KR970009476B1 - Ni self-melting alloy for spray coating - Google Patents

Ni self-melting alloy for spray coating Download PDF

Info

Publication number
KR970009476B1
KR970009476B1 KR1019940040101A KR19940040101A KR970009476B1 KR 970009476 B1 KR970009476 B1 KR 970009476B1 KR 1019940040101 A KR1019940040101 A KR 1019940040101A KR 19940040101 A KR19940040101 A KR 19940040101A KR 970009476 B1 KR970009476 B1 KR 970009476B1
Authority
KR
South Korea
Prior art keywords
alloy
spray coating
coating layer
thermal
continuous casting
Prior art date
Application number
KR1019940040101A
Other languages
Korean (ko)
Other versions
KR960023158A (en
Inventor
김선복
김문철
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인 산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인 산업과학기술연구소 filed Critical 김만제
Priority to KR1019940040101A priority Critical patent/KR970009476B1/en
Publication of KR960023158A publication Critical patent/KR960023158A/en
Application granted granted Critical
Publication of KR970009476B1 publication Critical patent/KR970009476B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Abstract

Nickel series of self-fluxing alloy for sequentially casting a mold typed thermal spraying coating is composed of 74-77wt% of nickel, 14.0-15.8wt% of chrome, 2.9-33wt% of boron, 3.3-3.7wt% of silicone, 0.82-0.93wt% of carbon, 0.82-0.93wt% of carbon monoxide and other indispensable atoms.

Description

연속주조주형 용사코팅용 니켈계 자용성 합금Nickel-based soluble alloy for continuous casting mold spray coating

제1도는 마모가 발생된 통상적인 연속주조주형의 절개사시도.1 is a cutaway perspective view of a conventional continuous casting mold in which wear occurs.

제2도는 통상적인 Ni계 자용성합금에 의한 플라즈마 용사코팅층의 조직사진.2 is a structure photograph of a plasma spray coating layer using a conventional Ni-based soluble alloy.

제3도는 통상적인 Ni계 자용성합금 중 Ni 함량에 따른 용사코팅층의 경도변화를 나타내는 그래프.3 is a graph showing the hardness change of the thermal spray coating layer according to the Ni content of the conventional Ni-based magnetic soluble alloy.

제4도는 통상적인 Ni계 자용성합금 중 Ni 함량에 따른 용사코팅층의 내열충격성을 나타내는 그래프.4 is a graph showing the thermal shock resistance of the thermal spray coating layer according to the Ni content in a conventional Ni-based soluble alloy.

제5도는 본 발명재를 이용한 폭발용사코팅층의 조직사진.5 is a tissue photograph of the thermal spray coating layer using the present invention.

본 발명은 제철소의 연속주조공장에서 사용되는 연속주조주형을 용사코팅할 때 이용되는 Ni계 자용성합금에 관한 것으로 보다 상세하게는 용사코팅층에 내마모성 및 내열충격 특성을 향상시키는 용사코팅용 Ni계 자용성합금에 관한 것이다.The present invention relates to a Ni-based magnetic alloy used for spray coating a continuous casting mold used in a continuous casting factory of a steel mill, and more specifically, a Ni-based magnetic coating for thermal spray coating which improves abrasion resistance and thermal shock resistance in a thermal spray coating layer. It is about a soluble alloy.

최근에 철강의 연속주조(이하, 연주라고도 칭함) 기술이 발전하여 조강생산에 대한 연주비율이 급격히 상승하고 있으며, 이에 따라 연주조업은 주조속도가 고속화와 주조시 폭변경 기술이 발달하고 있다. 이러한 추세와 더불어, 연속주조에 사용되는 주형은 점차적으로 가혹한 조건에서 사용하게 되며, 특히 하단부에 마모 및 부식에 의하여 손상이 발생하게 되어 잦은 보수 및 고체를 필요로 하고 있다. 따라서, 연속주조주형에 코팅을 하여 주형의 수명연장으로 생산성 및 제품의 품질을 향상시키려 하고 있다.Recently, the continuous casting (hereinafter referred to as performance) technology of steel has been developed, and the performance ratio for steel production is rapidly increasing. As a result, the performance of the casting industry is increasing the casting speed and the width changing technology during casting. In addition to this trend, the molds used in continuous casting are gradually used in harsh conditions, and in particular, damages are caused by wear and corrosion at the lower end, requiring frequent repairs and solids. Therefore, the continuous casting mold is coated to improve productivity and product quality by extending the life of the mold.

연속주조주형은 제1도에 나타난 바와 같이, 장변(1)과 단변(2)으로 조립되어 있으며, 단변(2)은 조업중에 이동할 수 있게 되어 있어 주조품의 폭을 변경할 수 있도록 되어있다.As shown in FIG. 1, the continuous casting mold is assembled into a long side 1 and a short side 2, and the short side 2 is movable in operation to change the width of the cast product.

연주조업중에 주편의 이동에 의하여 먼저 주형의 하단부에 마모현상(3)이 발생하며, 주형의 단변(2) 하단부의 경우는 장변(1) 하단부 보다도 마모가 심해 부식손상 부위(4) 및 폭수축(5)이 생길정도로 수명이 짧으며, 일반적으로 약 0.5배 정도 짧다. 또한, 장변(1)의 경우는 통상 열변형에 의해 왜곡되어 하단부에 마모형상(3)이 일어난다.During the performance of operation, wear phenomenon (3) occurs at the lower end of the mold due to the movement of the cast.In the case of the short side (2) of the mold, the wear is more severe than the lower side of the long side (1). (5) is short enough to produce life, generally about 0.5 times shorter. In addition, in the case of the long side 1, it is distorted by heat deformation normally, and the wear shape 3 arises in a lower end part.

이러한 주형의 하단부에 마모현상을 방지하기 위하여 종래에는 주형에 내마모용 코팅층을 형성시키는 방법이 사용되었다. 즉, 1970년대 초반에는 주헝에 경질크롬도금을 하거나 니켈을 전기도금한 표면위에 경질 크롬전기도금을 하여 사용하였으며, 1980년대 초반에는 니켈-철합금 전기주조방법(일본 특개소 54-4613호)등이 주로 사용되었다.In order to prevent wear on the lower end of the mold, a method of forming a wear-resistant coating layer on a mold has been conventionally used. That is, in the early 1970s, hard chromium plating was applied to Zhuheng or hard chromium electroplating on nickel-plated surfaces.In the early 1980s, nickel-iron alloy electroforming methods (Japanese Patent Application Laid-Open No. 54-4613) were used. This was mainly used.

그러나, 경질크롬도금은 모재와의 열팽창 계수차이가 심해서 크롬도금층의 박리가 쉬우며 0.1mm 이상 코팅하기가 어려운 단점이 있으며, 니켈-크롬 전기도금의 경우에는 코팅표면의 크롬도금층의 경도는 크지만 두께가 0.03mm로 얇아 상단부에 열크랙이 생길 뿐만 아니라 니켈 코팅층의 경도가 낮아 수명이 짧은 단점이 있다.However, hard chromium plating has a disadvantage in that the chromium plating layer is easily peeled off and difficult to coat more than 0.1 mm due to the large difference in coefficient of thermal expansion with the base material.In the case of nickel-chromium electroplating, the hardness of the chromium plating layer on the coating surface is large The thin thickness of 0.03mm not only causes heat cracks on the upper end, but also has a short life due to low hardness of the nickel coating layer.

또한, 니켈-철 합금은 니켈에 비해서 1.5-2배 정도로 내마모성이 향상되었으나 주형의 수명이 여전히 짧은 실정이다. 따라서, 전기도금법을 이용하는 경우에는 공정이 복잡하고, 코팅성분에 제약이 있어 내마모성을 향상시키는데 한도가 있다.In addition, the nickel-iron alloy has improved wear resistance by 1.5-2 times compared to nickel, but the life of the mold is still short. Therefore, in the case of using the electroplating method, the process is complicated and there is a limit in improving the wear resistance because of limitations in the coating components.

이와 같은 문제점 때문이 최근 자융성합금을 사용한 플라즈마 용사방법이 채택되기 시작하여(일특개소 57-7360호) 연주주형의 수명이 비약적으로 향상되었다. 플라즈마 용사방법에 사용되는 자용성(Self-fluxing) 합금은 보론을 함유한 니켈이나 코발트계 합금으로서 융점이 낮아 용사중에 용융된 합금에서 크롬보라이드와 크롬카바이드와 같은 경한 석출물상에 미세하게 석출되어 용사코팅층의 경도를 높일 수 있도록 제조된 용사용 합금을 말하는데(미국특허 제4,401,724호) 현재 사용되는 니켈계 자용성 용사합금으로는 72Ni, 17Cr, 4Si, 3.5B 및 C, Fe, Co로 조성되는 합금을 들 수 있다.(일본 미시마고산 자료, 1989, 5,) 이 합금을 사용하여 플라즈마 용사코팅하는 경우 용사코팅층의 경도가 750-800Hv 정도로 종래의 Ni-Cr 전기도금층의 경도보다도 3배이상이며 그에 따른 내마모성이 5-7배 정도의 높은 특성을 얻을 수 있는데, 상기 Ni계 자융성 합금을 사용하여 플라즈마 용사 코팅된 층이 제2도에 나타나 있다.Due to this problem, the plasma spraying method using self-melting alloy has recently been adopted (Japanese Patent Application Laid-Open No. 57-7360), and the lifespan of the performance mold has been greatly improved. Self-fluxing alloys used in the plasma spraying method are nickel or cobalt-based alloys containing boron, which have a low melting point and are finely precipitated on light precipitates such as chromium boride and chromium carbide in molten alloys during thermal spraying. Refers to the thermal spray alloy manufactured to increase the hardness of the thermal spray coating layer (US Pat. No. 4,401,724). The nickel-based magnetic thermal spray alloy currently used is composed of 72Ni, 17Cr, 4Si, 3.5B, and C, Fe, Co. Alloys. (Data from Mishima Koyama, Japan, 1989, 5,) The plasma spray coating using this alloy has a hardness of 750-800 Hv, three times higher than that of a conventional Ni-Cr electroplating layer. As a result, high wear resistance of about 5-7 times can be obtained, and the plasma-spray coated layer using the Ni-based self-melting alloy is shown in FIG.

제2도에서 알 수 있듯이, 니켈계 자용성 합금을 사용하여 플라즈마 용사코팅을 할 경우에는 내열충격성 및 밀착강도를 향상시키기 위하여 언더코팅(7)을 하며, 탑용사코팅을 한 후 코팅층(6)의 기공 감소 및 밀착성을 향상을 위하여 열처리(fusing)를 행하게 된다. 그러나, 이러한 방법은 열처리와 언더코팅(7)을 행하지 않으면 내열충격성이 저하되어 연속주조주형에 적용이 곤란하고, 특히 석출경화형 구리합금(8) 주형에만 가능하며, 고용경화형의 구리합금 주형에선 주형경도가 열처리전 120Hv 정도에서 열처리(fusing)후에는 40-50Hv 정도로 열화되므로 사용이 불가능하다.As can be seen in FIG. 2, in the case of plasma spray coating using a nickel-based magnetic alloy, undercoating (7) is performed to improve thermal shock resistance and adhesion strength, and after the top spray coating, the coating layer (6). In order to reduce porosity and improve adhesion, heat treatment is performed. However, this method is difficult to apply to continuous casting molds because heat resistance and heat coating and undercoating (7) are not performed, and in particular, it is possible only to precipitate hardening copper alloy (8) mold, and in solid hardening copper alloy mold Hardness is deteriorated to 40-50 Hv after heat treatment (fusing) at about 120 Hv before heat treatment is impossible to use.

이에, 본 발명들은 상기한 종래의 Ni계 자용성 용사코팅합금의 문제점을 해결하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로써, 본 발명은 Ni계 자용성 용사코팅 합금의 조성을 적절히 제어하므로서, 석출 경화형과 고용경화형 구리합금 주형에 모두 사용가능하고, 언더코팅 및 열처리 공정을 생략하여도 내열충격성을 확보하면서 주형수명과 연관되는 우수한 경도를 유지할 수 있는 연속주조주형 용사코팅용 Ni계 자용성 합금을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present invention is to conduct the research and experiment to solve the problems of the conventional Ni-based water-soluble spray coating, and to propose the present invention based on the results, the present invention is Ni-based water-soluble spray By continuously controlling the composition of the coating alloy, it can be used for both precipitation hardening type and solid hardening type copper alloy molds, and continuous casting molds that can maintain excellent hardness associated with mold life while ensuring thermal shock resistance even if the undercoating and heat treatment processes are omitted. An object of the present invention is to provide a Ni-based magnetic alloy for thermal spray coating.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 연속주조주형에 용사코팅되는 Ni계 자용성 합금에 있어서, 중량%로, Ni : 74-77%, Cr : 14.0-15.8%, B : 2.9-3.3%, Si : 3.3-3.7%, C : 0.82-0.93%, Fe : 0.82-0.93%, Co : 0.82-0.93% 및 기타 불가피한 원소를 함유하여 조성되는 연속주조 주형 용사코팅용 Ni계 자용성 합금에 관한 것이다.In the present invention, in the Ni-based magnetic soluble alloy spray-coated on the continuous casting mold, in weight%, Ni: 74-77%, Cr: 14.0-15.8%, B: 2.9-3.3%, Si: 3.3-3.7%, The present invention relates to a Ni-based magnetic alloy for continuous casting mold spray coating containing C: 0.82-0.93%, Fe: 0.82-0.93%, Co: 0.82-0.93%, and other unavoidable elements.

이하, 본 발명의 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

일반적인 Ni계 자용성 합금인 Nix(Cr, B, C, Si, Fe)100-x합금은 Ni 함량에 따라 용사코팅 후 코팅층의 경도가 변화되는데, 제3도에 나타낸 바와 같이, 자용성 합금중 함유되는 Ni함량이 증가함에 따라서 코팅층의 경도가 감소한다. 또한, Ni계 자용성 합금은 Ni 함량에 따른 코팅층의 내열충격 특성의 변화를 나타낸 제4도에서 알 수 있는 바와 같이, Ni 함량이 증가함에 따라서 내열충력성이 향상이 되는 경향이 있다. 따라서, 본 발명에서는 Ni계 자용성 합금의 기지금속을 이루는 Ni의 함량을 74-77중량%(이하, 단지 %라 함)의 범위로 제한하는 것이 바람직한데, 그 이유는 Ni이 74% 미만인 경우 열안정성이 부족하여 내열충격성이 저하되어 연속주조용 주형에 적합하지 않고, 77% 이상으로 함유되면 크롬과 보론, 실리콘의 함량이 상대적으로 감소하여 코팅층의 경도를 향상시키는 크롬카바이드와 크롬보라이드의 형성이 감소되어 코팅층의 경도가 감소하고 주형의 수명이 매우 짧아지기 때문이다.Ni x (Cr, B, C, Si, Fe) 100-x alloy, which is a general Ni-based alloy, changes the hardness of the coating layer after the thermal spray coating depending on the Ni content, as shown in FIG. The hardness of the coating layer decreases as the Ni content contained therein increases. In addition, the Ni-based magnetic alloy has a tendency to improve thermal shock resistance as the Ni content increases, as can be seen in FIG. Therefore, in the present invention, it is preferable to limit the content of Ni constituting the base metal of the Ni-based magnetic soluble alloy to the range of 74-77% by weight (hereinafter referred to as only%), because the Ni is less than 74% It is not suitable for continuous casting mold due to lack of thermal stability, and it is not suitable for continuous casting molds. If it contains more than 77%, the content of chromium carbide and chromium boride improves the hardness of the coating layer by relatively decreasing the content of chromium, boron and silicon. This is because the formation is reduced, the hardness of the coating layer is reduced and the life of the mold is very short.

또한, 상기 Cr은 내산화성을 향상시키는 원소로서, Cr은 14-15%의 범위로 함유되는 것이 바람직한데, 그 이유는 Cr이 14% 이하로 함유되면 용사 코팅층의 내산화성이 저하되며, 15% 이상 함유되면 용사코팅층에 취성이 발생되어 용사코팅층이 쉽게 박리될 수 있는 가능성이 높기 때문이다.In addition, the Cr is an element that improves the oxidation resistance, it is preferable that Cr is contained in the range of 14-15%, because if Cr is contained in 14% or less, the oxidation resistance of the thermal spray coating layer is reduced, 15% This is because when the above is contained, brittleness occurs in the thermal spray coating layer, and thus the thermal spray coating layer may be easily peeled off.

또한, 용사합금중에 함유되는 B 및 Si은 용사중에 용사합금의 융점을 낮추어 공정상을 형성시키는 원소들로 B 및 Si 경우 각각 2.9%, 3.3% 이하로 함유되면 용사합금의 융점이 높아져 용사코팅층에 기공의 발생 가능성이 높아 코팅층이 박리가 될 수 있으며, B이 3.3% 이상 함유되거나 Si이 3.7% 이상 함유되면 융점이 낮아짐에 따라 용사코팅층에 편석이 발생되어 균일한 코팅층을 형성할 수 없고 코팅층이 박리되기 쉽기 때문에 바람직하지 않다.In addition, B and Si contained in the thermal spray alloys lower the melting point of the thermal spray alloy to form a eutectic phase in the thermal spraying alloy. Possibility of pores may cause the coating layer to be peeled off. If B is contained in 3.3% or more or Si is contained in 3.7% or more, the melting point is lowered, causing segregation in the thermal spray coating layer, thus preventing the formation of a uniform coating layer. Since it is easy to peel, it is not preferable.

또한, 용사합금중의 C은 용사중 Cr과 결합하여 경도가 우수한 Cr3C2를 형성시켜 코팅층의 경도를 증가시키는 역할을 하는데, 만일 C이 0.82% 이하로 함유되면 용사코팅층의 경도가 저하될 수 있으며, C이 0.93%이상으로 되면 코팅층에 Cr3C2의 생성이 많아져 오히려 코팅층이 취약하게 되어 바람직하지 않다.In addition, C in the thermal spraying alloy combines with Cr in the thermal spraying to form Cr 3 C 2 having excellent hardness to increase the hardness of the coating layer. If C is contained in an amount of 0.82% or less, the hardness of the thermal spraying coating may be reduced. When C is 0.93% or more, the production of Cr 3 C 2 in the coating layer increases, rather the coating layer becomes weak, which is not preferable.

그리고, 상기 Fe와 Co는 용사중에 B과 Si에 의해 융점이 낮아진 합금의 유동성을 낮추어 코팅층의 두께형성능을 향상시킨다. 그러나, 상기 Fe 및 Co의 함유량이 각각 0.82%이하로 되면 내열, 내충격 특성이 저하되므로, 상기 Fe 및 Co는 각각 0.82-0.93%의 범위로 제한함이 바람직하다.The Fe and Co lower the fluidity of the alloy whose melting point is lowered by B and Si during thermal spraying, thereby improving the thickness-forming ability of the coating layer. However, when the content of Fe and Co is less than 0.82%, respectively, the heat and impact resistance is lowered, so the Fe and Co are preferably limited to the range of 0.82-0.93%, respectively.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

하기 표 1과 같은 조성을 갖는 Ni계 자용성 합금을 사용하여 폭발용사를 행한 후, 용사코팅 시험편에 대하여 경도, 밀착강도, 가공율 및 내열충격성을 측정하고, 그 결과를 하기 표 2에 나타내었으며, 또한 그 용사코팅층의 조직사진을 제5도에 나타내었다.After the explosion spray using a Ni-based soluble alloy having a composition as shown in Table 1, the hardness, adhesion strength, processing rate and thermal shock resistance of the thermal spray coating test piece was measured, and the results are shown in Table 2, In addition, the organizational photograph of the thermal spray coating layer is shown in FIG.

이때, 상기 내열충격성은 용사코팅 시험편을 3×3cm의 크기로 자를 다음, 800℃의 온도에서 20분간 유지한 후 물속에 투입하여 급냉시키는 공정을 반복 실시하여 시편에 발생된 융력으로 크랙이 발생될때까지의 횟수로 평가하였다.In this case, the thermal shock resistance is cut to the size of 3 × 3cm sprayed coating specimens, and then maintained for 20 minutes at a temperature of 800 ℃ and then repeatedly put in water to quench the process when cracks are generated by the melt generated in the specimens It evaluated by the number of times.

또한, 비교를 위하여 종래의 72Ni-17Cr-4Si-3.5B로 조성된 자용성합금을 이용하여 언더코팅을 거쳐플라즈마 용사처리를 한 후, 열처리를 하고 열처리된 코팅시편에 대하여 상기 발명방법과 동일한 방법으로 용사코팅의 특성을 평가하고, 그 결과를 하기 표 2에 나타내었다.In addition, for comparison, plasma spray treatment was carried out by undercoating using a magnetically soluble alloy composed of conventional 72Ni-17Cr-4Si-3.5B, followed by heat treatment, and the same method as the above-described method for the heat-treated coating specimen. To evaluate the characteristics of the thermal spray coating, the results are shown in Table 2 below.

상기 표 2에 나타난 바와 같이, 종래의 용사합금을 사용하고 언더코팅 및 열처리를 행하여 플라즈 코팅된 종래예의 경우에는 경도가 700-750Hv, 밀착강도가 1500-2000kgf/cm 로서 내마모성이 우수한 반면에 내열충격성이 현저히 저하됨을 알 수 있다.As shown in Table 2, in the case of the conventional example of the plasma coating using a conventional sprayed alloy and undercoating and heat treatment, the hardness is 700-750Hv, adhesion strength 1500-2000kgf / cm As the wear resistance is excellent while the thermal shock resistance is significantly reduced.

이에 반하여 본 발명에 따른 자용성 합금을 사용한 발명예의 경우에는 언더코팅 및 열처리를 거치지 않고서도 경도가 600-700Hv, 밀착강도가 2000kgf/cm 로서 고내마모성을 유지하면서도 내열충격성이 종래예보다 우수하여 연속주조주형의 용사 코팅재로 적합함을 알 수 있다.On the contrary, in the case of the invention example using the insoluble alloy according to the present invention, the hardness is 600-700Hv and the adhesion strength is 2000kgf / cm without undercoating and heat treatment. It can be seen that the thermal shock resistance is superior to the conventional example while maintaining high wear resistance, and thus is suitable as a spray coating material of a continuous casting mold.

즉, 연속주조주형의 중요한 특성중의 하나인 내열충격성을 개선하면서, 목적하는 정도의 고내마모성을 유지하는 것이다.In other words, while maintaining the desired high wear resistance while improving the thermal shock resistance, which is one of the important characteristics of the continuous casting mold.

상술한 바와 같이, 본 발명에 따른 Ni계 자용성 합금을 사용하면 종래의 플라즈마 코팅시 필요한 언더코팅 및 열처리 공정을 생략하면서도 내마모 내열충격특성이 우수하여 연속주조주형의 수명을 연장할 수 있는 효과가 있다.As described above, the use of the Ni-based magnetic alloy according to the present invention is excellent in wear resistance and thermal shock characteristics while eliminating the undercoating and heat treatment processes required for the conventional plasma coating, thereby extending the life of the continuous casting mold. There is.

Claims (1)

연속주조주형에 용사코팅되는 Ni계 자용성 합금에 있어서, 중량%로, Ni : 74-77%, Cr : 14.0-15.8%, B : 2.9-3.3%, Si : 3.3-3.7%, C : 0.82-0.93%, Fe : 0.82-0.93%, Co : 0.82-0.93% 및 기타 불가피한 원소를 함유하여 조성됨을 특징으로 하는 연속주조주형 용사코팅용 Ni계 자용성합금.Ni-based magnetic soluble alloy spray-coated on a continuous casting mold, in weight%, Ni: 74-77%, Cr: 14.0-15.8%, B: 2.9-3.3%, Si: 3.3-3.7%, C: 0.82 Ni-based magnetic alloy for continuous casting mold spray coating, characterized in that it contains -0.93%, Fe: 0.82-0.93%, Co: 0.82-0.93% and other unavoidable elements.
KR1019940040101A 1994-12-30 1994-12-30 Ni self-melting alloy for spray coating KR970009476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940040101A KR970009476B1 (en) 1994-12-30 1994-12-30 Ni self-melting alloy for spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940040101A KR970009476B1 (en) 1994-12-30 1994-12-30 Ni self-melting alloy for spray coating

Publications (2)

Publication Number Publication Date
KR960023158A KR960023158A (en) 1996-07-18
KR970009476B1 true KR970009476B1 (en) 1997-06-13

Family

ID=19405979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940040101A KR970009476B1 (en) 1994-12-30 1994-12-30 Ni self-melting alloy for spray coating

Country Status (1)

Country Link
KR (1) KR970009476B1 (en)

Also Published As

Publication number Publication date
KR960023158A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
US4124737A (en) High temperature wear resistant coating composition
US4144993A (en) Method of producing a continuous casting mold
EP0400683B1 (en) Powdered metal spray coating material, process for producing the same and the use thereof
JPS6117912B2 (en)
KR970009476B1 (en) Ni self-melting alloy for spray coating
US5116431A (en) Immersion member for hot dip galvanizing bath and method for preparing the same
KR101919835B1 (en) Iron-based Alloys Having Improved Corrosion Resistance and Abrasion Resistance to Molten Zinc-Aluminum and Method for Preparing the Same
JPS6039453B2 (en) Manufacturing method of continuous casting mold
JP4579706B2 (en) Articles with improved zinc erosion resistance
JP3150291B2 (en) Copper alloy mold for casting Al or Al alloy
US5194339A (en) Discontinuous casting mold
KR100250217B1 (en) Spray coating method for casting mold
JPH08229657A (en) Member for casting and its production
JPH07155909A (en) Water-cooled mold and continuous casting excellent in erosion resistance
JPH08232058A (en) Member for die casting and its production
KR100384455B1 (en) Overlay welding method by plasma powder with high abrasion resistance and corrosion resistance
JPS58212840A (en) Casting mold for continuous casting
JP2002226992A (en) Mold for continuous casting
JPH08269787A (en) Conductor roll for ni plating excellent in corrosion resistance and wear resistance
JPH08165581A (en) Member for die casting
JP2942695B2 (en) Continuous casting mold and method of manufacturing the same
JP3113234B2 (en) Screw for injection molding machine and method of manufacturing the screw
Dong et al. A new hybrid process for surface modification by combining brush plating with nitrocarburizing
RU1792452C (en) Method for chemical and heat treatment of products
JPH07268489A (en) Production of wear resistant carbon roll

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030902

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee