LU502985B1 - Method of insulating a motor - Google Patents

Method of insulating a motor Download PDF

Info

Publication number
LU502985B1
LU502985B1 LU502985A LU502985A LU502985B1 LU 502985 B1 LU502985 B1 LU 502985B1 LU 502985 A LU502985 A LU 502985A LU 502985 A LU502985 A LU 502985A LU 502985 B1 LU502985 B1 LU 502985B1
Authority
LU
Luxembourg
Prior art keywords
resin
insulating
motor
impregnating
epoxy resin
Prior art date
Application number
LU502985A
Other languages
German (de)
Inventor
Yu Xia
Yaoxiang Mo
Zhitao Gu
Wei Ji
Guoxing Ru
Weihong Xu
Cheng Zhou
Original Assignee
Suzhou Jufeng Electrical Insulation System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Jufeng Electrical Insulation System Co Ltd filed Critical Suzhou Jufeng Electrical Insulation System Co Ltd
Priority to LU502985A priority Critical patent/LU502985B1/en
Application granted granted Critical
Publication of LU502985B1 publication Critical patent/LU502985B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

The present invention relates to a method of insulating a motor, comprising: providing a impregnating resin; heating up the motor windings with electricity to 100-120℃, and potting the motor windings with the impregnating resin for 2-5 min at that temperature; heating up the motor windings with electricity to 140-160℃, and trickling the impregnating resin for 3-8 min for insulation; heating up the motor windings with electricity to 165-175℃, and curing for 15-45 min. The method of insulating a motor provided by the present invention has a higher resin filling level and a higher resin utilization rate, as well as faster curing speed

Description

METHOD OF INSULATING A MOTOR 17008985
Field of the Invention
This invention relates to a method of insulating a motor.
Background
Renewable energy electric vehicles mainly comprises: battery management System (BMS) drive system, vehicle management system (VMS), vehicle body. The drive system works as the heart of the electric vehicle, including the motor and the controller, in which the motor plays a decisive role in the performance of the drive system. The operation characteristics of the renewable include: frequent start-up, dealing with speed changing and climbing up requirements; large alternating load, impulsive voltage, and overload current; high power density and operating temperature; strong mechanical vibration; high reliability and security requirements. Therefore, the insulation treatment of the motor is very important, and the technical requirements for the insulating materials used such as impregnating resin are also more stringent.
In recent years, with the improvement of the power density for renewable energy electric vehicle motor, the winding wire harness should be fully coated to form an overall structure after resin curing to prepare a non-air gap insulation structure; and the resin curing waste should be significantly reduced or even eliminated to meet the environmental protection requirements.
The existing insulation impregnating technology mainly includes ordinary impregnating method, vacuum impregnating method, vacuum pressure impregnating method, continuous impregnating method, dipping method, trickling method, whereas ordinary impregnating method, vacuum impregnating method, vacuum pressure impregnating method, continuous impregnating method have a long curing time, low production efficiency, and insufficiently coating on the wires due to the large resin loss during the baking and curing time, thereby affecting the overall strength and insulation properties, additionally causing a problem of dealing with the curing resin waste. Comparing to the above-mentioned methods, through rotating work pieces during baking process, the dipping method and the trickling method have reduced resin loss and curing waste, moreover improved production efficiency, However, for the high power density motor, there is still space for improving the insulation filling level, resin utilization rate, and curing speed to meet the requirements of the renewable energy electric vehicle.
Summary
It is a primary object of the present invention to provide a method of insulating motors with higher insulation filling level, resin utilization rate, and curing speed.
To achieve the above object, what provided is as follows.
A method of insulating a motor, comprising: providing a impregnating resin; heating up the motor windings with electricity to 100-120°C, and potting the motor winding with the 502985 impregnating resin for 2-5 min at that temperature; heating up the motor winding with electricity to 140-160°C, and trickling the impregnating resin for 3-8 min for insulation; heating up the motor winding with electricity to 165-175°C, and curing for 15-45 min.
Preferably, the potting temperature is 110-120°C, the trickling temperature is 150-155°C, and the curing temperature is 168-173°C.
Preferably, preheating the motor windings to 100-125°C for 3-8 min before the potting process.
Preferably, the impregnating resin comprises: 20-55wt% of polyesterimide resin; 4-20wt% of modified epoxy resin; 3-10wt% of curing agent; 25-45wt% of active monomers; 10-30wt% of inorganic filler; 0.03-0.1wt% of polymerization inhibitor; 0.06-2.5wt% of initiator; 0.01-2wt% of additives.
Furthermore, the polyesterimide resin is unsaturated polyesterimide resin; preferably, the modified epoxy resin is the esterification reactant of bisphenol A epoxy resin and/or bisphenol F epoxy resin reacting with single or multiple components of acrylic acid, maleic anhydride, methyl hexahydrophthalic anhydride, tetrahydrophthalic anhydride; or/and, the modified epoxy resin is the chain extension reaction product of bisphenol A epoxy resin and/or bisphenol F epoxy resin reacting with polyhydric alcohols; preferably, the curing agent is one or multiple components of curing agent 594, tung oleic anhydride and nadic anhydride; preferably, the active monomer is one or multiple components of 1, 4-butanediol dimethacrylate , diethylene glycol dimethacrylate , dipropylene glycol dimethacrylate, 1, 6-hexadiol dimethacrylate, trimethylol propane triacrylate.
According to a preferable embodiment, the active monomer is a combination of 1, 4-butanediol dimethacrylate and one component of diethylene glycol dimethacrylate , dipropylene glycol dimethacrylate, 1, 6-hexadiol dimethacrylate, trimethylol propane triacrylate with a mass ratio of 1:0.1-1.5.
Furthermore, the inorganic filler is one or multiple components of silicon dioxide, trialumina, boron nitride and mica powder, and the particle size of the inorganic filler is at micron level and/or nano level.
Preferably, the particle size of the inorganic filler is 1-10um.
Preferably, the inorganic filler is a combination of two or multiple components of silicon dioxide, aluminum oxide, boron nitride, and mica powder with different particle sizes.
Preferably, the polymerization inhibitor is tert-butylcatechol.
Preferably, the initiator is one or multiple components of diisopropylbenzene peroxide, 2,
2-bis (tert-butylperoxide) butane, benzoyl peroxide, and 1, 1-bis (tert-amyl peroxide) cyclohexane. 1006085
Preferably, the additive is one or multiple components of additives KH550, BYK103, degian 9048S, and cobalt naphthenate.
The chemical raw materials used in the present invention could be obtained by market purchase or prepared by means known to the field.
Except for the impregnating resin in between the windings, the whole tank of the impregnating resin would not occur gel reaction during the potting process. The impregnating resin of the present invention is more suitable for the insulation impregnation of the motor windings due to its faster curing speed, low volatility, high adhesive strength, good thermal stability, excellent insulation property and corrosion resistance, as well as enhanced thermal conductivity.
Optionally, the impregnating resin comprises: 25-40wt% of polyesterimide resin; 4-10wt% of modified epoxy resin; 3-6wt% of curing agent, 30-35wt% of active monomers; 20-25wt% of inorganic filler; 0.03-0.1wt% of polymerization inhibitor; 0.06-2.5wt% of initiator; 0.01-2wt% of additives.
According to a specific and preferred implementation, the preparation method of the impregnating resin includes the following steps: (1) heating the polyesterimine resin to 100-110°C, adding the modified epoxy resin with evenly stirring, and then cooling to 60°C and below, adding the active monomer, the polymerization inhibitor, and the additives, after that stirring evenly to obtain a resin mixture; (2) adding the resin mixture obtained in step (1) to the kettle mixer, setting the stirring speed at 1000~2000 r/min for homogeneous emulsification, and adding the inorganic filler to the kettle mixer to stir and disperse, then changing speed to 6000-13000 r/min to stir and emulsify for 2-3 h with the temperature controlled below 60°C; (3) after homogeneous emulsifying reducing the stirring speed to 500-1000 r/min, cooling down to the temperature below 45°C, adding the curing agent and the initiator to stir and disperse for 1-2 h to obtain the impregnating resin.
Optionally, the gel time of the impregnating resin at 100+2°C is less than 30 min; after 96 h storage at 50°C, the viscosity increase factor at 23+1°C is less than 0.2 times.
Optionally, the motor winding is a stator winding of a renewable energy electric vehicle motor.
Optionally, the utilization rate of the impregnating resin is greater than 90%.
Comparing to the conventional impregnation technology with approximately 70% of resin utilization rate , the aforesaid method could reach 100% of the resin utilization rate to eliminate the resin waste, and meanwhile increase the production efficiency to 3-5 times; moreover, the, 502985 aforesaid method could accomplish a smooth continuous coating with a higher resin filling level up to 3-5 times greater than that of the conventional technology; additionally, the aforesaid method could prepare no-air gap insulating layers to improve the adhesive strength of the motor windings, reduce the partial discharge and enhance the heat dissipation; in addition, the impregnating resin prepared by the aforesaid method has an increased curing speed up to 3 times greater than that of the conventional technology, an excellent stability to meet the requirements of the electric-heating curing process, an enhanced thermal conductivity with a heat conductivity coefficient greater than 0.5W/(m-K) (whereas the heat conductivity coefficient of conventional commercial impregnating resin is about 0.2 W/m'K)), an advantage of non-toxic and environment- friendly property with curing volatiles<1%.
Due to the application of the above technical scheme, the present invention has the following advantages superior to the prior art: disclosed is a new method of insulating a motor with higher resin filling level, more efficient resin utilization rate and enhanced curing speed.
Detailed Discription
The present invention will be further described below in conjunction with the embodiments shown in the accompanying drawings, but the present invention is not limited to the following embodiments
The sources of raw materials in the following embodiments and comparative examples are as follows.
The polyesterimine resin is JF-956 polyesterimine resin purchased from Suzhou Jufeng
Electrical Insulation System Co LtdThe preparation method of tung oleic anhydride is as follows: adding 80 kg tung oil to the reaction kettle to stirring and heat to 100°C; then vacuumizing for 0.5 h; after cooling to 80°C adding 20 kg maleic anhydride; and then heating to 150-160°C, keeping at 150-160°C to react for 2 h; after that cooling down to a temperature below 80°C to discharge and obtain the tung oleic anhydride resin.
The preparation method of acrylic modified epoxy ester is as follows: adding 623 kg of
KG128 epoxy resin to the reaction kettle with heating and stirring, and vacuumizing for 0.5 h at 125+5°C (vacuum pressure value is above 0.088MPa); releasing the vacuum, and adding 58 kg of acrylic acid, 0.21 kg of chromium acetyl acetonate, 0.19 kg of hydroquinone to the reaction kettle; and then heating up to 135-140°C, keeping at 135-140°C to react for 0.5 h; sampling to test the acid value, when the acid value is less than 3KOHmg/g, cooling down to a temperature below 125°C and adding 22 kg of aluminum acetyl acetonate to the reaction kettle; after that turning on the vacuum pump, keeping pumping for 10-15 min at 115-120 °C under the vacuum pressure above 0.088 Mpa; after all the reactants are melting; cooling down to a temperature below 60 °C to discharge and obtain the acrylic modified epoxy ester.
The preparation method of acrylic acid - maleic anhydride modified epoxy ester is as 502985 follows: adding 500 kg of 128 epoxy resin into the reaction kettle to heat up and stir; vacuumizing for 0.5 h at 130+5°C (vacuum pressure value is above 0.088 MPa); releasing the 5 vacuum, and adding 38 kg of acrylic acid, 0.09 kg of N, N-dimethylbenzylamine, 0.11 kg of hydroquinone, and then heating up to 135-140°C to keep warm for 0.5 h; after that sampling to test the acid value, when the acid value is below 3KOHmg/g, cooling down to 135°C to add 23 kg of maleic anhydride; after reacting at 125-130°C for 20 min, sampling to test the acid value, when the acid value is below 20KOHmg/g, vacuumizing for 20 min under the vacuum pressure of 0.088 MPa, and then sampling to detect the acid value, when the acid value is below 10KOHmg/g, ending the reaction; cooling down to 125 °C and adding 15 kg of aluminium acetyl acetonate, then turning on the vacuum pump to vacuumizing for 10-15 min at 115-120°C under the vacuum pressure above 0.088 MPa; after all the reactants are melting, cooling down to 60°C to discharge and obtain acrylic acid - maleic anhydride modified epoxy resin.
Embodiment 1
The present embodiment took the motor stator of a renewable energy electric vehicle with a center height of 132 mm as an example. The steps of insulation treatment are as follows: (1) lifting the stator with a lifting device, connecting the windings to electricity, preheating to 120°C and keep warm for 5 min; (2) heating up the winding to 120°C, and potting the stator (motor winding) with the impregnating resin for 3 min at 120°C; (3) heating up the winding to 150°C, and trickling the impregnating resin for 5 min for insulation; (4) heating up the winding to 170°C, and curing for 20 min; (5) after disassembling the stator and cooling naturally, the stator was impregnated and insulated.
The aforesaid impregnating resin was prepared as follows: (1) mixing 358 kg of 105°C polyesterimine resin with 60 kg of acrylic modified epoxy resin, and stirring for 15 min, then cooling down to 60°C, and then adding 320 kg of 1, 4-butanediol dimethacrylate and 0.6 kg of tert-butylcatechol, and 10 kg of additive KH550 to stir 30 min to obtain a resin mixture; (2) adding the resin mixture into a kettle mixer, setting the stirring speed at 1500r/min to stir the mixture, and gradually adding 100kg of 3000-mesh spherical aluminum oxide and 100kg of 8000-mesh silicon dioxide to stir and disperse; after that changing the stirring speed to 6500r/min to homogeneously emulsifying and dispersing for 2.5 h, meanwhile cooling the inner wall of the kettle mixer with cooling water to control the temperature of the resin mixture below 60°C; (3) after homogeneously emulsifying and dispersing, reducing the stirring speed to 800r/min, and cooling down to a temperature below 45°C through cooling water, and then adding 30 kg of curing agent 594, 13 kg of dicumyl peroxide, 3 kg of 2, 2-bis (tert-butylperoxide) butane, 0.9 kg 502985 of 8% cobalt naphthenate solution to stir and disperse for 2 h, after filtering by a 1000-mesh filter screen and packaging to obtain the impregnating resin.
Embodiment 2
The present embodiment took the motor stator of a renewable energy electric vehicle with a center height of 132 mm as an example. The steps of insulation treatment are as follows: (1) lifting the stator with a lifting device, connecting the windings to electricity, preheating to 115°C and keep warm for 6 min; (2) heating up the winding to 115°C, and potting the stator with the impregnating resin for 4 min at 115°C; (3) heating up the winding to 150°C, and trickling the impregnating resin for 5 min for insulation; (4) heating up the winding to 168°C, and curing for 23 min; (5) after disassembling the stator and cooling naturally, the stator was impregnated and insulated.
The aforesaid impregnating resin was prepared as follows: (1) mixing 380 kg of 110°C polyesterimine resin with 50 kg of acrylic acid-maleic anhydride modified epoxy resin and stirring for 20 min, then cooling down to 59°C, and then adding 280 kg of 1,4-butanediol dimethacrylate and 40kg of diethylene glycol dumethacryviate, 0.8 kg of tert-butylcatechol, and 12 kg of BYK 103 to stir 35 min to obtain a resin mixture; (2) adding the resin mixture into a kettle mixer, setting the stirring speed at 1350r/min to stir the mixture, and gradually adding 200kg of 8000-mesh aluminium oxide and 20kg of 5000-mesh boron nitride to stir and disperse; after that changing the stirring speed to 8500r/min to homogeneously emulsifying and dispersing for 3 h, meanwhile cooling the inner wall of the kettle mixer with cooling water to control the temperature of the resin mixture below 60°C; (3) after homogeneously emulsifying and dispersing, reducing the stirring speed to 600r/min, and cooling down to a temperature below 45°C through cooling water, and then adding 50 kg of tung oil anhydride, 10kg of dicumyl peroxide, 3 kg of benzoyl peroxide, 0.8kg of 8% cobalt naphthenate solution to stir and disperse for 2 h, after filtering by a 1000-mesh filter screen and packaging to obtain the impregnating resin.
Embodiment 3
The present embodiment took the motor stator of a renewable energy electric vehicle with a center height of 132 mm as an example. The steps of insulation treatment are as follows: (1) lifting the stator with a lifting device, connecting the winding to electricity, preheating to 118°C and keep warm for 6 min; (2) heating up the winding to 110°C, and potting the stator with the impregnating resin for 4 min at 110°C; (3) heating up the winding to 155°C, and trickling the impregnating resin for 4 min for insulation; (4) heating up the winding to 173°C, and curing for 28 min; (5) after disassembling the stator and cooling naturally, the stator was impregnated and 502985 insulated.
The aforesaid impregnating resin was prepared as follows: (1)mixing 300 kg of 100°C polyesterimine resin with 80 kg of acrylic modified epoxy resin and stirring for 20 min, then cooling down to 60°C, and then adding 150 kg of 1, 4-butanediol dimethacrylate and 180kg of diethylene glycol dimethacrylate, 0.6 kg of tert-butylcatechol, and 13 kg of disponer904S to stir 30 min to obtain a resin mixture; (2) adding the resin mixture into a kettle mixer, setting the stirring speed at 1580r/min to stir the mixture, and gradually adding 155kg of 6000-mesh aluminium oxide and 80kg of 5000-mesh
Mica powder to stir and disperse; after that changing the stirring speed to 8000r/min to homogeneously emulsifying and dispersing for 2 h, meanwhile cooling the inner wall of the kettle mixer with cooling water to control the temperature of the resin mixture below 60°C; (3) after homogeneously emulsifying and dispersing, reducing the stirring speed to 750r/min, and cooling down to a temperature below 45°C through cooling water, and then adding 10 kg of curing agent 594, 50kg of tung oil anhydride, 13 kg of 1, 1-bis (tertiary amyl peroxy) cyclohexane, 1.1kg of 8% cobalt naphthenate solution to stir and disperse for 2.5 h, after filtering by a 1000-mesh filter screen and packaging to obtain the impregnating resin.
Comparative Example 1
Comparative example 1 provided an vacuum pressure impregnating technology applied on the motor stator of a renewable energy electric vehicle with a center height of 132 mm, and the vacuum pressure impregnating technology comprises: (1) preheating the stator in a 100°C oven for 30 min, and then cooling down until the stator core was below 50°C; (2) lifting the stator into a impregnation tank for impregnation, vacuumizing to 5000 Pa, and maintaining 5000 Pa for 20 min; (3) transferring the impregnating resin from a paint storage tank to the impregnation tank to ensure the impregnating resin rise to 10cm over the top of the stator, after that impregnating for 10 min, then vacuumizing to 0.3MPa and maintaining 0.3MPa for 20min; (4) releasing the vacuum to the atmosphere pressure, and then lifting the stator from the impregnation tank to trickle for 25 min; (5) transferring the stator to the 150°C oven to cure for 5 h; (6) turning off the oven and cooling naturally to obtain the insulated stator.
The aforesaid impregnating resin was prepared as follows: mixing 480 kg of 110°C polyesterimine resin with 100 kg of acrylic modified epoxy resin and stirring for 20 min, then cooling down to 60°C, and then adding 403 kg of 1, 4-butanediol dimethacrylate to evenly stir, after cooling to a temperature below 45°C, adding 15kg of dusopropyibenzene peroxide, 1 kg of 8% cobalt naphthenate solution, and 0.6 kg of
LU502985 tert-butylcatechol to stir for 35 min, after filtering by a 1000-mesh filter screen and packaging, obtaining a low-volatility polyesterimine impregnating resin.
Comparative example 2
Comparative example 2 provided a vacuum pressure impregnating technology applied on the motor stator of a renewable energy electric vehicle with a center height of 132 mm. The process for the vacuum pressure impregnating technology of comparative example 2 was the same with that of the comparative example 1, whereas the preparation method for the impregnating resin was different, which comprised: mixing 520 kg of 106°C polyesterimine resin with 80 kg of acrylic acid-maleic anhydride modified epoxy resin, stirring for 20 min, and cooling down to 60 °C, and then adding 382 kg of styrene to stir evenly, after cooling down to a temperature below 45°C, adding 13 kg of diisopropylbenzene peroxide, 1 kg of 8% cobalt naphthenate solution, 0.5 kg of tert-butylcatechol, stirring for 35 min until uniform, after filtering by a 1000-mesh filter screen and packaging, obtaining the polyesterimine impregnating resin.
The performances of the impregnated stators of Embodiments 1 to 3 and Comparative
Examples 1 to 2 were tested, and the results are shown in Table 1:
Table 1
Performance Comparison of the Impregnated Stator
Measu Embo ; Compa Comparat
Performance ; Embodi . rative ; indicator remen dimen ment 2 Embodi Examol ive t Unit t1 ment 3 el p Example 2
Impregnatin g Resin 531 510 556 136 130
Filling
Weight
Resin
Utilization % 98.65 98.36 98.96 68.65 65.82
Rate
Ground
PDIV
(Power kV 1.29 1.28 1.32 1.16 1.09
Frequency
Voltage)
Corona-Rest | pin | 322 | 316:53 | 320:18 | 228:35 183:29 stance life 6
The test method for impregnating resin filling weight is: weighing the stator before insulation and noting for m1, weighing the stator after insulation and noting for m», the value of
Mma-M is the impregnating resin filling weight. The impregnating resin filling weight indicates
LU502985 the impregnating resin filling level, the more the impregnating resin filling weight, the higher the impregnating resin filling level is.
The test method for impregnating resin utilization rate is: the weight of the impregnating resin after insulation (the impregnating resin filling weight) / the weight of the impregnating resin before insulation x100%.
The test method for PDIV is: measuring the three phase-to-earth partial discharge inception voltage for the stator on the MPD 600 partial discharge analysis system under 50 Hz.
The corona-resistance life of the impregnated stator was tested on the corona-resistance life analysis device for insulation structure under the conditions that: 3000v of voltage, 10 kHz of frequency, 200 ns of pulse time, and 180°C of temperature.
The performances of the impregnating resins of Embodiments 1 to 3 and Comparative
Examples 1 to 2 were tested, and the results are shown in Table 2:
Table 2
Performance Comparison of the Impregnating Resin
Measur Compar Compar
Performanc Embodi ; ; ative ; e Indicator ement ment 1 Embodi Embodi Exampl ative
Unit ment 2 ment 3 el Exampl e2
Viscosity(2 2180 2350 2230 2280 2130
Curing
Volatile ° (150+2°C, % 0.75 0.70 1.13 10.56 2h)
Gel
Time100+2 min: s 13:52 15:35 13:26 35:53 46:23 °C
Adhesive
Strength( N ormality, N 226 239 256 186 156
Helical
Coil method)
Breakdown
Voltage(No kV/mm 26.35 27.26 25.51 24.19 23.35 rmalit
Electrical 1
Le. 6.5x10 7.35%10 5.32x10 3.16x10 3.35x10 resistivity( Om 4 14 14 14 14
Normality)
Storage °C, 96h)
Thermal
Insulating resin performance tests were referring to GB/T 15022.2-2017 resin-based active compounds for electrical insulation -- Part 2, in which viscosity was tested according to GB/T 24148.4, storage stability was basically tested according to GB/T 15022.2-2017, only storage temperature is changed to 50°C. > The foregoing description has been made on several embodiments of this invention which are relatively specific and detailed, however the invention is not limited thereto. It should be further understood by those skilled in the art that various changes and modifications may be made without departing from the spirit of the invention are protected by this invention. Therefore, the scope of protection for this invention shall be subject to the appended claims. 10

Claims (10)

CLAIMS LU502985
1. A method of insulating a motor, comprising: providing a impregnating resin; heating up the motor winding with electricity to 100-120°C, and potting the motor winding with the impregnating resin for 2-5 min at that temperature; heating up the motor winding with electricity to 140-160°C, and trickling the impregnating resin for 3-8 min for insulation; heating up the motor winding with electricity to 165-175°C, and curing for 15-45 min.
2. A method of insulating a motor according to claim 1, wherein the potting temperature is 110-120°C, the trickling temperature is 150-155°C, and the curing temperature is 168-173°C.
3. A method of insulating a motor according to claim 1 and 2, wherein preheating the motor windings to 100-125°C for 3-8 min before the potting process.
4. A method of insulating a motor according to claim 1 and 2, wherein the impregnating resin comprises: 20-55wt% of polyesterimide resin; 4-20wt% of modified epoxy resin; 3-10 wt % of curing agent, 25-45wt% of active monomers; 10-30wt% of inorganic filler; 0.03-0.1wt % of polymerization inhibitor; 0.06-2.5wt% of initiator; 0.01-2wt% of additives.
5. A method of insulating a motor according to claim 4, wherein polyesterimide resin is unsaturated polyesterimide resin; the modified epoxy resin is the esterification reactant of bisphenol A epoxy resin and/or bisphenol F epoxy resin reacting with single or multiple components of acrylic acid, maleic anhydride, methyl hexahydrophthalic anhydride, tetrahydrophthalic anhydride; or/and, the modified epoxy resin is the chain extension reaction product of bisphenol A epoxy resin and/or bisphenol F epoxy resin reacting with polyhydric alcohols; the curing agent is one or multiple components of curing agent 594, tung oleic anhydride and nadic anhydride; the active monomer is one or multiple components of 1, 4-butanediol dimethacrylate , diethylene glycol dimethacrylate , dipropylene glycol dimethacrylate, 1, 6-hexadiol dimethacrylate, trimethylol propane triacrylate;; the inorganic filler is one or multiple components of silicon dioxide, aluminum oxide, boron nitride and mica powder, and the particle size of the inorganic filler is at micron level and/or nano level; the polymerization inhibitor is tert-butylcatechol; 1006085 the initiator is one or multiple components of diisopropylbenzene peroxide, 2, 2-bis (tert-butylperoxide) butane, benzoyl peroxide, and 1, 1-bis (tert-amyl peroxide) cyclohexane; the additive is one or multiple components of additives KH550, BYK103, Degian 904$, and cobalt naphthenate.
6. A method of insulating a motor according to claim 4, wherein the impregnating resin comprises: 25-40wt% of p polyesterimide resin; 4-10wt% of modified epoxy resin; 3-6wt% of curing agent; 30-35wt% of active monomers; 20-25wt% of inorganic filler; 0.03-0.1wt% of polymerization inhibitor; 0.06-2.5wt% of initiator; 0.01-2wt% of additives.
7. A method of insulating a motor according to claim 4, wherein the preparation method of the impregnating resin comprises: (1) heating the polyesterimine resin to 100-110°C, adding the modified epoxy resin with evenly stirring, and then cooling to 60°C and below, adding the active monomer, the polymerization inhibitor, the additives, after that stirring evenly to obtain a resin mixture; (2) adding the resin mixture obtained in step (1) to the kettle mixer, setting the stirring speed at 1000-2000 r/min for homogeneous emulsification, and adding the inorganic filler to the kettle mixer to stir and disperse, then changing speed to 6000-13000 r/min to stir and emulsify for 2-3 h with the temperature controlled below 60°C; (3) after homogeneous emulsifying reducing the stirring speed to 500-1000 r/min, cooling down to the temperature below 45°C, adding the curing agent and the initiator to stir and disperse for 1-2 h to obtain the impregnating resin.
8. A method of insulating a motor according to claim 4, wherein the gel time of the impregnating resin at 100+2°C is less than 30 min; after 96 h storage at 50°C, the viscosity increase factor at 23+1°C is less than 0.2 times.
9. A method of insulating a motor according to claim 1 and claim 2, wherein the motor winding is a stator winding of a new energy electric vehicle motor.
10. A method of insulating a motor according to claim 1 and claim 2, wherein the utilization rate of the impregnating resin is greater than 90%.
LU502985A 2022-11-02 2022-11-02 Method of insulating a motor LU502985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LU502985A LU502985B1 (en) 2022-11-02 2022-11-02 Method of insulating a motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU502985A LU502985B1 (en) 2022-11-02 2022-11-02 Method of insulating a motor

Publications (1)

Publication Number Publication Date
LU502985B1 true LU502985B1 (en) 2023-05-04

Family

ID=86270914

Family Applications (1)

Application Number Title Priority Date Filing Date
LU502985A LU502985B1 (en) 2022-11-02 2022-11-02 Method of insulating a motor

Country Status (1)

Country Link
LU (1) LU502985B1 (en)

Similar Documents

Publication Publication Date Title
CN101892006B (en) Insulating paint for variable frequency motor and preparation method thereof
US20230088520A1 (en) Method of insulating a motor
EP0810249B1 (en) Thermosetting resin composition, electrically insulated coil, electric rotating machine and method for producing same
CN105295041B (en) A kind of polyoxazolidone resins, its preparation method and the application in impregnating varnish
US4656090A (en) Low viscosity epoxy resin compositions
EP0497046A1 (en) Heat resistant resin compositions, articles and method
RU2648981C2 (en) Impregnating resin for electrical insulation body, electrical insulation body and method for producing the electrical insulation body
CN106811023B (en) A kind of environment-friendly type wind-driven generator VPI impregnating resin and preparation method thereof
EP2602105A2 (en) Dry mica tape, electrically insulated coil using the same, and electrical rotating machine using the same
CN108503757B (en) Low-viscosity unsaturated polyester resin for VPI (vacuum pressure impregnation) process and application thereof
CN103012697B (en) VPI (vacuum pressure impregnation) resin
CN102936449A (en) Halogen-free flame retardant heat conduction insulation warmish and preparation method thereof
CN103113526A (en) Solvent-less impregnating resin for high-voltage motor and curing method
CN100453578C (en) Bi-maleimide modified heat resistant unsaturated polyester resin
LU502985B1 (en) Method of insulating a motor
CN108484920A (en) A kind of high bond strength environment-friendly type vacuum pressure impregnating resin
CN102942839A (en) Nanofiller modified solvent-free insulating paint and preparation method thereof
CN107286841A (en) A kind of safety and stability High performance lacquer enamel and preparation method thereof
JP6506399B2 (en) Method of manufacturing functionally graded material
CN111607348B (en) Adhesive for drawing slot wedge and preparation method of slot wedge using adhesive
CN110776813A (en) VPI-based insulating impregnating varnish and insulating treatment method of electrical product
CN114380958A (en) High-thermal-conductivity epoxy VPI resin for high-voltage motor and preparation method and application thereof
CN110885543B (en) Organic silicon modified unsaturated resin insulation impregnating resin and preparation method thereof
CN116285217B (en) High-performance environment-friendly high-temperature-resistant impregnating resin and preparation method thereof
CN108795044B (en) C-grade VPI impregnating resin for electric locomotive and preparation method thereof