LV14085B - All superelastic pressure sensor element - Google Patents

All superelastic pressure sensor element Download PDF

Info

Publication number
LV14085B
LV14085B LVP-09-218A LV090218A LV14085B LV 14085 B LV14085 B LV 14085B LV 090218 A LV090218 A LV 090218A LV 14085 B LV14085 B LV 14085B
Authority
LV
Latvia
Prior art keywords
sensor element
superelastic
pinok
polyisoprene
pressure sensor
Prior art date
Application number
LVP-09-218A
Other languages
Latvian (lv)
Other versions
LV14085A (en
Inventor
Juris Zavickis
Maris Knite
Gatis Podins
Original Assignee
Univ Rigas Tehniska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Rigas Tehniska filed Critical Univ Rigas Tehniska
Priority to LVP-09-218A priority Critical patent/LV14085B/en
Publication of LV14085A publication Critical patent/LV14085A/en
Publication of LV14085B publication Critical patent/LV14085B/en
Priority to PCT/LV2010/000017 priority patent/WO2011071355A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The invention is related to the field of material science and composite materials and can be utilized for elaboration and production of new perspective active elements. The production method of all superelastic pressure sensor element is proposed. The method includes the obtaining of the piezoresistive polyisoprene - nanostructured black composite (PINOK) - with reduced percolation threshold, using solution method and dispersing the electroconductive filler with ultrasound. The acquired sensor element originates with reduced concentration of conductive filler, the superelastic layer of PINOK with noticeably better electrical conductivity than sensitive element is used for electrodes and whole sensor element is enclosed into superelastic electro isolative protective casing by vulcanizing under pressur

Description

Izgudrojuma aprakstsDescription of the Invention

Izgudrojums attiecas uz materiālzinātnes un tehniskās fizikas jomām un var tikt izmantots jaunu perspektīvu aktīvo elementu izstrādē un izgatavošanā. Tehnikā plaši izplatīti dažādi sensorelementi, kas paredzēti spiediena konstatēšanai un/vai mērīšanai. Tie pamatā bāzēti uz pjezoelektriskiem kristāliem vai keramikām, tāpēc tie galvenokārt ir stingri noteiktas formas cieti elementi.The invention relates to the field of materials science and technical physics and can be used to develop and produce new perspective active elements. Various sensor elements for pressure detection and / or measurement are widely used in the art. They are mainly based on piezoelectric crystals or ceramics, so they are mainly solid elements of a certain shape.

Ir pierādīts [1], ka poliizoprēna gumijas un nanostrukturēta oglekļa PRINTEX ΧΕ2 kompozītam (PINOK) perkolācijas sliekšņa rajonā piemīt ievērojams pozitīvais pjezorezistīvais efekts (kompozīta elektriskā pretestība palielinās pieaugot mehāniskajam spiedienam) un to var izmantot kā ļoti jūtīgu spiediena detektoru/sensoru [2,3], Zinātniskajā literatūrā atrodami dati, ka superelastīga polimēra un nanostrukturēta oglekļa kompozītiem piemīt vājš negatīvais pjezorezistīvais efekts, un ir zināmi mēģinājumi tos pielietot mazāk jutīgu spiedes indikatoru izstrādē [4].It has been shown [1] that the polyisoprene rubber and nanostructured carbon PRINTEX ΧΕ2 composite (PINOK) in the percolation threshold region has a significant positive piezoresistive effect (the electrical resistance of the composite increases with increasing mechanical pressure) and can be used as a highly sensitive pressure detector [2,3]. ], There is evidence in the scientific literature that superelastic polymer and nanostructured carbon composites have a weak negative piezoresistive effect and attempts have been made to use them in the development of less sensitive pressure indicators [4].

Kā prototips izmantots līmēts superelastīgs daudzkomponentu pjezorezi stīvs sensorelements [2]. Kā galvenie tā trūkumi ir: pirmkārt - līmēta struktūra nenodrošina pietiekamu elementa strukturālu integritāti jeb monolītumu, t.i., laika gaitā elektrodi var atslāņoties no nanokompozīta; otrkārt - salīdzinoši liela pildvielas koncentrācija, pie kuras novērojama perkolācijas pāreja un attiecīgi arī pjezorezistīvais efekts.A glued superelastic multi-component piezorescence stiff sensor element is used as a prototype [2]. Its main drawbacks are: firstly, the bonded structure does not provide sufficient structural integrity or monolithicity of the element, i.e., the electrodes may become detached from the nanocomposite over time; secondly, a relatively high filler concentration at which percolation transition and consequently piezoresistive effect is observed.

Konkrētais izgudrojuma mērķis ir izveidot monolītu, viscaur superelastīgu pjezorezistīvu sensorelementu no PINOK. Izgudrojums piedāvā veidot sensorelementu vulkanizējot vienotā struktūrā daļēji vulkanizētas sagataves ar atšķirīgu elektrovadošās pildvielas koncentrāciju, turklāt pildvielu disperģē ar ultraskaņas maisīšanas metodi, kas samazina nepieciešamo pildvielas koncentrāciju, tādā veidā uzlabojot kompozītmateriāla superelastību. Kā pjezorezistīvo materiālu piedāvāts izmantot PINOK ar 5 masas daļām, kā kontaktu materiālu - PINOK ar 10 masas daļām un poliizoprēna gumiju bez elektrovadošas pildvielas kā elektroizolējošu apvalku. Paņēmiena realizācijas struktūra šķērsgriezumā attēlota 1. attēlā, kur: 1 - superelastīgs pjezorezistīvs PINOK; 2 superelastīgs elektrovadošs PINOK; 3 - misiņa stieple; 4 - lokani daudzdzīslu vara vadi ar izolāciju; 5 - superelastīgs elektroizolējošs apvalks. Komponentes 3 un 4 savā starpā savienotas lodējot.The specific object of the invention is to provide a monolithic, all-super-flexible piezo-resistive sensor element from PINOK. The invention proposes to form a sensor element by vulcanizing semi-vulcanized preforms with a different concentration of conductive filler into a single structure, further comprising dispersing the filler by an ultrasonic mixing method which reduces the required filler concentration, thereby improving the superelasticity of the composite material. It is proposed to use PINOK with 5 parts by weight as piezo-resisting material, and with PINOK with 10 parts by weight as contact material and polyisoprene rubber without conductive filler as an electrically insulating coating. The cross-sectional structure of the method is depicted in Figure 1, where: 1 - super-elastic piezo-resistive PINOK; 2 super elastic conductive PINOK; 3 - brass wire; 4 - insulated multi-core copper wires; 5 - Super elastic electrically insulating cover. Components 3 and 4 are interconnected by soldering.

PINOK iegūts šādi: vispirms ar aukstiem valčiem mehāniski samaisa dabīgo kaučuku ar nepieciešamajām vulkanizācijas piedevām, izņemot PRINTEX ΧΕ2. Pildvielu un matricas proporcijas attēlotas 1. tabulā, kur C vietā lietojama nepieciešamā PRINTEX ΧΕ2 koncentrācija, kas izteikta masas daļās un iegūta eksperimentāli, nosakot konkrētās pildvielas elektrovadāmības perkolācijas sliekšņa kritiskos parametrus. Iegūto jēlgumiju sasmalcina iespējami smalkos gabalos un šķīdina hloroformā attiecībā lOOg gumijas pret lOOOml hloroforma. Nepieciešamo daudzumu PRINTEX ΧΕ2 5min disperģē atsevišķi lOOOml tīra hloroforma, pielietojot īpatnējo ultraskaņas enerģiju lW/ml. Iegūto oglekļa dispersiju hlorofonnā pievieno jēlgumijas un hloroforma maisījumam un, intensīvi maisot, šķīdina un homogenizē vēl 24h. Pēc tam maisījumu atlej uz stikla pamatnes un ļauj hloroformam izgarot, iegūstot plēvi, ko homogenizē 8-10 reizes valcējot caur aukstiem valčiem ar iespējami mazāko spraugas atvērumu.PINOK is obtained as follows: first, cold rolls are mechanically mixed with natural rubber with the necessary vulcanisation additives, except for PRINTEX ΧΕ2. The proportions of filler and matrix are shown in Table 1, where instead of C the required concentration of PRINTEX ΧΕ2 expressed in parts by weight and obtained experimentally by determining the critical parameters of the percolation threshold of the specific conductivity of the filler is used. The resulting crude rubber is crushed into as small pieces as possible and dissolved in chloroform at 100 g of rubber per 100 ml of chloroform. The required amount of PRINTEX ΧΕ2 5min is dispersed separately in 10000ml of pure chloroform using the specific ultrasonic energy lW / ml. The resulting carbon dispersion in chloroform is added to the mixture of crude rubber and chloroform and, after vigorous stirring, is further dissolved and homogenized for 24 hours. The mixture is then poured onto a glass base and the chloroform is allowed to evaporate to form a film which is homogenized by rolling cold rolls 8 to 10 times with the smallest possible gap opening.

Tabula 1Table 1

PINOK ķīmiskais sastavsChemical composition of PINOK

Komponente In the component Saturs, m.d. Content, m.d. Dabīgais poliizoprēna kaučuks (Pl) Natural Polyisoprene Rubber (Pl) 100 100 Sērs (S) Sulfur (S) 3,5 3.5 Cikloheksil-benzotiazola-sulfenamīds (CBS) Cyclohexylbenzothiazole sulfenamide (CBS) 0,8 0.8 Cinka oksīds (ZnO) Zinc oxide (ZnO) 5 5 Stearinskābe Stearic acid 1 1 PRINTEX ΧΕ2 PRINTEX ΧΕ2 C C

Viscaur superelastīgu spiediena sensorelementu izgatavo, nepieciešamās sastāvdaļas nepilnīgi vulkanizējot nerūsējošā tērauda formās 100°C temperatūrā, 30atm spiedienā. Tad iegūtās sastāvdaļas savieno nepieciešamajā konfigurācijā un vulkanizē nerūsējošā tērauda formā 150°C temperatūrā. Nepilnīgās un galīgās vulkanizācijas ilgumi atkarīgi no izmantotā kaučuka tehnoloģiskajiem parametriem, kurus nosaka ar vulkanizācijas reometru. Atšķirībā no līmētā prototipa, iegūtajā sensorelementā komponentes savienotas vulkanizējot zem spiediena, kas nodrošina teicamu monolītumu, kā arī stabilu elektrisko kontaktu starp tā elektrovadošajām daļām.Throughout, the super-elastic pressure sensor is manufactured by incompletely vulcanizing the required components in stainless steel molds at 100 ° C and 30atm. The resulting components are then combined in the required configuration and vulcanized in a stainless steel form at 150 ° C. The times of incomplete and final vulcanization depend on the technological parameters of the rubber used, which are determined by the vulcanization rheometer. Unlike the glued-on prototype, the resulting sensor element is connected by vulcanization under pressure, which provides excellent monolithicity as well as stable electrical contact between its conductive parts.

Informācijas avoti:Sources of information:

1. M.Knite, V.Teteris, A.Kiploka, J.Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materiāls, Sensor.Actuator., A: Physical, 110/1-3, 142 (2004).1. M.Knite, V.Teteris, A.Kiploka, J.Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor material, Sensor.Actuator., A: Physical, 110 / 1-3, 142 (2004). .

2. M.Knite, G.Podins, S.Zike, J.Zavickis, V.Tupureina, PROSPECTIVE ROBOTIC TACTILE SENSORS: Elastomer - carbon nanostructure composites as prospective materiāls for flexible robotie tactile sensors, Proc. of 5th International2. M.Knite, G.Podins, S.Zike, J.Zavicki, V.Tupureina, PROSPECTIVE ROBOTIC TACTILE SENSORS: Elastomer - carbon nanostructure composites as a prospective material for flexible robotie tactile sensors, Proc. of 5th International

Conference on informatics in Control, Automation and Roboties, Roboties andConference on informatics in Control, Automation and Robotics, Robotics and

Automation, VI, May 11-15, 2008, Funchal, Madeira - Portugal, 234-238 (prototips)Automation, VI, May 11-15, 2008, Funchal, Madeira - Portugal, 234-238 (prototype)

3. J.Zavickis, G.Malefan, M.Knite, V.Teteris, Polyisoprene-nanostructured carbon black functional composite for pressure sensors, proceedings of scientific conference of young scientists on energy issues (CYSENI) 2008, Kaunas, Lithuania, May 28-29, 2009,3. J.Zavicki, G.Malefan, M.Knite, V.Teteris, Polyisoprene-Nanostructured Carbon Black Functional Composite for Pressure Sensors, Proceedings of the Young Scientists on Energy Issues (CYSENI) 2008, Kaunas, Lithuania, May 28 -29, 2009,

ISSN 1822-7554 (6 pages)ISSN 1822-7554 (6 pages)

4. A.E.Job, F.A.Oliveira, N.Alves, J.A.Giacometti, L.H.C.Mattoso, Conductive composites of natūrai rubber and carbon black for pressure sensors, Synth.Met., 135-136, (2003).4. A.E.Job, F.A.Oliveira, N.Alves, J.A.Giacometti, L.H.C.Mattoso, Conductive Composites of Naturally Rubber and Carbon Black for Pressure Sensors, Synth.Met., 135-136, (2003).

PretenzijasClaims

Claims (2)

1. Viscaur superelastīgs spiediena sensorelements, kas satur pjezorezistīvu poliizoprēna /nanostrukturēta oglekļa kompozīta (PINOK)/ slāni, PĪNOK elektrodus un izolējošus slāņus no poliizoprēna gumijas, atšķiras ar to, ka elektrodi izveidoti kā superelastīgi slāņi, bet sensorelementa sastāvdaļas izgatavotas katra atsevišķi, nepilnīgi vulkanizējot, un pēc tam savienotas vulkanizējot zem spiediena pie optimālas temperatūras.1. A super-elastic pressure transducer having a piezoresistive polyisoprene / nanostructured carbon composite (PINOK) / layer, a PIPE electrode, and a polyisoprene rubber insulating layer, characterized in that the electrodes are made of super-elastic layers and the components of the sensor element are individually incomplete. , and then bonded by vulcanization under pressure at optimum temperature. 2. Sensorelementa saskaņā ar 1. punktu izgatavošanas paņēmiens, kas raksturīgs ar to, ka nanostrukturēta oglekļa (NO) koncentrāciju pjezorezistīvajā slānī samazina, šķīdinot jēlgumiju hloroformā un disperģējot NO hloroformā ar ultraskaņu un iegūto šķīdumu un dispersiju mehāniski samaisot.2. A process for the manufacture of a sensor element according to claim 1, characterized in that the concentration of nanostructured carbon (NO) in the piezoresistive layer is reduced by dissolving the crude rubber in chloroform and dispersing the NO in chloroform by ultrasound and mixing the resulting solution and dispersion.
LVP-09-218A 2009-12-10 2009-12-10 All superelastic pressure sensor element LV14085B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
LVP-09-218A LV14085B (en) 2009-12-10 2009-12-10 All superelastic pressure sensor element
PCT/LV2010/000017 WO2011071355A1 (en) 2009-12-10 2010-12-08 Flexible pressure sensor element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-09-218A LV14085B (en) 2009-12-10 2009-12-10 All superelastic pressure sensor element

Publications (2)

Publication Number Publication Date
LV14085A LV14085A (en) 2010-01-20
LV14085B true LV14085B (en) 2010-04-20

Family

ID=43757882

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-09-218A LV14085B (en) 2009-12-10 2009-12-10 All superelastic pressure sensor element

Country Status (2)

Country Link
LV (1) LV14085B (en)
WO (1) WO2011071355A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645294B (en) * 2012-04-26 2013-11-06 西安交通大学 Pressure sensor chip based on ZnO nanoline array, and manufacturing method of pressure sensor chip
EP2829857A1 (en) * 2013-07-24 2015-01-28 Ecole Polytechnique Piezoresistive material exhibiting an optimal gauge factor
CN109990695B (en) * 2019-04-28 2020-05-08 中南大学 Flexible graphene-based piezoresistive sensor and preparation method thereof
CN111105926B (en) * 2019-12-14 2022-04-19 深圳先进技术研究院 Preparation method of flexible piezoresistive sensor of transformer and transformer
CN113456024B (en) * 2021-06-01 2022-11-08 北京大学口腔医学院 Method and device for directly measuring joint surface pressure in real time

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126283A (en) * 1986-11-14 1988-05-30 Ngk Spark Plug Co Ltd Piezoelectric probe
DE50115247D1 (en) 2001-01-08 2010-01-14 Fraunhofer Ges Forschung SENSOR FOR THE CONDITIONAL DETERMINATION OF CHARACTERISTICS OF MECHANICAL COMPONENTS USING AMORPHOSTS

Also Published As

Publication number Publication date
WO2011071355A1 (en) 2011-06-16
LV14085A (en) 2010-01-20

Similar Documents

Publication Publication Date Title
Chen et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers
Ke et al. Highly sensitive capacitive pressure sensors based on elastomer composites with carbon filler hybrids
Kumar et al. Studies on composites based on HTV and RTV silicone rubber and carbon nanotubes for sensors and actuators
Kanoun et al. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors
Yang et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing
Natarajan et al. Strong strain sensing performance of natural rubber nanocomposites
Yan et al. Stretchable graphene thermistor with tunable thermal index
JP6886266B2 (en) Transducer using flexible piezoelectric material
Costa et al. Highly sensitive piezoresistive graphene-based stretchable composites for sensing applications
LV14085B (en) All superelastic pressure sensor element
Paleo et al. The piezoresistive effect in polypropylene—carbon nanofibre composites obtained by shear extrusion
Zuruzi et al. Towards wearable pressure sensors using multiwall carbon nanotube/polydimethylsiloxane nanocomposite foams
Narongthong et al. An efficient highly flexible strain sensor: Enhanced electrical conductivity, piezoresistivity and flexibility of a strongly piezoresistive composite based on conductive carbon black and an ionic liquid
Huang et al. Strain-dependent dielectric behavior of carbon black reinforced natural rubber
Alam et al. Synergistically toughened silicone rubber nanocomposites using carbon nanotubes and molybdenum disulfide for stretchable strain sensors
CN110823421A (en) Method for preparing flexible piezoresistive shear force sensor by utilizing 3D printing
Rocha et al. Polypropylene-carbon nanofiber composites as strain-gauge sensor
JP2012046605A (en) Conductive polymer material and method of producing the same
KR20160075222A (en) A soft sensor for deformation measurement
Neella et al. Negative temperature coefficient behavior of graphene-silver nanocomposite films for temperature sensor applications
Luo et al. An embedded printed flexible strain resistance sensor via micro-structure design on graphene-filled conductive silicon rubber
Naderizadeh et al. Piezoresistive elastomer composites used for pressure sensing
Zhuang et al. Fabrication of lead-free perovskite MASnBrI2 nanocrystals-embedded polymer composites for flexible strain sensors
Zhao et al. Effect of carbon black addition on electromechanical performance of flexible piezoelectric composite films
Zavickis et al. The downshift of the electrical percolation threshold in polyisoprene-nanostructured carbon composites