan ook toegepast worden bij andere stoffen. I
I In plaats van water en lucht kan dus ook een ander fluïdum gebruikt worden. I
Voor zowel het stromend fluïdum als het aangezogen fluïdum mag dit elke willekeurige stof I
zijn, zolang het maar vloeibaar of gasvormig is. I
I 1 028^1

Claims (2)

1. Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum door een steeds nauwer wordende doorgang, die even verderop wem1 geleidelijk 5 breder wordt, en waarbij in het smalste gedeelte een opening aangebracht is, waardoor een ander of hetzelfde fluïdum naar binnen wordt gezogen, met het kenmerk dat het aangezogen fluïdum alvorens het de opening ingaat, een turbine of zuigermotor aandrijft, welke gekoppeld i$ aan een generator.
2. Inrichting volgens conclusie 1, met het kenmerk dat zowel het stromende fluïdum als het 10 aangezogen fluïdum een gas of vloeistof is. 1028221
NL1028221A 2005-02-08 2005-02-08 Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum. NL1028221C1 (nl)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL1028221A NL1028221C1 (nl) 2005-02-08 2005-02-08 Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1028221A NL1028221C1 (nl) 2005-02-08 2005-02-08 Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum.
NL1028221 2005-02-08

Publications (1)

Publication Number Publication Date
NL1028221C1 true NL1028221C1 (nl) 2005-02-28

Family

ID=34464946

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1028221A NL1028221C1 (nl) 2005-02-08 2005-02-08 Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum.

Country Status (1)

Country Link
NL (1) NL1028221C1 (nl)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091159A1 (en) * 2007-01-23 2008-07-31 Tom Jensen A system and method for using a micro power plant
WO2011138659A2 (en) * 2010-05-04 2011-11-10 Craig Douglas Shrosbree Flow-based energy transport and generation device
CN111088783A (zh) * 2019-12-14 2020-05-01 同济大学 文丘里式水面漂浮垃圾收集器收集水面漂浮垃圾的方法
CN111088784A (zh) * 2019-12-14 2020-05-01 同济大学 一种文丘里效应控制的无动力水面垃圾收集器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091159A1 (en) * 2007-01-23 2008-07-31 Tom Jensen A system and method for using a micro power plant
WO2011138659A2 (en) * 2010-05-04 2011-11-10 Craig Douglas Shrosbree Flow-based energy transport and generation device
WO2011138659A3 (en) * 2010-05-04 2012-03-08 Craig Douglas Shrosbree Flow-based energy transport and generation device
CN111088783A (zh) * 2019-12-14 2020-05-01 同济大学 文丘里式水面漂浮垃圾收集器收集水面漂浮垃圾的方法
CN111088784A (zh) * 2019-12-14 2020-05-01 同济大学 一种文丘里效应控制的无动力水面垃圾收集器

Similar Documents

Publication Publication Date Title
Choi et al. Performance and internal flow characteristics of a cross-flow hydro turbine by the shapes of nozzle and runner blade
Lennemann et al. Unsteady flow phenomena in rotating centrifugal impeller passages
NL1028221C1 (nl) Inrichting voor het opwekken van energie door gebruik te maken van een stromend fluïdum.
Setoguchi et al. Development of two-way diffuser for fluid energy conversion system
Devenport et al. An experimental study of two flows through an axisymmetric sudden expansion
US7150149B2 (en) Extracting power from a fluid flow
Yuan et al. Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode
Thapa et al. Effects of sediment erosion in guide vanes of Francis turbine
Ferrara et al. Wet gas compressor surge stability
Zhang et al. Effects of the deflector plate on performance and flow characteristics of a drag-type hydrokinetic rotor
Takao et al. Effect of pitch-controlled guide vanes on the performance of a radial turbine for wave energy conversion
Zhang et al. Numerical investigation of pressure fluctuation and cavitation inside a Francis turbine draft tube with air admission through a fin
Skripkin et al. Comparative analysis of air and water flows in simplified hydraulic turbine models
Siller et al. Manipulation of the reverse-flow region downstream of a fence by spanwise vortices
Sagmo et al. Particle image velocimetry measurements in the vaneless space of a model Francis turbine under steady state operation
Spakovsky Backward traveling rotating stall waves in centrifugal compressors
Saleem et al. Experimental Investigation of Various Blade Configurations of Gravitational Water Vortex Turbine (GWVT)
Ober et al. Experimental investigation on aerodynamic behavior of a compressor cascade in droplet laden flow
Prunières et al. Investigation of the flow field and performances of a centrifugal pump at part load
MacGregor et al. Design and performance of vaneless volutes for radial inflow turbines: part 3: experimental investigation of the internal flow structure
Platonov et al. The study of the influence of stabilizing devices on the pressure pulsations at the free discharge of water through the turbine
Gopalan et al. Tip leakage cavitation, associated bubble dynamics, noise, flow structure and effect of tip gap size
RU2592953C1 (ru) Устройство ускорения низкопотенциального водного потока свободопоточной микрогэс
Klemm et al. Application of a cross flow fan as wind turbine
Choi et al. Internal flow characteristics of cross-flow hydraulic turbine with the variation of nozzle shape

Legal Events

Date Code Title Description
VD1 Lapsed due to non-payment of the annual fee

Effective date: 20090901