LV14388B - Wind-driven electric plant - Google Patents

Wind-driven electric plant Download PDF

Info

Publication number
LV14388B
LV14388B LVP-11-74A LV110074A LV14388B LV 14388 B LV14388 B LV 14388B LV 110074 A LV110074 A LV 110074A LV 14388 B LV14388 B LV 14388B
Authority
LV
Latvia
Prior art keywords
generator
wind
rotor
network
cycloconverter
Prior art date
Application number
LVP-11-74A
Other languages
Latvian (lv)
Other versions
LV14388A (en
Inventor
Guntis DIĻEVS
Nikolajs Levins
Vladislavs PUGAČEVS
Leonīds RIBICKIS
Original Assignee
Rīgas Tehniskā Universitāte
Fizikālās Enerģētikas Institūts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rīgas Tehniskā Universitāte, Fizikālās Enerģētikas Institūts filed Critical Rīgas Tehniskā Universitāte
Priority to LVP-11-74A priority Critical patent/LV14388B/en
Publication of LV14388A publication Critical patent/LV14388A/en
Publication of LV14388B publication Critical patent/LV14388B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

This invention presents wind generator which consists of wind turbine 1, connected to the wind generator, which primary winding is connected through the commutator device 3 that connects power network with autonomous electric load 4. The commutator 3 can be designed on the base of semiconductor converter. The secondary winding 2 of the generator is connected through the cycloconverter 5. The control of the elements 3 and 5 of the wind generator is provided by the microprocessor 7, which receives information about the rotation speed of the rotor from the speed sensor 8, information about network current frequency from the frequency transmitter 9 and information about the rotor angle from the rotor position transmitter 6. Wind generator offered can operate in two modes: in the first mode the generator operates as sinchronous inductor generator at the low and medium wind speeds being excited from the network through the cycloconverter 5 which operates as a rectifier. In the second mode when wind speed is higher and the slip is negative, the generator turns into double fed mode where primary and secondary winding through the cycloconverter is switched to the power network. Both of these modes are controlled by a microprocessor, which receives information from the speed sensor 8, current frequency transmitter 9 and from the rotor position transmitter 6. The possibility of the generator to operate at the two modes increases the operating range of the wind speed in which electrical energy can be generated and accordingly the installed power factor can be increased, which is the target of this invention, i.e., the practical application of the inductor generator in double fed induction generators' mode increasing the reliability and providing the opportunity directly connect the turbine to the generator.

Description

IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION

Izgudrojums attiecas uz vēja enerģētikas nozari, precīzāk - uz vēja elektroiekārtām, kuras pārvērš vēja kinētisko enerģiju elektriskajā enerģijā.The invention relates to the wind energy industry, more particularly to wind electrical equipment that converts wind kinetic energy into electrical energy.

Zināmā tehnikas līmeņa analīzeAnalysis of prior art

Ir zināma vēja elektroiekārta [1], kura sastāv no turbīnas, kas ir saistīta ar elektrisko ģeneratoru, kuram divi sekundārie tinumi ir savienoti ar elektroenerģijas uztvērēju, pie kam viens no sekundārajiem tinumiem ir ievietots rotora rievās un elektroenerģijas pārvade tajā var tikt nodrošināta tikai ar slīdošajiem kontaktiem. Tas ierobežo pārvadāmās enerģijas daudzumu un jaudas izmantošanas koeficientu.A wind turbine is known [1], consisting of a turbine connected to an electric generator, the two secondary windings of which are connected to an electric receiver, whereby one of the secondary windings is inserted into the rotor grooves and the power can be provided only by the sliding contacts. This limits the amount of energy transported and the power utilization rate.

Ir zināmi asinhronie vējģeneratori [2], kuriem kā primārais tinums, tā ari sekundārais tinums ir ievietots statora rievās un elektroenerģiju no tiem var pārvadīt bez slīdošajiem kontaktiem, bet šādi ģeneratori jaudu sāk ģenerēt tikai pie paaugstinātiem vēja ātrumiem, kad rotācijas frekvence pārsniedz sinhrono, kas savukārt ierobežo iekārtas uzstādītās jaudas izmantošanas koeficientu.Asynchronous wind generators [2] are known which have both a primary winding and a secondary winding inserted into the stator grooves and can carry electricity from them without sliding contacts, but such generators only start to produce power at elevated wind speeds when the rotation frequency exceeds synchronous, which in turn limits the utilization rate of the installed capacity of the unit.

Šajā izgudrojumā piedāvātajam tehniskajam risinājumam vistuvākā no zināmajām ir vēja elektroiekārta [3], kas izvēlēta par prototipu un satur vēja turbīnu, kura ir saistīta ar asinhrono ģeneratoru, kura primārais un sekundārais tinumi ir pieslēgti pie maiņstrāvas tīkla. Turklāt sekundārais tinums pie tīkla ir pieslēgts caur slīdošiem kontaktiem. Kad slīde s < 0, tāds risinājums samazina iekārtas drošumu un, kad slīde s > 0, tas nenodrošina iespēju saņemt elektroenerģiju notīklapie maziem vēja ātrumiem. Tas ierobežo uzstādītās jaudas izmantošanas koeficientu.The closest known solution to the technical solution of the present invention is a wind turbine [3], which is selected as a prototype and includes a wind turbine coupled to an asynchronous generator whose primary and secondary windings are connected to an AC network. In addition, the secondary winding is connected to the network through sliding contacts. When slip s <0, this solution reduces the safety of the equipment and when slip s> 0, it does not provide power to goggles at low wind speeds. This limits the utilization rate of the installed capacity.

Izgudrojuma mērķis un būtībaPurpose and substance of the invention

Izgudrojuma mērķis ir vēja elektroiekārtas uzstādītās jaudas izmantošanas koeficienta palielināšana, kā arī iekārtas drošuma paaugstināšana. Mērķis ir sasniegts tādējādi, ka vēja elektroiekārtai, kura satur turbīnu, kas savienota ar asinhrono ģeneratoru, kura primārais un sekundārais tinums ir slēgti pie maiņstrāvas tīkla, saskaņā ar izgudrojumu primārais tinums pie tīkla ir piesslēgts caur komutācijas ierīci „tīkls-autonomie elektroenerģijas uztvērēji”, bet sekundārais tinums pie tīkla ir pieslēgts caur ciklokonvertoru, kas ir savienots kopā ar mikroprocesora vadības ierīci, kurai ir pievienots rotora rotācijas frekvences devējs, maiņstrāvas tīkla strāvas frekvences devējs un rotora stāvokļa devējs.The object of the invention is to increase the utilization rate of the installed power of the wind power equipment and to increase the safety of the equipment. The object is achieved by the fact that, in accordance with the invention, the primary winding of a wind power apparatus comprising a turbine connected to an asynchronous generator, the primary and secondary windings of which are connected to an AC mains, is connected via a switching device "network autonomous power receivers". but the secondary winding is connected to the network through a cycloconverter, which is connected to a microprocessor control unit to which is connected a rotor rotation frequency sensor, an AC network current frequency sensor and a rotor position sensor.

Vēja elektroiekārtas drošuma paaugstināšana tiek sasniegta tādā veidā, ka asinhronais ģenerators ir uzbūvēts uz daudzpolu induktormašīnas bāzes, kuras primārais un sekundārais tinums ir izvietoti uz statora un rotors ir zobots un bez tinumiem.Increasing the safety of wind power equipment is achieved in such a way that the asynchronous generator is built on the basis of a multi-pole induction machine, the primary and secondary windings of which are arranged on a stator and the rotor is toothed and winding-free.

Izgudrojumu ir paskaidrots zīm.l, kurā ir attēlota vēja elektroiekārtas funkcionālā shēma. Piedāvātā vēja elektroiekārta sastāv no vēja turbīnas 1, kas ir savienota ar vēj ģeneratoru 2, kura primārais tinums ir pieslēgts pie tīkla slēgts caur komutācijas ierīci 3 „tīkls - autonomie elektroenerģijas uztvērēji 4”. Komutācijas ierīce 3 ir izveidota, piem., uz pusvadītāju pārveidotāju bāzes. Ģeneratora 2 sekundārais tinums ir pieslēgts pie tīkla caur ciklokonvertoru 5. Vēja elektroiekārtas vadība nodrošina mikroprocesors 7, kurš saņem informāciju par rotora rotācijas frekvenci no devēja 8, kā arī informāciju par tīkla frekvenci no tīkla strāvas frekvences devēja 9 un informāciju par rotora stāvokli attiecībā pret statoru no rotora stāvokļa devēja 6.The invention is explained in Fig. 1, which shows a functional diagram of a wind power installation. The proposed wind electrical equipment consists of a wind turbine 1 which is connected to a wind generator 2, the primary winding of which is connected to the network by means of a switching device 3 "network - autonomous electric receivers 4". The switching device 3 is based, for example, on a semiconductor converter. The secondary winding of the generator 2 is connected to the network via a cycloconverter 5. The control of the wind electrical device is provided by a microprocessor 7 which receives information about the rotor rotation frequency from transducer 8 and network information from the network current frequency transducer 9 from rotor position sensor 6.

Vēja elektroiekārta darbības aprakstsDescription of operation of wind power installation

Vēja elektroiekārta darbojas šādā veidā. Mikroprocesors 7 uz saņemtās informācijas bāzes no ātruma devēja 8 par rotora rotācijas frekvenci n un no tīkla frekvences fi devēja 9 aprēķina ģeneratora slīdes 5 lielumu pēc formulasThe wind turbine works in this way. Based on the received information, the microprocessor 7 from the speed sensor 8 about the rotor rotation frequency n and from the network frequency sensor 9 calculates the magnitude of the generator slip 5 according to the formula

kurā p ir polu pāru skaits ģeneratorā. Ja slīde ir pozitīva vai nedaudz negatīva, bet pēc moduļa nepārsniedz kādu sliekšņa vērtību sp, piemēram, sp= -0,1 , tad mikroprocesors dod komandu komutācijas ierīcei 3, kura pieslēdz ģeneratoram autonomu slodzi 4 (tīkls tajā brīdī ir atslēgts). Vienlaicīgi tiek padota komanda ciklokonvertoram 5 un tas pāriet taisngrieža režīmā, kas tīkla maiņstrāvu pārveido līdzstrāvā. Ģenerators tiek ierosināts (sekundārais tinums šeit funkcionē kā sinhronā ģeneratora ierosmes tinums) un jauda tiek atdota autonomiem patērētājiem 4.where p is the number of pole pairs in the generator. If the slip is positive or slightly negative but does not exceed a threshold value s p according to the module, for example s p = -0.1, then the microprocessor commands the switching device 3, which applies an autonomous load 4 to the generator (the network is currently deactivated). Simultaneously a command is given to the cycloconverter 5 and it enters a rectifier mode which converts the mains AC to DC. The generator is excited (the secondary winding here functions as the synchronous generator excitation winding) and power is returned to the autonomous consumers 4.

Palielinoties vēja ātrumam, pieaug ģeneratora rotācijas frekvence, slīde samazinās, sasniedz nulles vērtību un kļūst negatīva, piemēram, sp= - 0.1. Sasniedzot šādu sliekšņa vērtību, kas sākotnēji iestatīta minētajam ģeneratoram, mikroprocesors 4 caur komutācijas ierici 3 ieslēdz ģeneratoru 2 tīklā, bet ciklokonvertors 5 pāriet sekundārā tinuma nestabilas maiņstrāvas pārveidošanas režīmā stabilas frekvences (tīkla frekvences) maiņstrāvā un atdod enerģiju tīklā. Ģenerators darbojas divpusējās barošanas režīmā. Ģeneratoram 2 mainot slīdi, mikroprocesors formē vadības signālus ciklokonvertoram atkarībā no rotora pagrieziena leņķa, kuru uzdod rotora stāvokļa devējs 6. Ciklokonvertors, komutējot ātrdarbīgos pusvadītāju slēdžus, formē tādu maiņstrāvu sekundārajā tinumā, lai jaudas koeficients vienmēr būtu tuvs vieniniekam. To panāk, formējot maiņstrāvu ar apsteidzošu vai atpaliekošu leņķa vērtību attiecībā pret rotora pagrieziena leņķi, kuru uzdod rotora stāvokļa devējs 6. Tas rada iespēju būtiski palielināt ģenerēto jaudu un elektroenerģijas atdošanu pa diviem kanāliem - caur primāro un sekundāro ģeneratora tinumiem.As the wind speed increases, the generator rotation frequency increases, slip decreases, reaches zero value and becomes negative, for example, s p = - 0.1. Upon reaching such a threshold value initially set for said generator, the microprocessor 4 switches the generator 2 through a switching device 3, and the cycloconverter 5 enters the secondary winding unstable AC conversion mode into a stable frequency (network frequency) AC and returns energy to the network. The generator operates in two-way power mode. As alternator 2 slides, the microprocessor generates control signals to the cycloconverter depending on the rotor rotation angle of the rotor position sensor 6. The cycloconverter generates alternating current in the secondary winding by switching the high-speed semiconductor switches so that the power factor is always close to one. This is achieved by generating alternating current with a forward or lag angle relative to the rotor rotation angle commanded by the rotor position sensor 6. This makes it possible to significantly increase the generated power and power output through two channels - through the primary and secondary generator windings.

Izmantojamajam asinhronajam ģeneratoram elektroenerģijas izstrāde palielinās no 1,5 līdz 2 reizēm virs nominālās izstrādes, ja negatīvas slīdēsi gadījumā s sasniedz vērtību robežās no mīnus 1 līdz mīnus 2, pie kam iespēja ģeneratoram strādāt ar pozitīvu slīdi būtiski palielina vēja ātruma darba diapazonu un būtiski palielina vēja elektroiekārtas uzstādītās jaudas izmantošanu.For the asynchronous generator used, the power generation increases from 1.5 to 2 times the rated output if the negative slip in case s reaches a value between minus 1 and minus 2, whereby the ability for the generator to work with a positive slip significantly increases the wind speed range and significantly increases use of the installed power of the electrical equipment.

Daudzpolu bezkontakta asinhrono ģeneratoru izmantošana palielina vēja elektroiekārtas drošumu, it īpaši tiešās piedziņas izpildījumā. Ņemot vērā minētās būtiskās atšķirības, kuras dod pozitīvai efektu, izgudrojums ir rūpnieciski izmantojams.The use of multi-pole contactless asynchronous generators increases the safety of wind power equipment, especially in direct drive applications. Given the significant differences mentioned above, which have a positive effect, the invention is industrially applicable.

Imantotie informācijas avoti:Sources of information included:

1. Latvijas patents Nr. LV 5078 Vēja elektroiekārta, kas publicēts 09.02.1990 (autori R. Vinogradovs, N. Levins, A. Serebrjakovs, 0. Belavins, A. Bulekovs, B. Šikins, V. Jakovlevs);1. Latvian patent no. LV 5078 Wind Electrical Equipment, published 09.02.1990 (by R. Vinogradov, N. Levin, A. Serebrjakov, 0. Belavin, A. Bulekov, B. Shikin, V. Yakovlev);

2. Latvijas patents Nr. LV 12598 Asinhronais ģenerators, kas publicēts 20.04.2001. (autori N. Levins, V. Pugačevs, P. Šipkovs);2. Latvian patent no. LV 12598 Asynchronous generator published on 20.04.2001. (authors: N. Levin, V. Pugachev, P. Schipkov);

3. Latvijas patents Nr. LV 10332 Vēja elektroiekārta, kas publicēts 20.04.1995 (autori R. Vinogradovs, N. Levins, V. Pugačevs, J. Roliks).3. Latvian patent no. LV 10332 Wind Electrical Equipment, published April 20, 1995 (by R. Vinogradov, N. Levin, V. Pugachev, J. Rolik).

Claims (2)

1. Vēja elektroiekārta, kas satur vēja turbīnu, savienotu ar vēj ģeneratoru, kura primārais tinums ir ieslēgts caur komutācijas ierīci «tīkls - autonomie elektroenerģijas uztvērēji”, atšķirīga ar to, ka ģeneratora sekundārais tinums ir ieslēgts caur ciklokonvertoru, bet vēja elektroiekārtas vadību nodrošina mikroprocesors, kurš saņem informāciju par rotora rotācijas frekvenci no devēja, kā arī informāciju par frekvenci no tīkla strāvas frekvences devēja un informāciju par rotora stāvokļa leņķi no rotora stāvokļa devēja.1. A wind turbine incorporating a wind turbine connected to a wind generator, the primary winding of which is connected via a switching network "autonomous power receivers", wherein the secondary winder of the generator is powered by a cycloconverter and the microprocessor controls the wind turbine. , which receives information about the rotor rotation frequency from the transducer, as well as information about the frequency from the mains current frequency transducer and information about the rotor position angle from the rotor position transducer. 2. Vēja elektroiekārta saskaņā ar 1. punktu, kas atšķirīga ar to, ka, ar mērķi paaugstināt tās drošumu, asinhronais ģenerators ir uzbūvēts uz daudzpolu induktormašīnas bāzes, pie kam primārais un sekundārais tinums ir izvietoti uz statora, bet rotors ir zobots un bez tinumiem.Wind power installation according to Claim 1, characterized in that, in order to increase its safety, the asynchronous generator is based on a multi-pole induction machine, wherein the primary and secondary windings are arranged on a stator and the rotor is toothed and without windings. .
LVP-11-74A 2011-05-23 2011-05-23 Wind-driven electric plant LV14388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-11-74A LV14388B (en) 2011-05-23 2011-05-23 Wind-driven electric plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-11-74A LV14388B (en) 2011-05-23 2011-05-23 Wind-driven electric plant

Publications (2)

Publication Number Publication Date
LV14388A LV14388A (en) 2011-07-20
LV14388B true LV14388B (en) 2011-12-20

Family

ID=53178042

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-11-74A LV14388B (en) 2011-05-23 2011-05-23 Wind-driven electric plant

Country Status (1)

Country Link
LV (1) LV14388B (en)

Also Published As

Publication number Publication date
LV14388A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP1467094B2 (en) A wind turbine for producing electrical power and a method of operating the same
DK2550451T3 (en) EMERGENCY PITCH DRIVING DEVICE FOR A WIND OR WATER POWER SYSTEM
US9593672B2 (en) Isochronous wind turbine generator capable of stand-alone operation
EP2301143B1 (en) Power generators
EP2940860B1 (en) Generator for producing electric power
TWI446138B (en) Wind power excitation synchronous generator system and control method thereof
US20120056425A1 (en) Stand alone operation system for use with utility grade synchronous wind turbine generators
CN102709945B (en) Energy-storage wind power generation system with squirrel-cage generator
EP2320542A3 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
CN102185550B (en) Double-unit wind power generation grid-connected system and control method thereof
US9683540B2 (en) Electric unit for a pumped-storage power plant having components within and outside of an underground cavern
CN104993580B (en) Oil electricity mixed DC electric supply installation
CN103280834B (en) Variable speed constant frequency and energy storage method and device for wind power generation
CN101610062A (en) Self-excitation mixed-excitation synchronous motor alternating current power-generating system and control method thereof
US20180226908A1 (en) Method and system for adjusting wind turbine power take-off
CN201903629U (en) Alternating current transformation-type excitation synchronous wind power generation experimental facility
CN101369795A (en) Maximum power tracing and bus-bar voltage coordination control method of mixed field excitation wind power generation system
LV14388B (en) Wind-driven electric plant
CN205070732U (en) Can export compound excitation synchronous generator single -phase, three phase voltage simultaneously
Bayhan et al. Active and reactive power control of grid connected permanent magnet synchronous generator in wind power conversion system
Nikolic et al. Direct torque control and virtual-flux based direct power control of current source converter in wind turbine application
Kuperman et al. A shunt-connected inverter-based variable-speed wind-turbine generation
RU2802054C1 (en) Autonomous power supply system
RU66635U1 (en) ASYNCHRONIZED SYNCHRONOUS GENERATOR
Narayanan et al. Dual mode operation of a switched reluctance generator based wind energy conversion system and a battery integrated MG under abnormal utility grid conditions