LV13948B - Multilevel dc/ac porer inverter with hydrogen fuel cell - Google Patents

Multilevel dc/ac porer inverter with hydrogen fuel cell Download PDF

Info

Publication number
LV13948B
LV13948B LVP-09-02A LV090002A LV13948B LV 13948 B LV13948 B LV 13948B LV 090002 A LV090002 A LV 090002A LV 13948 B LV13948 B LV 13948B
Authority
LV
Latvia
Prior art keywords
phase transformer
capacitor
fuel cell
primary windings
controllable switch
Prior art date
Application number
LVP-09-02A
Other languages
Latvian (lv)
Other versions
LV13948A (en
Inventor
Artūrs PURVIŅŠ
Ingars Steiks
Oskars Krievs
Leonīds RIBICKIS
Original Assignee
Rīgas Tehniskā Universitāte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rīgas Tehniskā Universitāte filed Critical Rīgas Tehniskā Universitāte
Priority to LVP-09-02A priority Critical patent/LV13948B/en
Publication of LV13948A publication Critical patent/LV13948A/en
Publication of LV13948B publication Critical patent/LV13948B/en

Links

Landscapes

  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention refers to electrical engineering and can be applied in power electronics supply systems. Its objective is to increase the efficiency of a multilevel DC/AC power inverter. The offered multilevel DC/AC power inverter with hydrogen fuel cell contains fuel cell 1 and capacitor 8. The distinctive properties of the proposed topology are defined by a one phase transformer 10, where the common point of two primary windings in series connection is wired to the fuel cell 1 positive output. The fuel cell 1 negative output is connected to four controllable switches 2, 3, 4, 5, where the first controllable switch 2 is wired to one free end of the one phase transformer 10 primary windings, the fourth controllable switch 5 - to second free end, the second controllable switch 3 is joined to the negative output of the first capacitor 8 and the third controllable switch 4 - to the negative output of the second capacitor 9. The positive output of the first capacitor 8 is connected to one free end of the one phase transformer 10 primary windings and with the fifth controllable switch 6 - to the common point of the two primary windings, but the positive output of the second capacitor 9 is connected to second free end of the one phase transformer 10 primary windings and with the sixth controllable switch 7 - to the common point of the two primary windings. The first level positive pulse in one of the primary windings of the one phase transformer 10 is formed by wiring it to the fuel cell 1 and the second capacitor 9 in series connection with the third controllable switch 4, besides, simultaneously the second capacitor 9 is charged. The first level negative pulse in one of the primary windings of the one phase transformer 10 is formed by supplying it from the second capacitor 9 through the sixth controllable switch 7. The second level positive pulse in one of the primary windings of the one phase transformer 10 is formed by wiring it to the fuel cell 1 with the fourth controllable switch 5. The pulses in second primary winding of the one phase transformer 10 are formed symmetrically.

Description

DAUDZLĪMEŅU LĪDZSTRĀVAS-MAIŅSTRĀVAS ENERĢIJAS PĀRVEIDOTĀJS AR ŪDEŅRAŽA DEGVIELAS ELEMENTUMULTI-LEVEL CURRENT-AC POWER CONVERTER WITH HYDROGEN FUEL ELEMENT

Izgudrojums attiecas uz elektrotehniku un to var pielietot energoelektronikas barošanas sistēmās.The invention relates to electrical engineering and can be applied to power electronics power systems.

Ir zināms tehniskais risinājums daudzlīmeņu līdzstrāvas-maiņstrāvas enerģijas pārveidotājam ar ūdeņraža degvielas elementu, kas satur degvielas elementu un kondensatoru [1], Kā enerģijas pārveidotāja trūkumu var atzīmēt pazeminātus enerģētiskos rādītājus.There is a known technical solution for a multi-level DC-AC power converter with a hydrogen fuel cell containing a fuel cell and a capacitor [1]. The lack of an energy converter can be noted as reduced energy performance.

Izgudrojuma mērķis - uzlabot enerģijas pārveidotāja lietderības koeficientu.The object of the invention is to improve the efficiency of the power converter.

Daudzlīmeņu līdzstrāvas-maiņstrāvas enerģijas pārveidotājs ar ūdeņraža degvielas elementu satur degvielas elementu un kondensatoru. Risinājuma atšķirīgā daļa raksturojas ar to, ka degvielas elementa pozitīvā izeja ir pievienota vienfāzes transformatora divu primāro tinumu virknes slēguma kopējam punktam un degvielas elementa negatīvā izeja savienota ar četriem vadāmiem slēdžiem, kur pirmais vadāmais slēdzis pievienots pie viena vienfāzes transformatora primārā tinuma brīvā gala, ceturtais vadāmais slēdzis - pie otra brīvā gala, otrais vadāmais slēdzis pieslēgts pie pirmā kondensatora negatīvā izvada un trešais vadāmais slēdzis - pie otrā kondensatora negatīvā izvada. Pirmā kondensatora pozitīvais izvads pievienots pie viena vienfāzes transformatora primārā tinuma brīvā gala un caur piekto vadāmo slēdzi - pie vienfāzes transformatora divu primāro tinumu virknes slēguma kopējā punkta, bet otrā kondensatora pozitīvais izvads pieslēgts pie otra vienfāzes transformatora primārā tinuma brīvā gala un caur sesto vadāmo slēdzi - pie vienfāzes transformatora divu primāro tinumu virknes slēguma kopējā punkta.The multilevel dc-ac power converter with a hydrogen fuel cell contains a fuel cell and a capacitor. The different part of the solution is characterized in that the positive output of the fuel cell is connected to the common point of the two primary winding series connection of the single-phase transformer and the negative output of the fuel cell is connected to four controlled switches switch - at the other free end, the second slave switch is connected to the negative capacitance output of the first capacitor and the third slave switch is connected to the negative output of the second capacitor. The positive terminal of the first capacitor is connected to the free end of one primary transformer primary winding and through the fifth controlled switch to the common point of the two primary winding series, and the positive terminal of the second capacitor is connected to the free end of the second single phase transformer at the common point of the connection of two primary windings in a single-phase transformer.

1. Zīm. izmantoti sekojoši apzīmējumi:Fig. 1 the following terms are used:

- degvielas elements;- fuel cell;

2, 3, 4, 5, 6, 7 - vadāmie slēdži;2, 3, 4, 5, 6, 7 - controlled switches;

8, 9 - kondensatori;8, 9 - capacitors;

- vienfāzes transformators.- single-phase transformer.

Degvielas elementa 1 pozitīvā izeja ir pievienota vienfāzes transformatora 10 divu primāro tinumu virknes slēguma kopējam punktam un degvielas elementa 1 negatīvā izeja savienota ar četriem vadāmiem slēdžiem 2,3,4, 5, kur pirmais vadāmais slēdzis 2 pievienots pie viena vienfāzes transformatora 10 primārā tinuma brīvā gala, ceturtais vadāmais slēdzis 5 - pie otra brīvā gala, otrais vadāmais slēdzis 3 pieslēgts pie pirmā kondensatora 8 negatīvā izvada un trešais vadāmais slēdzis 4 - pie otrā kondensatora 9 negatīvā izvada. Pirmā kondensatora 8 pozitīvais izvads pievienots pie viena vienfāzes transformatora 10 primārā tinuma brīvā gala un caur piekto vadāmo slēdzi 6 - pie vienfāzes transformatora 10 divu primāro tinumu virknes slēguma kopējā punkta, savukārt otrā kondensatora 9 pozitīvais izvads pieslēgts pie otra vienfāzes transformatora 10 primārā tinuma brivā gala un caur sesto vadāmo slēdzi 7 - pie vienfāzes transformatora 10 divu primāro tinumu virknes slēguma kopējā punkta.The positive output of the fuel cell 1 is connected to a common point of the two primary windings of the single-phase transformer 10 and the negative output of the fuel cell 1 is connected to four controlled switches 2,3,4,5 where the first controlled switch 2 is connected to end, fourth slave switch 5 is connected to the second free end, second slave switch 3 is connected to the negative terminal of the first capacitor 8 and the third slave switch 4 is connected to the negative terminal of the second capacitor 9. The positive terminal of the first capacitor 8 is connected to the free end of one primary phase winding of one single-phase transformer 10 and via the fifth controlled switch 6 to the common point of the two primary windings of the single-phase transformer 10. and through the sixth controlled switch 7 to the common point of the two primary windings in the single-phase transformer 10.

Daudzlīmeņu līdzstrāvas-maiņstrāvas enerģijas pārveidotājs ar ūdeņraža degvielas elementu darbojas sekojoši. Pirmā līmeņa pozitīvo impulsu vienā no vienfāzes transformatora 10 primārajiem tinumiem formē, pieslēdzot to pie degvielas elementa 1 un otrā kondensatora 9 virknes slēguma ar trešo vadāmo slēdzi 4, kur līdzsprieguma lielums uz vienfāzes transformatora 10 primārā tinuma ir vienāds ar degvielas elementa 1 un otrā kondensatora 9 spriegumu starpību, pie tam vienlaicīgi tiek lādēts otrais kondensators 9. Pirmā līmeņa negatīvo impulsu vienā no vienfāzes transformatora 10 primārajiem tinumiem formē, nododot tam otrā kondensatora 9 enerģiju caur sesto vadāmo slēdzi 7, kur līdzsprieguma lielums uz vienfāzes transformatora 10 primārā tinuma ir vienāds ar otrā kondensatora 9 spriegumu. Otrā līmeņa pozitīvo impulsu vienā no vienfāzes transformatora primārajiem tinumiem formē, pieslēdzot to pie degvielas elementa 1 ar ceturto vadāmo slēdzi 5, kur otrā līmeņa līdzsprieguma lielums ir vienāds ar degvielas elementa 1 spriegumu.The multi-level DC-AC power converter with hydrogen fuel cell operates as follows. The first level positive pulse in one of the primary windings of the single-phase transformer 10 is formed by connecting it to the circuit of the fuel cell 1 and the second capacitor 9 by a third controlled switch 4, where the DC voltage on the primary winding of the single-phase transformer 10 is equal to a first capacitive negative pulse in one of the primary windings of the single-phase transformer 10 is formed by transmitting to it the energy of the second capacitor 9 via a sixth controlled switch 7, where the DC voltage on the primary winding of the single-phase transformer 10 is equal to voltage of capacitor 9. The second level positive pulse is formed in one of the primary windings of the single-phase transformer by connecting it to the fuel element 1 by a fourth controlled switch 5, where the magnitude of the second level DC is equal to the voltage of the fuel element 1.

Pirmā līmeņa negatīvo impulsu otrā no vienfāzes transformatora 10 primārajiem tinumiem formē, pieslēdzot to pie degvielas elementa 1 un pirmā kondensatora 8 virknes slēguma ar otro vadāmo slēdzi 3, kur līdzsprieguma lielums uz vienfāzes transformatora 10 primārā tinuma ir vienāds ar degvielas elementa 1 un pirmā kondensatora 8 spriegumu starpību, pie tam vienlaicīgi tiek lādēts pirmais kondensators 8. Pirmā līmeņa pozitīvo impulsu otrā no vienfāzes transformatora 10 primārajiem tinumiem formē, nododot tam pirmā kondensatora 8 enerģiju caur piekto vadāmo slēdzi 6, kur līdzsprieguma lielums uz vienfāzes transformatora 10 primārā tinuma ir vienāds ar pirmā kondensatora 8 spriegumu. Otrā līmeņa negatīvo impulsu otrā no vienfāzes transformatora 10 primārajiem tinumiem formē, pieslēdzot to pie degvielas elementa 1 ar pirmo vadāmo slēdzi 2, kur otrā līmeņa līdzsprieguma lielums ir vienāds ar degvielas elementa 1 spriegumu.The first level negative pulse in the second primary winding of the single-phase transformer 10 is formed by connecting it to the circuit of the fuel cell 1 and the first capacitor 8 with a second controlled switch 3, where the DC voltage on the primary winding of the single-phase transformer 10 is equal to the first capacitor 8 is formed by transferring to it the energy of the first capacitor 8 through a fifth controlled switch 6, wherein the DC voltage on the primary winding of the single-phase transformer 10 is equal to that of the first capacitor 8 voltage. The second level negative pulse of the second primary winding 10 of the single-phase transformer 10 is formed by connecting it to the fuel element 1 with a first controlled switch 2, where the magnitude of the second level DC voltage is equal to the voltage of the fuel element 1.

Viena perioda piecu līmeņu sinusoidālas formas maiņspriegumu vienfāzes transformatora 10 sekundārajā tinumā iegūst vadāmos slēdžus 2, 3, 4, 5, 6 un 7 ieslēdzot sekojošā secībā - trešo vadāmo slēdzi 4, ceturto vadāmo slēdzi 5, piekto vadāmo slēdzi 6, otro vadāmo slēdzi 3, pirmo vadāmo slēdzi 2 un sesto vadāmo slēdzi 7. Pirms katra nākamā vadāmā slēdža saslēgšanas atslēdz iepriekšējo, lai vienlaicīgi ir ieslēgts tikai viens vadāmais slēdzis.The five-level sinusoidal alternating voltage of one period in the 10 secondary winding of a single-phase transformer obtains controlled switches 2, 3, 4, 5, 6 and 7 in the following sequence - third controlled switch 4, fourth controlled switch 5, fifth controlled switch 6, second controlled switch the first slave switch 2 and the sixth slave switch 7. Before engaging each subsequent slave switch, unlatch the previous one so that only one slave switch is on at a time.

Enerģijas pārveidotāja lietderības koeficienta uzlabošana saistās ar elektriski virknē saslēgto vadāmo slēdžu skaita samazināšanu enerģijas nodošanas posmā no degvielas elementa uz vienfāzes transformatora vienu no primārajiem tinumiem un kondensatoru strāvas ierobežošanu ar vienfāzes transformatora induktivitātes elementiem - primārajiem tinumiem.Improving the efficiency of the power converter involves reducing the number of electrically connected controlled switches in the energy transfer phase from the fuel cell to one of the primary windings of the single-phase transformer and limiting the capacitor current to the inductive elements of the single-phase transformer - the primary windings.

Izmantotā literatūra:References:

1. Du Z.Tolbert M.L.Chiasson J.N.Ozpineci B.A. Cascade Multilevel Inverter Using a Single DC Source // in Proc. 21st IEEE, Applied Power Electronics Conference and Exposition, APEC '06, - 2006. 426.- 430.pp.1. Two Z.Tolbert MLChiasson JNOzpineci BA Cascade Multilevel Inverter Using a Single DC Source // in Proc. 21 st IEEE, Applied Power Electronics Conference and Exposition, APEC '06, - 2006. 426.- 430.pp.

Claims (1)

PRETENZIJATHE CLAIM Daudzlīmeņu līdzstrāvas-maiņstrāvas enerģijas pārveidotājs ar ūdeņraža degvielas elementu, kas satur degvielas elementu un kondensatoru, atšķirīgs ar to, ka degvielas elementa pozitīvā izeja ir pievienota vienfāzes transformatora divu primāro tinumu virknes slēguma kopējam punktam, ka degvielas elementa negatīvā izeja savienota ar četriem vadāmiem slēdžiem, kur pirmais vadāmais slēdzis ir pievienots pie viena vienfāzes transformatora primārā tinuma brīvā gala, ceturtais vadāmais slēdzis - pie otra brīvā gala, otrais vadāmais slēdzis ir pieslēgts pie pirmā kondensatora negatīvā izvada un trešais vadāmais slēdzis ir pieslēgts pie otrā kondensatora negatīvā izvada, turklāt pirmā kondensatora pozitīvais izvads ir pievienots pie viena vienfāzes transformatora primārā tinuma brīvā gala un caur piekto vadāmo slēdzi - pie vienfāzes transformatora divu primāro tinumu virknes slēguma kopējā punkta, bet otrā kondensatora pozitīvais izvads ir pieslēgts pie otra vienfāzes transformatora primārā tinuma brīvā gala un caur sesto vadāmo slēdzi - pie vienfāzes transformatora divu primāro tinumu virknes slēguma kopējā punkta.A multilevel dc-ac power converter with a hydrogen fuel cell containing a fuel cell and a capacitor, characterized in that the positive output of the fuel cell is connected to the common point of the two primary windings of the single-phase transformer, the negative output of the fuel cell is connected to four wires. wherein the first slave switch is connected to the free end of one primary phase winding of the single-phase transformer, the fourth slave switch is connected to the other free end, the second slave switch is connected to the first capacitor negative terminal and the third slave switch is connected to the second capacitor negative terminal the output is connected to the free end of one single-phase transformer primary winding and through the fifth controlled switch to the common point of the two primary winding series circuit of the single-phase transformer, but to the second capacitor positive This output is connected to the free end of the primary winding of the second single-phase transformer and via the sixth controlled switch to the common point of the two primary windings in the single-phase transformer.
LVP-09-02A 2009-01-07 2009-01-07 Multilevel dc/ac porer inverter with hydrogen fuel cell LV13948B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-09-02A LV13948B (en) 2009-01-07 2009-01-07 Multilevel dc/ac porer inverter with hydrogen fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-09-02A LV13948B (en) 2009-01-07 2009-01-07 Multilevel dc/ac porer inverter with hydrogen fuel cell

Publications (2)

Publication Number Publication Date
LV13948A LV13948A (en) 2009-05-20
LV13948B true LV13948B (en) 2009-08-20

Family

ID=41694509

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-09-02A LV13948B (en) 2009-01-07 2009-01-07 Multilevel dc/ac porer inverter with hydrogen fuel cell

Country Status (1)

Country Link
LV (1) LV13948B (en)

Also Published As

Publication number Publication date
LV13948A (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US9825556B2 (en) Converter topologies for common mode voltage reduction
CN103219877B (en) A kind of capacitor discharging circuit and changer
US10707775B2 (en) Method and apparatus for multi phase shift power converter control
US20090201706A1 (en) Apparatus for feeding electrical energy into a power grid and DC voltage converter for such an apparatus
WO2009137969A1 (en) A photovoltaic grid-connected inverter device without a transformer and its control method
WO2012152072A1 (en) Solar energy photovoltaic three-phase micro-inverter and solar energy photovoltaic generating system
CN104269875A (en) Hybrid energy storage topological structure on basis of MMC modular multilevel converter
CN103023362A (en) Bridgeless inverter circuit and solar bridgeless inverter
RU2014108749A (en) DIRECT ELECTRIC HEATING DEVICE CONTAINING A POWER ELECTRONIC CONVERTER
CN204190626U (en) Four-quadrant diode clamp formula three level power converter
CN103312210A (en) Three-phase four-wire type three-level photovoltaic grid-connected inverter
CN113410829B (en) True bipolar direct current micro-grid busbar voltage balancing device and control method thereof
CN104716680A (en) Offline uninterruptible power supply with renewable energy and control method thereof
CN105186900A (en) Five-level transformerless inverter circuit
CN102420437A (en) Multi-filtering single-phase photovoltaic grid-connected power generating system
WO2010139187A1 (en) Circuit for converting dc voltage to ac voltage
CN103929079A (en) Micro-inverter with photovoltaic-side decoupling circuit and operating method thereof
JP2015220861A (en) Voltage regulator
RU2664234C1 (en) Damper and device for transformation of power energy that uses damper
CN101895205A (en) Transducer
CN105281364B (en) A kind of photovoltaic generating system based on multi-phase inverter unit
LV13948B (en) Multilevel dc/ac porer inverter with hydrogen fuel cell
CN202424566U (en) Single-phase unfenced photovoltaic grid-connected inverted circuit
CN203251237U (en) Three-phase four-wire type three-level photovoltaic grid-connected inverter
CN204947920U (en) Five level transformerless inverter circuits