LU100687B1 - Experimental System and Method for Detecting Frequency Target of Underwater Mobile Submerged Body - Google Patents

Experimental System and Method for Detecting Frequency Target of Underwater Mobile Submerged Body Download PDF

Info

Publication number
LU100687B1
LU100687B1 LU100687A LU100687A LU100687B1 LU 100687 B1 LU100687 B1 LU 100687B1 LU 100687 A LU100687 A LU 100687A LU 100687 A LU100687 A LU 100687A LU 100687 B1 LU100687 B1 LU 100687B1
Authority
LU
Luxembourg
Prior art keywords
underwater vehicle
underwater
vehicle
mobile
submerged
Prior art date
Application number
LU100687A
Other languages
French (fr)
Inventor
Jun Zhang
Junnan Li
Hongmei Tang
Xianhua Li
Zeyu Zhang
Tianbo Wang
Jiming Zhang
Yi Zhao
Original Assignee
Univ Anhui Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Anhui Sci & Technology filed Critical Univ Anhui Sci & Technology
Application granted granted Critical
Publication of LU100687B1 publication Critical patent/LU100687B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/04Frequency
    • G01H3/06Frequency by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G2009/005Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines of sonic watch equipment, e.g. low-frequency or sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The utility model discloses an experimental system and a method for detecting a frequency target of an underwater mobile submerged body. The experimental system of the utility model comprises an underwater vehicle (501), an underwater vehicle (502), an underwater vehicle (503), a survey vessel base station and a underwater mobile submerged body (20) respectively, and the survey vessel base station controls the motion attitude, data acquisition and processing of the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) through wireless communication. Based on the impedance analysis theory, the experimental method of the utility model detects a frequency target of an underwater mobile submerged body with known frequency and identifies the position thereof by taking the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) as data acquisition carriers. The utility model has the advantages of simple structure, high detection efficiency and long detection range, and thus can detect and identify an underwater mobile target of known frequency. Fig. 1

Description

Experimental System and Method for Detecting Frequency Target of Underwater Mobile Submerged Body
Technical Field
The present invention relates to an experimental system and a method for detecting a frequency target of an underwater mobile submerged body, in particular to the technical field of detecting a frequency target of a mobile submerged body.
Background
The method for detecting an underwater submarine is mainly realized by anti-submarine patrol aircraft or surface ship.
The anti-submarine patrol aircraft may detect an underwater submarine by a sonobuoy, a magnetic anomaly detector and a dipping sonar. Among them, the sonobuoy is widely used as a main device for proactively searching submarines in modem anti-submarine warfare aircrafts when an extensive sea area with potential submarine activities will be searched in a short time, or when a hostile submarine may pass a navigation channel that is to be blocked, or when an anti-submarine patrol aircraft serves as an anti-submarine guard for important targets. The magnetic anomaly detector detects submarines in a passive mode and is an essential device equipped in general anti-submarine patrol aircrafts. The detector is well concealed, highly reliable and immune to marine noise interference, but it is limited to low or ultralow altitude detection due to short operating distance. Therefore, it is generally used to verify and accurately position a submarine after its general location is determined by other detection measures.A surface ship detects an underwater submarine mainly by hull sonar, variable depth sonar or towed linear array sonar. Any submarine below the spring layer is nearly undetectable to the hull sonar of the surface ship unless a towed sonar is adopted and allowed to enter the spring layer. The towed variable depth sonar is a passive sonar, which requires that an array is mounted in a towed body towed by an anti-submarine surface ship, a mine sweeper or an anti-submarine aircraft for carrying out such tasks as active submarine-searching operation, mine detection, seabed exploration, etc. with a detection depth of from hundreds of meters to kilometers. The towed linear array sonar is an active sonar developed from the towed variable depth sonar and has the advantage of high detection accuracy, with a detection depth of tens of meters. Through sonar detection, a target of an underwater submerged body may be detected but cannot be identified.
The experimental system and method of the invention for detecting a frequency target underwater mobile submerged body is based on the impedance analysis theory, and an underwater vehicle (501) is adopted to detect and identify the position of an underwater submerged body of known frequency. The detection method of the invention has the advantages of simple structure, high detection efficiency and long detection range, and thus can detect and identify an underwater mobile target of known frequency.
Summary of the Invention
The invention provides an experimental system and a method for detecting a frequency target of an underwater mobile submerged body, through which the following experiments can be accomplished: © controlling the surfacing and diving of the underwater vehicle (501): when the underwater vehicle (501) is surfacing or diving, the survey vessel base station (11) commands the single-chip microcomputer (5) to control the opening or closing of the pure water hydraulic pump (3); and the lithium battery pack (7) is boosted to power the pure water hydraulic pump (3); (2) controlling the moving of the underwater vehicle (501): when the underwater vehicle (501) is moving forward or backward, the survey vessel base station (11) commands the single-chip microcomputer (5) to control synchronized rotation of the propellers on the left power propulsion unit (21) and the right power propulsion unit (8) in forward or backward direction, so as to achieve the purpose of travelling forward or backward; and (3) a method for detecting a mobile frequency target: the survey vessel base station (11) commands the single-chip microcomputer (5) to control the starting or stopping of the scanning frequency operation of the impedance analyzer (6); in surveying a frequency signal received by a piezoelectric transducer (4) from an underwater mobile submerged body (20), the scanning frequency operation of the impedance analyzer (6) obtains resonance spectroscopy, of which the peak frequency is the resonance frequency produced when scanning the signal and the underwater mobile submerged body (20); ® a method for identifying the position of the underwater mobile submerged body (20); (5) determining the trajectory of the underwater mobile submerged body (20).
The technical solution for the technical problem in the invention is as follows:
As shown in FIGs. 1, 2, 3 and 4, the experimental system of the present invention comprises a cabin (1), a left middle balance wing (15), a right middle balance wing (16), a left rear balance wing (17), a right rear balance wing (18), a balance tail wing (19), a surfacing and diving section (101) of the underwater vehicle, a surveying section (102) of the underwater vehicle, a power section (103) of the underwater vehicle and a wireless communication section (104) of the underwater vehicle respectively. The surfacing and diving section (101) of the underwater vehicle mainly a water tank (2), a pure water hydraulic pump (3) and a lithium battery pack (7); the surveying section (102) of the underwater vehicle comprises a surveying piezoelectric transducer (4), a single-chip microcomputer (5), an impedance analyzer (6) and a lithium battery pack (7); the power section (103) of the underwater vehicle comprises a lithium battery pack (7), a left power propulsion unit (21) and a right power propulsion unit (8); and the wireless communication section (104) of the underwater vehicle comprises a single-chip microcomputer (5), a lithium battery pack (7), an antenna (9), a buoy (13) and a double-ended threaded hose (14).
The method of the experimental system for detecting a frequency target of an underwater mobile submerged body (20) is characterized by comprising the following steps: (D Method for controlling the surfacing and diving of the underwater vehicle (501) (2) Method for controlling the moving of the underwater vehicle (501) (3) Method for finding a target on the surveying section (102) of the underwater vehicle (D Control of communication flow between the survey vessel base station (11) and the wireless communication section (104) of the underwater vehicle (5) Method for identifying the underwater mobile submerged body (20) (6) Determining the trajectory of the underwater mobile submerged body (20)
Compared with the related art, the invention has the following beneficial effects:
Through the experimental system and method of the present invention, the following steps can be accomplished: (1) controlling the surfacing and diving of the underwater vehicle (501); (2) controlling the moving of the underwater vehicle (501); (3) detecting a frequency target; (4) completing the communication between the survey vessel base station (11) and the wireless communication section (104) of the underwater vehicle; (5) identifying the position of the underwater mobile submerged body (20); (6) determining the trajectory of the underwater mobile submerged body (20). The invention provides a new solution and design basis for detecting a target of an underwater submerged body.
Brief Description of the Drawings
The invention will be further described in combination with drawings and embodiments.
Fig. 1 is a test schematic diagram of the invention.
Fig. 2 is a 3D schematic diagram 1 of the underwater vehicle (501) of the invention.
Fig. 3 is a 3D schematic diagram 2 of the underwater vehicle (501) of the invention.
Fig. 4 is a test schematic frame diagram of the invention.
In FIGs 1, 2, 3 and 4, 1. cabin, 2. water tank, 3. pure water hydraulic pump, 4. surveying piezoelectric transducer, 5. single-chip microcomputer, 6. impedance analyzer, 7. lithium battery pack, 8. right power propulsion unit, 9. antenna, 10. GPS positioning assembly, 11. survey vessel base station, 12. cabin door, 13. buoy, 14. double-ended threaded hose, 15. left middle balance wing, 16. right middle balance wing, 17 left rear balance wing, 18. right rear balance wing, 19. balance tail wing, 20. underwater mobile submerged body, 21. left power propulsion unit, 101. surfacing and diving section of underwater vehicle, 102. surveying section of underwater vehicle, 103. power section of the underwater vehicle, 104. wireless communication section of the underwater vehicle, underwater vehicle (501), underwater vehicle (502) and underwater vehicle (503).
Detailed Description of the Preferred Embodiments
As shown in FIGs 1, 2, 3 and 4, the experimental system for detecting a frequency target of the underwater mobile submerged body (20) comprises an underwater vehicle (501), an underwater vehicle (502), an underwater vehicle (503), a survey vessel base station and an underwater mobile submerged body (20); in which the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) have identical structure and function. The underwater vehicle (501), as an example, is introduced as follows: the underwater vehicle (501) comprises a cabin (1), a left middle balance wing (15), a right middle balance wing (16), a left rear balance wing (17), a right rear balance wing (18), a balance tail wing (19), a surfacing and diving section (101) of the underwater vehicle, a surveying section (102) of the underwater vehicle, a power section (103) of the underwater vehicle and a wireless communication section (104) of the underwater vehicle respectively. The surfacing and diving section (101) of the underwater vehicle mainly comprises a water tank (2), a pure water hydraulic pump (3) and a lithium battery pack (7); the surveying section (102) of the underwater vehicle comprises a surveying piezoelectric transducer (4), a single-chip microcomputer (5), an impedance analyzer (6) and a lithium battery pack (7); the power section (103) of the underwater vehicle comprises a lithium battery pack (7), a left power propulsion unit (21) and a right power propulsion unit (8); and the wireless communication section (104) of the underwater vehicle comprises a single-chip microcomputer (5), a lithium battery pack (7), an antenna (9), a buoy (13) and a double-ended threaded hose (14).
The left middle balance wing (15), the right middle balance wing (16), the left balance wing (17), the right rear balance wing (18) and the balance tail wing (19) are in welded connection with the cabin (1). The water tank (2) is in welded connection with the lower part of the cabin and the pure water hydraulic pump (3) is in bolted connection with the upper panel of the water tank (2). The surveying piezoelectric transducer (4) is in welded connection with the cabin (1). The single-chip microcomputer (5) is fixed on the mounting rack of the impedance analyzer (6) by bolts. The impedance analyzer (6) is firmly fixed on the mounting plate above the water tank by bolts through the mounting rack. The lithium battery pack (7) is fixed on the mounting plate above the water tank by bolts through the mounting rack. The rack of the left power propulsion unit (21) is directly welded on the cabin (1). The antenna (9) and the single-chip microcomputer (5) are connected by an antenna extension, the lower end of the double-ended threaded hose (14) is in threaded connection with the cabin (1), and the double-ended threaded hose (14) is in threaded connection with the buoy (13). An antenna extension is provided in the double-ended threaded hose (14). The antenna (9) is mounted on the base on the buoy (13), which serves to connect the antenna (9) and the antenna extension. The left power propulsion unit (21) and the right power propulsion unit (8) are directly welded on the cabin (1).
External material of the surveying piezoelectric transducer (4) is cast aluminum and piezoelectric ceramic is uniformly sintered on inner wall of the surveying piezoelectric transducer (4), with the thickness of the piezoelectric ceramic being 0.3 to 0.6 mm.
The method of the experimental system for detecting a frequency target of an underwater mobile submerged body (20) is characterized by comprising the following steps: (D Method for controlling the surfacing and diving of the underwater vehicle (501)
When the underwater vehicle (501) is surfacing or diving, the survey vessel base station (11) commands the single-chip microcomputer (5) to control the opening or closing of the pure water hydraulic pump (3); and the lithium battery pack (7) is boosted to power the pure water hydraulic pump (3); 1 ) Diving of the underwater vehicle (501 )
The pure water hydraulic pump (3) draws water into the water tank (2) from the outside of the underwater vehicle (501) to increase overall weight of the underwater vehicle (501). When the weight of the underwater vehicle (501) exceeds its buoyancy force, the underwater vehicle (501) begins to dive. When the underwater vehicle (501) dives to a certain height, i.e. the buoyancy force of the underwater vehicle (501) is equal to its weight then, the underwater vehicle stops diving. 2) Surfacing of the underwater vehicle (501 )
In order to allow the underwater vehicle (501) to surface, the water in the water tank (2) is extracted into seawater outside by the pure water hydraulic pump (3). Then, the overall weight of the underwater vehicle (501) decreases. When the buoyancy force of the underwater vehicle (501) is greater than its weight, the underwater vehicle (501) surfaces until it reaches the position where its weight is equal to the buoyancy force. (2) Method for controlling the moving of the underwater vehicle (501)
When the underwater vehicle (501) is moving forward or backward, the survey vessel base station (11) commands the single-chip microcomputer (5) to control synchronized rotation of the propellers on the left power propulsion unit (21) and the right power propulsion unit (8) in forward or backward direction, so as to achieve the purpose of travelling forward or backward. If the underwater vehicle (501) is moving to the left, the survey vessel base station (11) commands the single-chip microcomputer (5) to rotate the left propeller slowly and rotate the right propeller quickly, so as to keep the course forward and leftward by ensuring that thrust of the left propeller is greater than that of the right propeller and the force acted on the right side is larger than that on the left side. To move toward the right, the rotational speed of the left propeller is kept to be larger than that of the right propeller, i.e. the force acted on the left side of the underwater vehicle is larger than that on the right side. ® Method for finding a target on the surveying section (102) of the underwater vehicle
The impedance analyzer (6) in the surveying section (102) of the underwater vehicle is boosted by the lithium battery pack (7) for supplying power. In use, the impedance analyzer (6) keeps normally open scanning frequency interface and is connected to the surveying piezoelectric transducer (4) by an external fixture of the impedance analyzer (6) and by a conductive lead of the surveying piezoelectric transducer (4), with the conductive lead being welded on a piezoelectric ceramic wafer. The other part of the fixture on the impedance analyzer (6) is connected to non-piezoelectric ceramic part of the surveying piezoelectric transducer (4) by a conductive lead, and the wire is welded on the non-piezoelectric ceramic wafer. The frequency signal sent from the underwater mobile submerged body (20) has the frequency f and the scanning frequency range of the impedance analyzer (6) is f±0.1 kHz.
The survey vessel base station (11) commands the single-chip microcomputer (5) to control the starting or stopping of the scanning frequency operation of the impedance analyzer (6).
surveying piezoelectric transducer (4) receives a frequency signal from the underwater mobile submerged body (20), the scanning frequency operation of the impedance analyzer (6) obtains resonance spectroscopy, of which the peak frequency is the resonance frequency produced when scanning the signal and the underwater mobile submerged body (20). © Control of communication flow between the survey vessel base station (11) and the wireless communication section (104) of the underwater vehicle
The communication flow between the wireless communication section (104) of the underwater vehicle and the survey vessel base station (11) is controlled as follows: the survey vessel base station (11) is connected to the wireless communication section (104) of the underwater vehicle, the survey vessel base station (11) gives orders to the wireless communication section (104) of the underwater vehicle through wireless transmitter on the vessel, and the wireless communication section (104), after receiving the orders, exchanges data with the single-chip microcomputer (5), which schedules all devices in the underwater vehicle (501) according to the orders from the wireless communication section (104). (5) Method for identifying the underwater mobile submerged body (20)
The method for identifying the position of the underwater mobile submerged body (20) is described by the example below, where the underwater mobile submerged body (20) is in a fixed position and its frequency is 40kHz. 1) The scanning frequency range of the impedance analyzer on the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) is set as from 39.9kHz to 40.1kHz, the 40kHz underwater mobile submerged body (20) is placed into the target sea area, and the three underwater vehicles (501), (502) and (503) are driven to the target sea area. Then, the survey vessel base station (11) sends a scanning frequency instruction to the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503). After the frequency scanning operation of the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503), relevant data are sent to the survey vessel base station (11) for analysis. The underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) can all scan a stable frequency of 40 kHz underwater mobile submerged body (20), indicating that the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) can enter the sea area which can be identified by the underwater mobile submerged body (20). 2) Build a position identification database A. Building of neural network database The collected experimental data will be transmitted to the computer through a transmission interface to create neural network data. A sample of collected data will be set up and the data will be normalized and scaled. During the detection and positioning of the underwater mobile submerged body (20), the position of the underwater mobile submerged body (20) can be displayed through the position code. Then, set different positions as k = 1 to 6, and allow k to correspond to contrast signals 50m, 500m, 1,000m, 2,000m and 3,000m; represent code of different position by 6-order unit matrix E.
Set the upper limit of the number of network tests to 1,000 times, the convergence rate of the network to 0.01, and the network test error to 0.001. The number of hidden layer nodes in the network is 16 and that of the output layer node in the network is 6. When the final target output vector Ei and E are consistent, the network for detecting and positioning the underwater mobile submerged body (20) is acceptable. B. Verification of neural network database
Take the test data of 1,900m as an example. The neural network is entered to test the data, and it is surveyed that the neural network is effective when the underwater mobile submerged body (20) is nearly 2,000m from the underwater vehicle (501). 3) Determining the position of the underwater mobile submerged body (20)
When the underwater vehicle (501) detects a signal, the underwater mobile submerged body (20) falls within the surveying range of the underwater vehicle (501). At this time, the underwater vehicle (502) and the underwater vehicle (503) are controlled to move around the underwater vehicle (501) and detect signals until the underwater vehicle (502) and the underwater vehicle (503) can detect respective target signals. At time t, it is detected by the GPS positioning assembly (10) that the space coordinates of the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) are (xi,yi,zo), (x2,y2,zo) and (x3,y3,zo). Through neural network analysis, it is determined that the underwater vehicle (501), the distance from the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) to the underwater mobile submerged body (20) is Li, L2 and L3 respectively. So, the underwater mobile submerged body (20) is certainly located on an underwater intersection of three spherical surfaces which take the underwater vehicle (501) as the center of a circle, the Li as radius; the underwater vehicle (502) as the center of a circle, the L2 as radius; and the underwater vehicle (503) as the center of a L3 as radius respectively.
Based on three-ball space positioning principle, the position coordinates of the three underwater vehicles, i.e. three-ball spherical coordinates (xi, yi, zo), (x2, y2, zo) and (x3, y3, zo), are obtained by the GPS positioning assembly (10). The distance from the three underwater vehicles to the underwater mobile submerged body (20) is Li, L2 and L3 respectively. The underwater vehicle is on the same horizontal plane, so the coordinate zO is unchanged. The equations of three balls are as follows:
At time ti, the intersection Pi(x, y, z) is
The intersection Pi(x, y, z) is the position coordinates of the underwater mobile submerged body (20). (6) Determining the trajectory of the underwater mobile submerged body (20)
The method for identifying the position of the underwater mobile submerged body (20) is described by the example below, where the underwater mobile submerged body (20) is moving at the frequency of 40kHz.
To sum up, at time ti, it is surveyed that the position coordinate of the underwater mobile submerged body (20) is Pi(x, y, z).
Similarly, at time t2, the position coordinate of the underwater mobile submerged body (20) is ?2 (x, y, z); at time t3, the position coordinate of the underwater mobile submerged body (20) is P3 (x, y, z)...; and at time tn, the position coordinate of the underwater mobile submerged body (20) is Pn (x, y, z).
The kinematic trajectory equation of the underwater mobile frequency target at different time can be obtained through curve fitting of the time coordinates ti, t2,...,tn and corresponding position coordinates Pi (x, y, z), P2 (x, y, z),..., Pn (x, y, z) of the underwater mobile submerged body (20).
The fundamental principles, main features and advantages of the invention have been shown and described above. It should be understood by those skilled in the art that the invention is not limited to the above examples, the examples and the specification only describe the principle of the invention, and various changes and improvements can be made to the invention without departing from the spirit and scope of the invention, and the changes and improvements will fall into the protection scope of the invention. The protection scope of the invention is defined by the appended claims and their equivalents.

Claims (8)

1. Système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin (20), comprenant un véhicule sous-marin (501), un véhicule sous-marin (502), un véhicule sous-marin (503), une station de base d'un navire de surveillance (11) et le corps submergé mobile sous-marin (20) ; dans lequel le véhicule sous-marin (501), le véhicule sous-marin (502) et le véhicule sous-marin (503) ont une structure et une fonction identiques ; le véhicule sous-marin (501), à titre d’exemple, est présenté comme suit: le véhicule sous-marin (501) comprend une cabine (1), une aile d’équilibrage intermédiaire gauche (15), une aile d’équilibrage intermédiaire droite (16), une aile d’équilibrage arrière gauche (17), une aile d’équilibrage arrière droite (18), une aile d’équilibrage arrière (19), une partie de remontée en surface et de plongée (101) de véhicule sous-marin, une partie de contrôle (102) de véhicule sous-marin, une partie d'alimentation (103) de véhicule sous-marin, et une partie de communication sans fil (104) de véhicule sous-marin respectivement ; la partie de remontée en surface et de plongée (101) du véhicule sous-marin comprenant principalement un réservoir d’eau (2), une pompe hydraulique à eau pure (3) et un bloc-batterie au lithium (7) ; la partie de contrôle (102) du véhicule sous-marin comprenant un transducteur piézoélectrique de contrôle (4), un micro-ordinateur à puce unique (5), un analyseur d’impédance (6) et un bloc-batterie au lithium (7) ; la partie d'alimentation (103) du véhicule sous-marin comprenant un block-batte-rie au lithium (7), une unité de propulsion de gauche (21) et une unité de propulsion de droite (8) ; et la partie de communication sans fil (104) du véhicule sous-marin comprenant un micro-ordinateur à puce unique (5), un bloc-batterie au lithium (7), une antenne (9), une balise (13) et une conduite filetée à deux extrémités (14) ; l'aile d’équilibrage intermédiaire gauche (15), l'aile d’équilibrage intermédiaire droite (16), l'aile d’équilibrage arrière gauche (17), l'aile d’équilibrage arrière droite (18), l'aile d’équilibrage arrière (19) sont en liaison soudée avec la cabine (1) ; le réservoir d’eau (2) est en liaison soudée avec la partie inférieure de la cabine (1) et la pompe hydraulique à eau pure (3) est en liaison boulonnée avec le panneau supérieur du réservoir d’eau (2) ; le transducteur piézoélectrique de contrôle (4) est en liaison soudée avec la cabine (1) ; le micro-ordinateur à puce unique (5) est fixé sur un socle de montage de l'analyseur d'impédance (6) par des boulons ; l'analyseur d'impédance (6) est solidement fixé sur la plaque de montage au-dessus du réservoir d'eau (2) par des boulons à travers le socle de montage ; le bloc-batterie au lithium (7) est fixé sur la plaque de montage au-dessus du réservoir d'eau (2) par des boulons à travers le socle de montage ; le socle de l'unité de propulsion de gauche (21) est directement soudée à la cabine (1) ; l'antenne (9) et le micro-ordinateur à puce unique (5) sont reliés par une rallonge d'antenne, l'extrémité inférieure de la conduite filetée à deux extrémités (14) est en liaison filetée avec la cabine (1), et la conduite filetée à deux extrémités (14) est en liaison filetée avec la balise (13) ; une extension d'antenne est prévue dans la conduite filetée à deux extrémités (14) ; l'antenne (9) est montée sur la base de la balise (13), qui sert à connecter l'antenne (9) et l'extension d'antenne ; l'unité de propulsion de gauche (21) et l'unité de propulsion de droite (8) sont directement soudées sur la cabine (1).An experimental system for detecting a frequency target of a submarine mobile submarine body (20), including an underwater vehicle (501), a submarine vehicle (502), an underwater vehicle (503) a base station of a surveillance vessel (11) and submarine mobile underwater body (20); wherein the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) have the same structure and function; the submarine vehicle (501), for example, is presented as follows: the underwater vehicle (501) comprises a cabin (1), a left intermediate balancing wing (15), a wing right-hand balancing (16), left-handed balancing wing (17), right-handed balancing wing (18), rear-balancing wing (19), surface-lift and diving portion (101). ) of a submarine vehicle, a subsea vehicle control part (102), a submarine vehicle supply part (103), and a submarine vehicle wireless communication part (104) respectively ; the surface-lift and dive portion (101) of the underwater vehicle mainly comprising a water tank (2), a pure water hydraulic pump (3) and a lithium battery pack (7); the underwater vehicle control portion (102) comprising a piezoelectric control transducer (4), a single chip microcomputer (5), an impedance analyzer (6) and a lithium battery pack (7). ); the subsea vehicle power supply portion (103) comprising a lithium battery block (7), a left propulsion unit (21) and a right propulsion unit (8); and the wireless communication portion (104) of the underwater vehicle including a single chip microcomputer (5), a lithium battery pack (7), an antenna (9), a tag (13) and a threaded pipe with two ends (14); the left intermediate balancing wing (15), the right intermediate balancing wing (16), the left rear balancing wing (17), the right rear balancing wing (18), the rear balancing wing (19) are in welded connection with the cabin (1); the water tank (2) is in welded connection with the lower part of the cabin (1) and the pure water hydraulic pump (3) is in bolted connection with the upper panel of the water tank (2); the piezoelectric control transducer (4) is in welded connection with the cabin (1); the single-chip microcomputer (5) is fixed on a mounting base of the impedance analyzer (6) by bolts; the impedance analyzer (6) is securely attached to the mounting plate above the water tank (2) by bolts through the mounting base; the lithium battery pack (7) is fixed on the mounting plate above the water tank (2) by bolts through the mounting base; the base of the left propulsion unit (21) is directly welded to the cabin (1); the antenna (9) and the single-chip microcomputer (5) are connected by an antenna extension, the lower end of the double-ended threaded conduit (14) is threadedly connected to the cabin (1) and the double-ended threaded conduit (14) is threadedly connected to the tag (13); an antenna extension is provided in the two-ended threaded conduit (14); the antenna (9) is mounted on the base of the beacon (13), which serves to connect the antenna (9) and the antenna extension; the left propulsion unit (21) and the right propulsion unit (8) are directly welded to the cabin (1). 2. Système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin selon la revendication 1, caractérisé en ce que le matériau externe du transducteur piézoélectrique de contrôle (4) est en fonte d'aluminium et la céramique piézoélectrique est uniformément frittée sur la paroi interne du transducteur piézoélectrique de contrôle (4), l'épaisseur de la céramique piézoélectrique étant située dans la plage de valeurs allant de 0,3 à 0,6 mm.Experimental system for detecting a frequency target of a submerged underwater mobile body according to claim 1, characterized in that the outer material of the piezoelectric control transducer (4) is of cast aluminum and the piezoelectric ceramic is uniformly sintered on the inner wall of the piezoelectric control transducer (4), the thickness of the piezoelectric ceramic being in the range of 0.3 to 0.6 mm. 3. Procédé du système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin selon l'une des revendications 1 et 2, caractérisé en ce que le procédé pour commander la remontée en surface et la plongée du véhicule sous-marin (501) comprend les étapes suivantes: lorsque le véhicule sous-marin (501) fait surface ou plonge, la station de base du navire de surveillance (11) commande au micro-ordinateur à puce unique (5) de commander l'ouverture ou la fermeture de la pompe hydraulique à eau pure (3) ; et le bloc-batterie au lithium (7) est renforcé pour alimenter la pompe hydraulique à eau pure (3) ; 1) Plongée du véhicule sous-marin (501) La pompe hydraulique à eau pure (3) aspire de l'eau vers le réservoir d'eau (2) depuis l'extérieur du véhicule sous-marin (501) pour augmenter le poids total du véhicule sous-marin (501) ; lorsque le poids du véhicule sous-marin (501) dépasse la force de poussée, le véhicule sous-marin (501) commence à plonger ; lorsque le véhicule sous-marin (501) plonge jusqu'à une certaine profondeur, c'est-à-dire que la force de poussée pour le véhicule sous-marin (501) est égale à son poids, le véhicule sous-marin cesse de plonger ; 2) Remontée en surface du véhicule sous-marin (501) Afin de permettre la remontée en surface du véhicule sous-marin (501), l'eau dans le réservoir d'eau (2) est extraite vers l'eau de mer à l'extérieur par la pompe hydraulique à eau pure (3) ; alors, le poids total du véhicule sous-marin (501) diminue ; lorsque la force de poussée pour le véhicule sous-marin (501) est supérieure à son poids, le véhicule sous-marin (501) fait surface jusqu'à ce qu’il atteigne la position où son poids est égal à la force de poussée.3. Method of the experimental system for detecting a frequency target of a submerged mobile underwater body according to one of claims 1 and 2, characterized in that the method for controlling the surface ascent and the diving of the underwater vehicle. (501) comprises the following steps: when the underwater vehicle (501) is surfacing or diving, the base station of the surveillance vessel (11) controls the single-chip microcomputer (5) to control the opening or closing the pure water hydraulic pump (3); and the lithium battery pack (7) is reinforced to supply the pure water hydraulic pump (3); 1) Diving submarine vehicle (501) The pure water hydraulic pump (3) sucks water to the water tank (2) from outside the underwater vehicle (501) to increase the weight total underwater vehicle (501); when the weight of the underwater vehicle (501) exceeds the thrust force, the underwater vehicle (501) begins to dive; when the underwater vehicle (501) plunges to a certain depth, that is to say that the thrust force for the underwater vehicle (501) is equal to its weight, the underwater vehicle ceases to dive; 2) Raising the surface of the underwater vehicle (501) In order to allow the underwater vehicle (501) to rise to the surface, the water in the water tank (2) is extracted to the seawater at outside by the pure water hydraulic pump (3); then, the total weight of the underwater vehicle (501) decreases; when the thrust force for the underwater vehicle (501) is greater than its weight, the underwater vehicle (501) surfaces until it reaches the position where its weight is equal to the thrust force . 4. Procédé du système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin selon l’une quelconque des revendications 1, 2 et 3, caractérisé en ce que le procédé pour commander le déplacement du véhicule sous-marin (501) comprend les étapes suivantes : lorsque le véhicule sous-marin (501) avance ou recule, la station de base du navire de surveillance (11) commande au micro-ordinateur à puce unique (5) de contrôler la rotation synchronisée des hélices sur l'unité de propulsion de gauche (21) et de l'unité de propulsion de droite (8) vers l’avant ou vers l’arrière, de manière à atteindre l’objectif de se déplacer vers l’avant ou vers l’arrière ; si le véhicule sous-marin (501) se déplace vers la gauche, la station de base du navire de surveillance (11) commande au micro-ordinateur à puce unique (5) de faire tourner lentement l’hélice gauche et de faire tourner rapidement l’hélice droite afin de conserver la trajectoire vers l'avant et vers la gauche en s'assurant que la poussée de l'hélice gauche est supérieure à celle de l'hélice droite et que la force agissant sur le côté droit est plus grande que celle agissant sur le côté gauche ; pour se déplacer vers la droite, la vitesse de rotation de l’hélice gauche est maintenue supérieure à celle de l'hélice droite, c'est-à-dire que la force exercée sur le côté gauche du véhicule sous-marin est plus grande que celle exercée sur le côté droit.4. Method of the experimental system for detecting a frequency target of a submerged mobile submerged body according to any one of claims 1, 2 and 3, characterized in that the method for controlling the displacement of the underwater vehicle ( 501) comprises the following steps: when the underwater vehicle (501) moves forward or backward, the base station of the surveillance vessel (11) controls the single-chip microcomputer (5) to control the synchronized rotation of the propellers on the left propulsion unit (21) and the right propulsion unit (8) forwards or backwards, so as to achieve the objective of moving forward or towards the back ; if the underwater vehicle (501) is moving to the left, the base station of the surveillance vessel (11) controls the single-chip microcomputer (5) to slowly turn the left propeller and rotate rapidly the right propeller in order to keep the trajectory forward and to the left, ensuring that the thrust of the left propeller is greater than that of the right propeller and that the force acting on the right side is greater that acting on the left side; to move to the right, the rotational speed of the left propeller is maintained higher than that of the right propeller, that is to say that the force exerted on the left side of the underwater vehicle is greater than that exercised on the right side. 5. Procédé du système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin selon l’une quelconque des revendications 1, 2, 3 et 4, caractérisé en ce que le procédé pour trouver une cible dans la partie de contrôle (102) du véhicule sous-marin comprend les étapes suivantes : l'analyseur d'impédance (6) dans la partie de contrôle (102) du véhicule sous-marin est renforcé par le bloc-batterie au lithium (7) pour fournir de l'énergie ; en cours d'utilisation, l'analyseur d'impédance (6) maintient une interface de fréquence de balayage normalement ouverte et est relié au transducteur piézoélectrique de contrôle (4) par une fixation externe de l'analyseur d'impédance (6) et par un fil conducteur du transducteur piézoélectrique de contrôle (4), le fil conducteur étant soudé sur une plaquette céramique piézoélectrique ; l'autre partie de la fixation sur l'analyseur d'impédance (6) est reliée à une plaquette céramique non piézoélectrique du transducteur piézoélectrique de contrôle (4) par un fil conducteur, et le fil étant soudé sur la plaquette céramique non piézoélectrique ; le signal de fréquence envoyé par le corps submergé mobile sous-marin (20) a la fréquence f, et la plage de fréquences de balayage de l'analyseur d'impédance (6) est f ± 0,1 kHz ; la station de base du navire de surveillance (11) commande au micro-ordinateur à puce unique (5) de commander le démarrage ou l'arrêt du fonctionnement en fréquences de balayage de l'analyseur d'impédance (6) ; lorsque le transducteur piézoélectrique de contrôle (4) reçoit un signal de fréquence du corps submergé mobile sous-marin (20), la fréquence de balayage de l'analyseur d'impédance (6) permet d'obtenir une spectroscopie de résonance dont la fréquence de crête est la fréquence de résonance produite lors du balayage du signal et du corps submergé mobile sous-marin (20).5. Method of the experimental system for detecting a frequency target of a submerged mobile submerged body according to any one of claims 1, 2, 3 and 4, characterized in that the method for finding a target in the part of control (102) of the underwater vehicle comprises the following steps: the impedance analyzer (6) in the control part (102) of the underwater vehicle is reinforced by the lithium battery pack (7) to provide Energy ; in use, the impedance analyzer (6) maintains a normally open sweep frequency interface and is connected to the piezoelectric control transducer (4) by external fixation of the impedance analyzer (6) and by a conducting wire of the piezoelectric control transducer (4), the conductive wire being welded to a piezoelectric ceramic plate; the other part of the fixation on the impedance analyzer (6) is connected to a non-piezoelectric ceramic plate of the piezoelectric control transducer (4) by a conducting wire, and the wire being welded to the non-piezoelectric ceramic plate; the frequency signal from the submarine mobile underwater body (20) has the frequency f, and the scanning frequency range of the impedance analyzer (6) is f ± 0.1 kHz; the monitoring vessel base station (11) controls the single-chip microcomputer (5) to control the start or stop of scanning frequency operation of the impedance analyzer (6); when the piezoelectric control transducer (4) receives a frequency signal from the underwater mobile submerged body (20), the scanning frequency of the impedance analyzer (6) provides a resonance spectroscopy whose frequency peak is the resonant frequency produced during the scanning of the submarine mobile submerged signal and body (20). 6. Procédé du système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin selon l'une quelconque des revendications 1, 2, 3,4 et 5, caractérisé en ce que le contrôle du flux de communication entre la station de base de navire de surveillance (11) et la partie de communication sans fil (104) du véhicule sous-marin comprend les étapes suivantes : le flux de communication entre la partie de communication sans fil (104) du véhicule sous-marin et la station de base de navire de surveillance (11) est contrôlé comme suit : la station de base du navire de surveillance (11) est reliée à la partie de communication sans fil (104) du véhicule sous-marin, la station de base de navire de surveillance (11) transmet des commandes à la partie de communication sans fil (104) du véhicule sous-marin par l'intermédiaire d'un émetteur sans fil sur le navire, et la partie de communication sans fil (104), après réception des commandes, échange les données avec le micro-ordinateur à puce (5), qui planifie tous les dispositifs dans le véhicule sous-marin (501) en fonction des commandes provenant de la partie de communication sans fil (104).6. Method of the experimental system for detecting a frequency target of a submerged mobile submerged body according to any one of claims 1, 2, 3,4 and 5, characterized in that the control of the communication flow between the surveillance vessel base station (11) and the wireless communication portion (104) of the underwater vehicle comprises the following steps: the communication flow between the wireless communication portion (104) of the underwater vehicle and the surveillance vessel base station (11) is controlled as follows: the base station of the surveillance vessel (11) is connected to the wireless communication part (104) of the underwater vehicle, the base station of monitoring vessel (11) transmits commands to the wireless communication portion (104) of the underwater vehicle via a wireless transmitter on the vessel, and the wireless communication portion (104), after receiving orders, swapping them equipped with the chip microcomputer (5), which plans all the devices in the underwater vehicle (501) according to commands from the wireless communication portion (104). 7. Procédé du système expérimental pour détecter une cible de fréquence d'un corps submergé mobile sous-marin selon l'une quelconque des revendications 1, 2, 3, 4, 5 et 6, caractérisé en ce que le procédé d'identification du corps submergé mobile sous-marin (20) comprend les étapes suivantes : le procédé d'identification de la position du corps submergé mobile sous-marin (20) est décrit par l'exemple ci-dessous, où le corps submergé mobile sous-ma-rin (20) est dans une position fixe et sa fréquence est de 40 kHz ; 1) la plage de fréquences de balayage de l'analyseur d'impédance (6) sur le véhicule sous-marin (501), sur le véhicule sous-marin (502) et sur le véhicule sous-marin (503) est réglée pour être située entre 39,9 kHz et 40,1 kHz, le corps submergé mobile sous-marin (20) de 40 kHz est placé dans une zone maritime cible, et les trois véhicules sous-marins (501), (502) et (503) sont conduits à la zone maritime cible ; ensuite, la station de base du navire de surveillance (11) envoie une instruction de fréquence de balayage au véhicule sous-marin (501), au véhicule sous-marin (502) et au véhicule sous-marin (503) ; après l’opération de balayage de fréquence du véhicule sous-marin (501), du véhicule sous-marin (502) et du véhicule sous-marin (503), les données pertinentes sont envoyées à la station de base du navire de surveillance (11) pour analyse ; le véhicule sous-marin (501), le véhicule sous-marin (502) et le véhicule sous-marin (503) peuvent tous balayer une fréquence stable du corps submergé mobile sous-marin (20) de 40 kHz, indiquant que le véhicule sous-marin (501), le véhicule sous-marin (502) et le véhicule sous-marin (503) peuvent pénétrer dans la zone maritime qui peut être identifiée par le corps submergé mobile sous-marin (20) ; 2) Construire une base de données d'identification de position A. Construction de la base de données du réseau neural Les données expérimentales recueillies sont transmises à l'ordinateur via une interface de transmission pour créer des données de réseau neural ; un échantillon de données collectées et établi, et les données sont normalisées et mises à l'échelle ; pendant la détection et le positionnement du corps submergé mobile sous-marin (20), la position du corps submergé mobile sous-marin (20) peut être présentée par le code de position; puis, définir les différentes positions comme étant k = 1 à 6, et en permettre à k de correspondre aux signaux de contraste 50 m, 500 m, 1000 m, 2000 m et 3000 m; représenter un code de position différente par une matrice d’unité E d'ordre 6 ; Définir la limite supérieure du nombre de tests réseau à 1000 fois, le taux de convergence du réseau à 0,01 et l’erreur de test de réseau à 0,001 ; le nombre de nœuds de couche cachés dans le réseau est de 16 et celui du nœud de couche de sortie dans le réseau est de 6 ; lorsque le vecteur de sortie cible final El et E sont cohérents, le réseau de détection et de positionnement du corps submergé mobile sous-marin (20) est acceptable ; B. Vérification de la base de données du réseau neural Prendre les données d’essai de 1900m comme exemple ; le réseau neural est entré pour tester les données, et l’on observe que le réseau neural est efficace lorsque le corps submergé mobile sous-marin (20) est à près de 2 000 m du véhicule sous-marin (501) ; 3) Détermination de la position du corps submergé mobile sous-marin (20) Lorsque le véhicule sous-marin (501) détecte un signal, le corps submergé mobile sous-marin (20) entre dans la zone de surveillance du véhicule sous-marin (501) ; à ce moment, le véhicule sous-marin (502) et le véhicule sous-marin (503) sont commandés pour se déplacer autour du véhicule sous-marin (501) et détecter des signaux jusqu'à ce que le véhicule sous-marin (502) et le véhicule sous-marin (503) puissent détecter des signaux cibles respectifs ; à l'instant t, l'ensemble de positionnement GPS (10) détecte que les coordonnées spatiales du véhicule sous-marin (501), du véhicule sous-marin (502) et du véhicule sous-marin (503) sont (xi, yi, Zo), (x2, y2, z0) et (x3, y3, z0) ; grâce à l'analyse de réseau neural, il est déterminé que le véhicule sous-marin (501), la distance à partir du véhicule sous-marin (501), le véhicule sous-marin (502) et le véhicule sous-marin (503) au corps submergé mobile sous-marin (20) est Li, L2 et L3 respectivement ; ainsi, le corps submergé mobile sous-marin (20) est certainement situé sur une intersection sous-marine de trois surfaces sphériques qui prennent respectivement le véhicule sous-marin (501) comme étant le centre d'un cercle, U étant le rayon ; le véhicule sous-marin (502) comme étant le centre d'un cercle, L2 étant le rayon ; et le véhicule sous-marin (503) comme étant le centre d'un cercle, L3 étant le rayon ; Sur la base du principe de positionnement spatial à trois sphères, les coordonnées de position des trois véhicules sous-marins, c'est-à-dire les coordonnées sphériques à trois sphères (xi, yi, z0), (x2, y2, z0) et (X3, y3, Zi), sont obtenues par l’ensemble de positionnement GPS (10) ; la distance entre les trois véhicules sous-marins et le corps submergé mobile sous-marin (20) est respectivement U, L2 et L3 ; le véhicule sous-marin est sur le même plan horizontal, donc la coordonnée Zo est inchangée; les équations de trois sphères sont les suivantes :7. A method of the experimental system for detecting a frequency target of a submerged mobile submerged body according to any one of claims 1, 2, 3, 4, 5 and 6, characterized in that the method of identifying the submarine mobile submerged body (20) comprises the following steps: the method of identifying the position of submarine mobile submerged body (20) is described by the example below, where submerged mobile submarine body -rin (20) is in a fixed position and its frequency is 40 kHz; 1) the scanning frequency range of the impedance analyzer (6) on the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) is set to be located between 39.9 kHz and 40.1 kHz, the submarine mobile submarine body (20) of 40 kHz is placed in a target maritime area, and the three underwater vehicles (501), (502) and ( 503) are conducted to the target sea area; then, the base station of the surveillance vessel (11) sends a scan frequency instruction to the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503); after the underwater vehicle (501), underwater vehicle (502) and underwater vehicle (503) frequency scanning operation, the relevant data is sent to the base station of the surveillance vessel ( 11) for analysis; the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) can all scan a stable frequency of the submarine mobile underwater body (20) of 40 kHz, indicating that the vehicle submarine (501), the underwater vehicle (502) and the underwater vehicle (503) can enter the sea area that can be identified by the submarine mobile underwater body (20); 2) Construct a Position Identification Database A. Construction of the Neural Network Database The collected experimental data is transmitted to the computer via a transmission interface to create neural network data; a sample of data collected and established, and the data is standardized and scaled; during the detection and positioning of the underwater mobile submerged body (20), the position of the underwater mobile submerged body (20) can be presented by the position code; then, define the different positions as k = 1 to 6, and allow k to correspond to the contrast signals 50 m, 500 m, 1000 m, 2000 m and 3000 m; represent a different position code by a unit E matrix of order 6; Set the upper limit of the number of network tests to 1000 times, the convergence rate of the network to 0.01 and the network test error to 0.001; the number of hidden layer nodes in the network is 16 and the number of the output layer node in the network is 6; when the final target output vector E1 and E are coherent, the underwater mobile submerged body detection and positioning network (20) is acceptable; B. Verification of the neural network database Take the 1900m test data as an example; the neural network is entered to test the data, and it is observed that the neural network is effective when the submarine mobile underwater body (20) is nearly 2,000 m from the underwater vehicle (501); 3) Determination of submerged submerged body position (20) When the underwater vehicle (501) detects a signal, the submarine mobile underwater body (20) enters the underwater vehicle surveillance zone (501); at this time, the underwater vehicle (502) and the underwater vehicle (503) are controlled to move around the underwater vehicle (501) and detect signals until the underwater vehicle ( 502) and the underwater vehicle (503) can detect respective target signals; at time t, the GPS positioning set (10) detects that the spatial coordinates of the underwater vehicle (501), the underwater vehicle (502) and the underwater vehicle (503) are (xi, yi, Zo), (x2, y2, z0) and (x3, y3, z0); through the neural network analysis, it is determined that the underwater vehicle (501), the distance from the underwater vehicle (501), the underwater vehicle (502) and the submarine vehicle ( 503) to submarine mobile submerged body (20) is Li, L2 and L3 respectively; thus, the underwater mobile submerged body (20) is certainly located on an underwater intersection of three spherical surfaces which respectively take the underwater vehicle (501) as being the center of a circle, U being the radius; the underwater vehicle (502) being the center of a circle, L2 being the radius; and the underwater vehicle (503) being the center of a circle, L3 being the radius; On the basis of the three-sphere spatial positioning principle, the position coordinates of the three underwater vehicles, that is, the spherical coordinates with three spheres (xi, yi, z0), (x2, y2, z0 ) and (X3, y3, Zi) are obtained by the GPS positioning set (10); the distance between the three underwater vehicles and the underwater mobile submerged body (20) is respectively U, L2 and L3; the underwater vehicle is on the same horizontal plane, so the Zo coordinate is unchanged; the equations of three spheres are as follows: Au temps ti, l'intersection Pi(x, y, z) estAt time ti, the intersection Pi (x, y, z) is L'intersection Pi (x, y, z) est les coordonnées de position du corps submergé mobile sous-marin (20).The intersection Pi (x, y, z) is the position coordinates of the underwater submerged body (20). 8. Procédé du système expérimental de détection d’une cible de fréquence d'un corps submergé mobile sous-marin selon l'une quelconque des revendications 1, 2, 3,4, 5, 6 et 7, caractérisé en ce que la méthode déterminante pour la trajectoire du corps immergé mobile sous-marin (20) comprend les étapes suivantes: Le procédé d'identification de la position du corps submergé mobile sous-marin (20) est décrit dans l'exemple ci-dessous, dans lequel le corps submergé mobile sous-marin (20) se déplace à la fréquence de 40 kHz ; Comme décrit dans la revendication 5, à l'instant ti, il est observé que la coordonnée de position du corps submergé mobile sous-marin (20) est Pi (x, y, z) ; De même, à l'instant t2, la coordonnée de position du corps submergé mobile sous-marin (20) est P2 (x, y, z) ; à l'instant tî, la coordonnée de position du corps submergé mobile sous-marin (20) est P3 (x, y, z)... ; et à l'instant t„, la coordonnée de position du corps submergé mobile sous-marin (20) est P„ (x, y, z) ; L'équation de trajectoire cinématique de la cible de fréquence mobile sous-marine à différents moments peut être obtenue par l'ajustement de la courbe des coordonnées temporelles ti, t2,..., t„ et des coordonnées de position correspondantes Pi (x, y, z), P2 (x, y, z ),..., Pn (x, y, z) du corps submergé mobile sous-marin (20).8. Process of the experimental system for detecting a frequency target of an underwater mobile submerged body according to any one of claims 1, 2, 3,4, 5, 6 and 7, characterized in that the method of the underwater mobile submerged body (20) comprises the following steps: The method of identifying the position of the underwater submerged body (20) is described in the example below, in which the underwater mobile submerged body (20) moves at the frequency of 40 kHz; As described in claim 5, at time t 1, it is observed that the position coordinate of the submerged mobile underwater body (20) is Pi (x, y, z); Similarly, at time t2, the position coordinate of submerged submerged body (20) is P2 (x, y, z); at time t 1, the position coordinate of the submerged mobile underwater body (20) is P3 (x, y, z) ...; and at time t ", the position coordinate of the submerged underwater mobile body (20) is P" (x, y, z); The kinematic trajectory equation of the underwater mobile frequency target at different times can be obtained by adjusting the temporal coordinate curve t 1, t 2, ..., t "and corresponding positional coordinates Pi (x , y, z), P2 (x, y, z), ..., Pn (x, y, z) of the underwater submerged body (20).
LU100687A 2017-02-06 2017-09-18 Experimental System and Method for Detecting Frequency Target of Underwater Mobile Submerged Body LU100687B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710066225.0A CN106707286B (en) 2017-02-06 2017-02-06 A kind of experimental system and method for underwater mobile submerged body frequency targets detection

Publications (1)

Publication Number Publication Date
LU100687B1 true LU100687B1 (en) 2018-11-07

Family

ID=58910324

Family Applications (1)

Application Number Title Priority Date Filing Date
LU100687A LU100687B1 (en) 2017-02-06 2017-09-18 Experimental System and Method for Detecting Frequency Target of Underwater Mobile Submerged Body

Country Status (3)

Country Link
CN (1) CN106707286B (en)
LU (1) LU100687B1 (en)
WO (1) WO2018141157A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707286B (en) * 2017-02-06 2019-05-10 安徽理工大学 A kind of experimental system and method for underwater mobile submerged body frequency targets detection
CN107272714A (en) * 2017-08-09 2017-10-20 深圳市北航旭飞科技有限公司 Maritime affairs monitoring system
CN115195963B (en) * 2022-07-12 2023-07-21 江苏科技大学 Submerged emergency floating experiment device and working method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778469B1 (en) * 2003-02-12 2004-08-17 Science Applications International Corporation Harbor fence
GB2464985A (en) * 2008-11-03 2010-05-05 Wireless Fibre Systems Ltd Underwater Vehicle Guidance
CN102495420B (en) * 2011-12-13 2013-06-05 大连海事大学 Underwater object precision positioning system and method
CN105629979B (en) * 2015-12-22 2019-01-08 中国船舶重工集团公司第七一五研究所 A kind of the remote status tracking and control method and system of AUV platform
CN105929405B (en) * 2016-04-15 2019-02-01 燕山大学 Underwater moving target co-located method under asynchronous clock
CN106080987B (en) * 2016-07-03 2017-11-28 东北电力大学 Extra large cable synchronous unwrapping wire submariner device under water
CN106707286B (en) * 2017-02-06 2019-05-10 安徽理工大学 A kind of experimental system and method for underwater mobile submerged body frequency targets detection
CN206557377U (en) * 2017-02-06 2017-10-13 安徽理工大学 A kind of experimental system for moving the detection of submerged body frequency targets under water

Also Published As

Publication number Publication date
WO2018141157A1 (en) 2018-08-09
CN106707286B (en) 2019-05-10
CN106707286A (en) 2017-05-24

Similar Documents

Publication Publication Date Title
US9417351B2 (en) Marine seismic surveys using clusters of autonomous underwater vehicles
US10787235B2 (en) Methods and underwater bases for using autonomous underwater vehicles for marine seismic surveys
US9223002B2 (en) System and method for determining the position of an underwater vehicle
KR100734814B1 (en) Auto-piloting unmanned ship
LU100687B1 (en) Experimental System and Method for Detecting Frequency Target of Underwater Mobile Submerged Body
CN102495420B (en) Underwater object precision positioning system and method
EP2768725B1 (en) Unmanned underwater vehicle and method for localizing and examining an object arranged at the bottom of a body of water and system having the unmanned underwater vehicle
US20140301161A1 (en) Marine seismic survey and method using autonomous underwater vehicles and underwater bases
US10054104B1 (en) Autonomous underwater beacon locator
CN109991669A (en) A kind of underwater magnetic method detection system of unmanned boat towing
KR101946542B1 (en) Unmanned vehicle for underwater survey
MX2014003859A (en) Deployment and recovery of autonomous underwater vehicles for seismic survey.
KR102048796B1 (en) Devices for sensing remote water quality based on drones
CN203958575U (en) One is search and rescue robot under water
CA2848691A1 (en) Remotely operated modular positioning vehicle and method
RU2687844C1 (en) Method for navigation-information support of autonomous unmanned underwater vehicle of large autonomy performing extended underwater crossing
RU2276647C1 (en) Submersible rescue vehicle
Chen et al. Application analysis of autonomous underwater vehicle in submarine cable detection operation
US9470812B2 (en) Method and device for measuring source signature
CN110806760A (en) Target tracking control method of unmanned underwater vehicle
Hayashi et al. Customizing an Autonomous Underwater Vehicle and developing a launch and recovery system
CN205449549U (en) Water sample collection system and collector under water based on autonomic underwater vehicle
NO20140290A1 (en) Streamers without tail bends
US20220161912A1 (en) Methods and systems for surveying using deep-water vessels
Nakatani et al. Dives of cruising-AUV “JINBEI” to methane hydrate area on Joetsu knoll and Umitaka Spur

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20181107