KR960005226B1 - Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic - Google Patents

Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic Download PDF

Info

Publication number
KR960005226B1
KR960005226B1 KR1019930023734A KR930023734A KR960005226B1 KR 960005226 B1 KR960005226 B1 KR 960005226B1 KR 1019930023734 A KR1019930023734 A KR 1019930023734A KR 930023734 A KR930023734 A KR 930023734A KR 960005226 B1 KR960005226 B1 KR 960005226B1
Authority
KR
South Korea
Prior art keywords
annealing
tin
steel sheet
magnetic properties
loss
Prior art date
Application number
KR1019930023734A
Other languages
Korean (ko)
Other versions
KR950014328A (en
Inventor
박종태
박래은
우종수
Original Assignee
포항종합제철주식회사
조말수
재단법인산업과학기술연구소
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 조말수, 재단법인산업과학기술연구소, 백덕현 filed Critical 포항종합제철주식회사
Priority to KR1019930023734A priority Critical patent/KR960005226B1/en
Publication of KR950014328A publication Critical patent/KR950014328A/en
Application granted granted Critical
Publication of KR960005226B1 publication Critical patent/KR960005226B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Nonoriented electromagnetic steel sheet for core metal of motor, transformer, generator and rotary machine provides excellent magnetic characteristics in the range of high-frequency wave by reducing impurity levels, adding tin and controlling reheating temperature. The silicon steel slab comprises, in weight percent, 2 to 7% silicon, 0.2 to 1.5% aluminum, 0.1 to 1.5% manganese, carbon not exceeding 0.04%, sulfur, oxygen and nitrogen not exceeding 0.01%, and the balance of iron and inevitable impurities. The steel sheet is produced by the processes of reheating of the steel slab having the same chemical composition as mentioned above and adding 0.01 to 0.4% tin as a starting material at about 1000 to 1200deg.C, hot rolling, annealing, and cold rolling once or twice to final thickness, and final annealing.

Description

고주파 자기특성이 우수한 무방향성 전기강판의 제조방법Method for manufacturing non-oriented electrical steel sheet having excellent high frequency magnetic characteristics

본 발명은 고주파 자기특성이 우수한 무방향성 전기강판 제조방법에 관한 것으로, 보다 상세히는, Sn의 첨가와 재가열온도를 제어하여, 고주파영역에서 우수한 자기특성을 갖는 무방향성 전기강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent high frequency magnetic characteristics, and more particularly, to a method for manufacturing a non-oriented electrical steel sheet having excellent magnetic characteristics in the high frequency region by controlling the addition of Sn and reheating temperature. will be.

일반적으로 무방향성 전기강판은 우수한 자기특성을 가지고 있어, 소형변압기나 회전기의 철심재료로 널리 사용되어 왔는데, 최근 에너지 절약의 차원에서 변압기, 회전기등의 전기기기는 고효율화, 소형화되는 추세에 있고, 고주파 영역에서 사용되는 경향이 증가하고 있으며, 이에 따라 철심재료인 전기강판에 있어서도, 고주파 영역에서 뛰어난 자기특성이 요구되고 있는 실정이다. 그런데, 고주파 영역에서의 자기특성을 향상시키기 위해서는 무방향성 전기강판의 철선(iron loss)을 감소시키는 것이 중요하다. 통상 전기강판의 이러한 철손은 이력손실(hysteresis loss)과 와전류손실(eddy current loss)로 이루어지며, 이 철손은 철심재료의 결정립 크기와 집합조직의 발달정도에 따라 변한다. 즉, 결정립 크기가 커지면 이력손실은 감소하는 반면에, 와전류손실은 증가하게 되고, 반대로 결정립 크기가 작아지면 이력손실은 증가하는 반면, 와전류손실은 감소한다. 또한, 집합조직의 경우에 있어서, (100), (110)면은 자기특성에 유리한 반면에, (111), (211)면은 자기특성에 불리하고, 이러한 집합조직은 주로 이력손실에 영향을 미친다.In general, non-oriented electrical steel sheet has excellent magnetic properties and has been widely used as iron core material for small transformers and rotors. Recently, in order to save energy, electrical devices such as transformers and rotors tend to be highly efficient and miniaturized. The tendency to use in the area is increasing, and accordingly, even in the electrical steel sheet which is an iron core material, excellent magnetic properties are required in the high frequency range. However, in order to improve the magnetic properties in the high frequency region, it is important to reduce the iron loss of the non-oriented electrical steel sheet. This iron loss in electrical steel is usually composed of hysteresis loss and eddy current loss, and this iron loss varies depending on the grain size of the core material and the degree of development of the texture. In other words, as the grain size increases, the hysteresis loss decreases, while the eddy current loss increases. On the contrary, as the grain size decreases, the hysteresis loss increases, while the eddy current loss decreases. Also, in the case of aggregates, the (100) and (110) planes are advantageous for the magnetic properties, whereas the (111) and (211) planes are disadvantageous to the magnetic properties, and these aggregates mainly affect the hysteresis loss. Crazy

한편, 철손중에서 이력손실과 와전류 손실이 차지하는 비중은 주로 주파수에 따라 변한다. 50.6Hz의 통상 주파수에서는 이력손실의 비중이 더 크므로, 주로 이력손실을 제어하여 철손을 감소시켜 왔다. 그러나, 주파수가 높아질수록 와전류 손실이 차지하는 비중이 점점 커지게되어, 400Hz 이상의 고주파에서는 철손이 주로 와전류 손실에 의하여 결정되므로, 와전류 손실을 감소시켜 철손을 제어하는 것이 바람직하다고 알려졌다.On the other hand, the proportion of hysteresis loss and eddy current loss in iron loss mainly varies with frequency. At the normal frequency of 50.6 Hz, the hysteresis loss has a higher specific gravity, and thus, the loss is mainly reduced by controlling the hysteresis loss. However, as the frequency increases, the proportion of the eddy current loss becomes larger, and since the iron loss is mainly determined by the eddy current loss at a high frequency of 400 Hz or higher, it is known that it is desirable to control the iron loss by reducing the eddy current loss.

즉, 이것은 철손을 감소시키는 방법에 있어서, 철심재료가 사용되는 사용 주파수에 따라 달라져야 한다는 사실을 나타내고 있다.In other words, this indicates that in the method of reducing iron loss, the iron core material should vary depending on the frequency of use.

고주파 영역에서 자기특성을 향상시키기 위한 종래방법으로는 Si함량을 4wt% 이상 첨가하여 비저항을 증가시키므로써 와전류손실을 감소시키는 방법이 알려져 있다.As a conventional method for improving the magnetic characteristics in the high frequency region, a method of reducing the eddy current loss by adding a Si content of 4wt% or more to increase the specific resistance is known.

싱기 종래방법으로는 일본공개특허공보(소) 63-60225호, 및 일본공개특허공보(소) 63-93823호를 들 수 있는데, 이들 방법은 각각의 압연조건과 소둔조건을 제어하여, 다시 말하면, 압연법으로 고주파 자기특성이 우수한 Si 함량 4-7wt%인 고규소강판을 제조하는 방법을 요지로 하고 있다. 그러나, 아직까지 동일한 두께와 동일한 화학조성에서, 특수원소를 첨가하여 철심재료의 결정립 크기를 제어하여 고주파 자기특성을 향상시킨 방법은 제안된 적이 없다.Conventional methods of singing machines include Japanese Patent Application Laid-Open No. 63-60225 and Japanese Patent Application Laid-Open No. 63-93823, which control the respective rolling conditions and annealing conditions, that is, The method for producing a high silicon steel sheet having a Si content of 4-7wt%, which is excellent in high frequency magnetic properties, is made by the rolling method. However, no method has been proposed to improve the high frequency magnetic properties by controlling the grain size of the iron core material by adding special elements at the same thickness and the same chemical composition.

따라서, 본 발명은 고주파 자기특성을 가장 효과적으로 향상시키기 위해서는 결정립 크기를 작게하여 와전류 손실을 감소시킴과 동시에 집합조직을 자기특성에 유리하게 발달시켜 이력손실을 감소시켜야 한다는 것에 착안하여 제안된 것으로서, Sn을 첨가하고 슬라브의 재가열 온도를 적절히 제어하여 고주파 자기특성이 우수한 무방향성 전기강판을 제조하는 방법을 제공하고자 하는데 그 목적이 있다. 이하 본 발명을 설명한다.Accordingly, the present invention has been proposed in view of the fact that in order to most effectively improve the high-frequency magnetic properties, the grain size should be reduced to reduce the eddy current loss, and at the same time, the texture should be developed to favor the magnetic properties to reduce the hysteresis loss. The purpose of the present invention is to provide a method for producing a non-oriented electrical steel sheet having excellent high-frequency magnetic properties by adding and controlling the reheating temperature of the slab appropriately. Hereinafter, the present invention will be described.

본 발명은 중량%로 C:0.040% 이하, Si:2-7%, Al:0.2-1.5%, Mn:0.1-1.5%, S:0.01% 이하, N:0.01% 이하, O:0.01%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 규소강 슬라브를 재가열하여, 열간압연한후, 열연판 소둔 처리하여, 최종두께까지 1회 또는 2회 냉간압연하고, 최종소둔처리하는 무방향성 전기강판의 제조방법에 있어서, 상기 슬라브에, 0.01-0.4중량%의 Sn이 첨가되고, 상기 재가열온도가 1000-1200℃인 것을 특징으로 하는 고주파 자기특성이 우수한 무방향성 전기강판의 제조방법에 관한 것이다.In the present invention, C: 0.040% or less, Si: 2-7%, Al: 0.2-1.5%, Mn: 0.1-1.5%, S: 0.01% or less, N: 0.01% or less, O: 0.01% or less , Re-heating the silicon steel slab composed of the remaining Fe and other unavoidable impurities, followed by hot rolling, followed by annealing of the hot rolled sheet, cold rolling once or twice to the final thickness, and the preparation of the non-oriented electrical steel sheet In the method, 0.01-0.4% by weight of Sn is added to the slab, and the reheating temperature relates to a method for producing a non-oriented electrical steel sheet excellent in high-frequency magnetic properties, characterized in that the.

이하, 본 발명의 제조방법에서 사용되는 소지금속의 조성범위에 대한 수치한정 이유에 대하여 설명한다.Hereinafter, the reason for numerical limitation of the composition range of the base metal used in the manufacturing method of this invention is demonstrated.

본 발명에 있어서, 탄소의 함량은 0.04중량%(이하, "%"라 칭함) 이하가 바람직한데, 그 이유는 탄소가 0.04% 이상 함유되어 있으며 탄탄불량이 생겨서 최종제품의 자기특성이 열화되기 때문이다.In the present invention, the carbon content is preferably 0.04% by weight or less (hereinafter referred to as "%"), because it contains 0.04% or more of carbon and deteriorates the carbon properties, resulting in deterioration of the magnetic properties of the final product. to be.

상기 규소 함량은 2-7%의 범위가 바람직한데, 그 이유는 비저항 증가로 인한 절손 감소를 위하여, 규소는 2% 이상이 요구되나, 7% 이상이 되면 오히려 자기특성이 열화시키고 압연성이 나빠지기 때문이다.The silicon content is preferably in the range of 2-7%. The reason is that in order to reduce the loss due to the increase in resistivity, silicon is required to be 2% or more. Because it falls out.

상기 알루미늄은 규소와 같이 철손의 감소를 위하여 0.2% 이상 첨가하는 것이 필요하나, 1.5% 이상 첨가하게 되면, 냉간압연성이 나빠질 뿐만 아니라 자기특성의 향상정도가 작으므로, 0.2-1.5%의 범위로 첨가하는 것이 바람직하다.The aluminum needs to be added in an amount of 0.2% or more, such as silicon, in order to reduce iron loss, but when it is added in an amount of 1.5% or more, the cold rolling property is not only worsened but also the improvement in magnetic properties is small. It is preferable to add.

망간의 경우, 0.1% 이하시 열간가공성이 나쁘고 1.5%를 넘으면 최종소둔시 표면산화층을 형성하여, 자기특성을 열화시키므로 망간의 함량은 0.1%-1.5%의 범위로 제한하는 것이 바람직하다.In the case of manganese, if the hot workability is poor at 0.1% or less and more than 1.5%, the surface oxide layer is formed at the time of final annealing to deteriorate the magnetic properties, so the manganese content is preferably limited to the range of 0.1% to 1.5%.

유황, 질소, 및 산소는 함유량이 많으면 개재물이 형성하여 자구(magnetic domain)의 이동을 방해하므로, 최대 0.01%로 제한하는 것이 바람직하고, 보다 바람직하게는 0.007% 이하로 제한하는 것이다.Sulfur, nitrogen, and oxygen contain a large amount of inclusions, which impede movement of the magnetic domain, and therefore it is preferably limited to a maximum of 0.01%, more preferably 0.007% or less.

본 발명에 있어서 주석은 소둔시 결정립계에서 우선적으로 핵형성이 되는 자기특성에 불리한 면인(111)면의 발달을 억제하는 반면, 자기특성에 유리한 (110)면의 발달을 조장하므로, 주석을 첨가하게 되면 집합조직을 자기특성에 유리하게 개선시켜, 철손중 이력손실을 감소시킨다. 또한, 주석은 소둔시 강판표면에 농화되어 표면산화층의 형성을 억제하므로, 이력손실을 감소시키는 작용도 하게 된다.In the present invention, the tin inhibits the development of the (111) plane, which is a disadvantageous surface for the magnetic property that is preferentially nucleated at the grain boundary during annealing, while promoting the development of the (110) plane for the magnetic property. The texture is advantageously improved for the magnetic properties, thereby reducing the hysteresis loss during iron loss. In addition, tin is concentrated on the surface of the steel sheet during annealing, thereby suppressing the formation of the surface oxide layer, thereby reducing the hysteresis loss.

그리고, 주석은 소둔시 냉간압연된 변형조직으로부터의 결정립의 성장속도를 늦추고, 결정립계에 편석되어 결정립의 성장을 억제하는 효과도 있다. 그러나, 주석의 첨가량이 0.01% 이상되어야 상기와 같이, 집합조직을 자기특성에 유리하게 발달시키고, 결정립계에 편석되어 결정립의 성장이 억제시킬 수 있으며, 0.4% 이상이 되면, 상기 효과가 포화될 뿐만 아니라, 냉간압연성이 나빠지고, 제조원가도 상승되므로 주석은 0.01-0.4%의 범위로 첨가되는 것이 바람직하다.In addition, tin has an effect of slowing down the growth rate of crystal grains from the cold rolled deformed tissue, annealing at grain boundaries, and suppressing the growth of grains. However, when the amount of tin added is 0.01% or more, as described above, the texture can be advantageously developed for the magnetic properties and segregation at grain boundaries can suppress the growth of grains. When the amount is more than 0.4%, the effect is saturated. However, it is preferable that the tin is added in the range of 0.01-0.4% because the cold rolling property is deteriorated and the manufacturing cost is also increased.

이하, 본 발명의 제조방법에 있어서, 공정처리 조건에서의 수치 한정이유에 대하여 설명한다.Hereinafter, in the manufacturing method of this invention, the reason for numerical limitation in process process conditions is demonstrated.

본 발명에서 열연판 소둔 및 중간소둔은 통상의 방법으로 행하면 되고, 또한 최종 소둔시의 소둔분위기는 소강탄소가 0.01%를 넘으면 습윤 분위기를 사용하고, 소강탄소가 0.01% 이하이면 비산화성 건조분위기를 사용하는 것이 바람직하다. 또한, 최종소둔 온도는 재결정과 결정립의 성장이 일어날 수 있는 온도에서 적당시간 행하면 된다.In the present invention, the hot-rolled sheet annealing and intermediate annealing may be performed by a conventional method, and the annealing atmosphere during final annealing is used in a wet atmosphere when the calcined carbon exceeds 0.01%, and the non-oxidizing dry atmosphere when the calcined carbon is 0.01% or less. It is preferable to use. In addition, the final annealing temperature may be appropriately performed at a temperature at which recrystallization and grain growth may occur.

본 발명자는 결정립계 편석원소인 주석이 최종 소둔판의 결정립이 성장을 억제할 수 있는 여러가지 공정조건에 대하여 많은 실험을 한 결과, 슬라브의 재가열 온도가 중요한 변수임을 발견하였다. 주석을 첨가한 본 발명의 슬라브의 재가열 온도가 중요한 변수임을 발견하였다. 주석을 첨가한 본 발명의 슬라브의 재가열 온도를 1200℃보다 높게 하면, 결정립계에 편석되는 주석의 양이 작아져서, 소둔시 결정립의 성장을 효과적으로 억제하지 못하게 된다. 반면에 슬라브의 재가열 1000℃보다 낮으면, 열간압연시 과도한 부하가 걸려 압연이 곤란하게 되므로, 슬라브의 재가열온도는 1000-1200℃의 범위가 바람직하다.The inventors have found that the reheating temperature of the slab is an important variable as a result of many experiments on tin, which is a grain boundary segregation element, in which various grains of the final annealing plate can suppress growth. It was found that the reheating temperature of the slabs of the present invention with tin addition is an important parameter. When the reheating temperature of the slab of the present invention to which tin is added is higher than 1200 ° C., the amount of tin segregated at the grain boundary becomes small, which makes it difficult to effectively suppress the growth of grains during annealing. On the other hand, if the slab is reheated lower than 1000 ° C., excessive load is applied during hot rolling, which makes it difficult to roll. Thus, the slab reheating temperature is preferably in the range of 1000-1200 ° C.

이하, 본 발명의 실시예를 통하여 보다 상세히 설명한다.Hereinafter, the embodiment of the present invention will be described in more detail.

[실시예1]Example 1

Sn을 각각 0%, 0.048%, 0.10%, 및 0.22%로 함유하며, C:0.0023%, Si:3.15%, Al:0.25%, Mn:0.24%, S:0.0043%, N:0.0020%, O:0.0033%, 및 나머지 Fe로 이루어지는 4종류의 규소강슬라브를 1100℃에서 재가열하여, 두께 2.0㎜로 열간압연하고, 980℃에서 2분간 소둔처리후 산세처리하여 스케일을 제거하였다. 상기 열연판을 1.0㎜로 냉간압연하고, 950℃에서 3분간 중간소둔한 후, 0.5㎜로 냉간압연하였다.Sn is contained 0%, 0.048%, 0.10%, and 0.22%, respectively, C: 0.0023%, Si: 3.15%, Al: 0.25%, Mn: 0.24%, S: 0.0043%, N: 0.0020%, O The four types of silicon steel slabs composed of: 0.0033% and the remaining Fe were reheated at 1100 ° C, hot rolled to a thickness of 2.0 mm, and then annealed at 980 ° C for 2 minutes to remove scale. The hot rolled sheet was cold rolled to 1.0 mm, annealed at 950 ° C. for 3 minutes, and then cold rolled to 0.5 mm.

이 냉간압연판을 950℃에서 5분간 최종소둔처리 한 후, 내경 33㎜, 외경 45㎜인 고리상으로 절단하여 자기특성을 측정한 후, 그 결과를 하기표 1에 나타내었다.The cold rolled sheet was subjected to a final annealing at 950 ° C. for 5 minutes, cut into rings having an inner diameter of 33 mm and an outer diameter of 45 mm, and the magnetic properties thereof were measured. The results are shown in Table 1 below.

[표 1]TABLE 1

*B8(Tesla):자장의 세기가 800A/m 일때의 자속밀도의 값.* B 8 (Tesla): The value of magnetic flux density when the strength of the magnetic field is 800 A / m.

W10/400(w/kg):자속밀도 1.0T, 주파수 400Hz에서의 철손 값.W 10/400 (w / kg): Iron loss value at magnetic flux density 1.0T and frequency 400Hz.

상기 표1에 나타난 바와같이, 발명재(1), (2) 및 (3)은 주석이 첨가되지 않은 비교재에 비하여, 결정립의 크기가 작고, 자속밀도가 높으며, 철손도 작아진다는 사실을 알 수 있다.As shown in Table 1, the inventive materials (1), (2) and (3) have a smaller grain size, higher magnetic flux density, and lower iron loss than the comparative material without tin. Able to know.

[실시예2]Example 2

Sn을 각각 0%, 0.048%로 함유하며, C:0.0035%, Si:3.13%, Al:0.20%, Mn:0.22%, S:0.0045%, N:0.0018%, O:0.0043%, 및 나머지 Fe로 이루어지는 규소강 슬라브의 재가열온도를 1050℃, 1150℃, 1250℃의 3종류로 하여 재가열시킨 후, 두께 2.0㎜로 열간압연하고, 980℃에서 2분간 소둔처리한 후 산세처리하며 스케일을 제거하였다. 상기 열연판을 최종두께 0.35㎜로 냉간압연하여, 950℃에서 5분간 최종 소둔처리한 후, 실시예1과 같이, 자기특성을 측정하고, 그 결과를 하기표 2에 나타내었다.Sn is contained 0% and 0.048%, respectively, C: 0.0035%, Si: 3.13%, Al: 0.20%, Mn: 0.22%, S: 0.0045%, N: 0.0018%, O: 0.0043%, and the remaining Fe. The reheating temperature of the silicon steel slab was composed of three types of 1050 ° C, 1150 ° C, and 1250 ° C, and then reheated.Then, hot-rolled to a thickness of 2.0mm, annealing at 980 ° C for 2 minutes, followed by pickling to remove scale. . The hot rolled sheet was cold rolled to a final thickness of 0.35 mm, subjected to final annealing at 950 ° C. for 5 minutes, and then magnetic properties were measured as in Example 1, and the results are shown in Table 2 below.

[표 2]TABLE 2

*B8(Tesla):자장의 세기가 800A/m 일때의 자속밀도의 값.* B 8 (Tesla): The value of magnetic flux density when the strength of the magnetic field is 800 A / m.

W10/400(w/kg):자속밀도 1.0T, 주파수 400Hz에서의 철손 값.W 10/400 (w / kg): Iron loss value at magnetic flux density 1.0T and frequency 400Hz.

상기 표 2에 나타난 바와같이, 슬라브 재가열온도가 1250℃인 경우, 주석이 0.048% 함유되어 있는 비교제(1b)는 주석이 전혀 함유되어 있지 않은 비교재(1a)에 비하여 결정립의 크기나 철손의 차이가 거의 없음을 알 수 있다. 그러나, 슬라브의 재가열온도가 1150℃, 1050℃인 경우, 주석이 0.048% 함유된 발명재(2b)와 발명재(3b)는 비교재(2a)와 비교재(3a)에 비하여 결정립의 크기가 작고, 자속밀도가 높으며, 철손도 낮음을 알 수 있다. 또한, 발명재(2b)와 발명재(3b)는 비교재(1b)에 비해서도 철손이 낮다는 사실을 알 수 있다.As shown in Table 2, when the slab reheating temperature is 1250 ℃, the comparative agent (1b) containing 0.048% of tin compared to the comparative material (1a) containing no tin at all the grain size and iron loss of It can be seen that there is little difference. However, when the reheating temperature of the slab is 1150 ° C and 1050 ° C, the size of the crystal grains of the invention material 2b and the invention material 3b containing 0.048% of tin were larger than those of the comparison material 2a and the comparison material 3a. Small, high magnetic flux density, low iron loss. Moreover, it turns out that iron loss is low also in invention material 2b and invention material 3b compared with the comparative material 1b.

[실시예3]Example 3

Sn을 각각 0%, 0.15%로 함유하며, C:0.0018%, Si:4.72%, Al:0.25%, Mn:0.23%, S:0.0025%, N:0.0019%, O:0.0035%, 및 나머지 Fe로 이루어지는 규소강 슬라브를 1100℃에서 재가열하여, 두께 2.0㎜로 열간압연하여, 950℃에서 2분간 소둔처리한 후 산세처리하여 스케일을 제거하였다. 상기 열연판을 200℃상태에서 0.20㎜의 두께까지 냉간압연하고, 980℃에서 3분간 최종소둔처리한 후, 실시예 1과 같이, 자기특성을 측정하고, 그 결과를 하기표 3에 나타내었다.Sn is contained in 0% and 0.15%, respectively, C: 0.0018%, Si: 4.72%, Al: 0.25%, Mn: 0.23%, S: 0.0025%, N: 0.0019%, O: 0.0035%, and the remaining Fe. The silicon steel slab was reheated at 1100 ° C., hot rolled to a thickness of 2.0 mm, annealed at 950 ° C. for 2 minutes, and then pickled to remove scale. The hot rolled sheet was cold rolled to a thickness of 0.20 mm at 200 ° C., and finally annealed at 980 ° C. for 3 minutes. Then, as in Example 1, magnetic properties were measured, and the results are shown in Table 3 below.

[표 3]TABLE 3

*B8(Tesla):자장의 세기가 800A/m 일때의 자속밀도의 값.* B 8 (Tesla): The value of magnetic flux density when the strength of the magnetic field is 800 A / m.

W10/400(w/kg):자속밀도 1.0T, 주파수 1000Hz에서의 철손 값.W 10/400 (w / kg): Iron loss value at magnetic flux density 1.0T and frequency 1000Hz.

상기표 3에 나타난 바와같이, 발명재는 비교재에 비하여 1000Hz의 고주파에서도 자기특성이 우수함을 알수 있다.As shown in Table 3, the inventive material can be seen that the magnetic properties are excellent even at a high frequency of 1000Hz than the comparative material.

상술한 바와 같이, 본 발명은 주석을 첨가하고 슬라브의 재가열온도를 적절히 제어하여, 고주파 자기특성이 우수한 무방향성 전기강판을 제조하는 방법을 제공함으로써, 고주파 영역에서 자기특성이 보다 우수한 철심재료를 얻게 되며, 전기기기의 효율을 높일 수 있을 뿐만 아니라, 기기의 크기도 소형화시킬 수 있는 효과가 있는 것이다.As described above, the present invention provides a method for producing non-oriented electrical steel sheet having excellent high frequency magnetic properties by adding tin and controlling the reheating temperature of the slab appropriately, thereby obtaining an iron core material having better magnetic properties in the high frequency region. In addition, it is possible to increase the efficiency of the electric device as well as to reduce the size of the device.

Claims (1)

중량 %로 C:0.040% 이하, Si:2-7%, Al:0.2-1.5%, Mn:0.1-1.5%, S:0.01% 이하, N:0.01% 이하, O : 0.01%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성된 규소강 슬라브를 재가열하여 열간압연한 후, 열연판 소둔처리하여, 최종두께까지 1회 또는 2회 냉간압연하고, 최종 소둔처리하는 무방향성 전기강판의 제조방법에 있어서, 상기 슬라브에, 0.01-0.4중량%의 Sn이 첨가되고, 상기 재가열온도가 1000-1200℃인 것을 특징으로 하는 고주파 자기특성이 우수한 무방향성 전기강판의 제조방법.% By weight C: 0.040% or less, Si: 2-7%, Al: 0.2-1.5%, Mn: 0.1-1.5%, S: 0.01% or less, N: 0.01% or less, O: 0.01% or less, remaining Fe And a method of manufacturing a non-oriented electrical steel sheet in which a silicon steel slab composed of other unavoidable impurities is reheated and hot rolled, followed by hot rolling annealing, cold rolling once or twice to a final thickness, and final annealing. 0.01-0.4 wt% Sn is added to the slab, and the reheating temperature is 1000-1200 ° C.
KR1019930023734A 1993-11-09 1993-11-09 Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic KR960005226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930023734A KR960005226B1 (en) 1993-11-09 1993-11-09 Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930023734A KR960005226B1 (en) 1993-11-09 1993-11-09 Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
KR950014328A KR950014328A (en) 1995-06-15
KR960005226B1 true KR960005226B1 (en) 1996-04-23

Family

ID=19367661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930023734A KR960005226B1 (en) 1993-11-09 1993-11-09 Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic

Country Status (1)

Country Link
KR (1) KR960005226B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100237157B1 (en) * 1995-12-14 2000-01-15 이구택 The manufacturing method for non orient electric steel sheet with excellent high frequency property
KR100544417B1 (en) * 1998-12-16 2006-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties

Also Published As

Publication number Publication date
KR950014328A (en) 1995-06-15

Similar Documents

Publication Publication Date Title
JP4804478B2 (en) Method for producing non-oriented electrical steel sheet with improved magnetic flux density
KR20150001467A (en) Oriented electrical steel sheet and method of manufacturing the same
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
KR100544417B1 (en) Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR960005226B1 (en) Making method of non-oriented electro magnetic steel plates with excellent magnetic characteristic
JP7445656B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR101059215B1 (en) Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR100237157B1 (en) The manufacturing method for non orient electric steel sheet with excellent high frequency property
KR920005619B1 (en) Making process for electrical steel sheet
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR0146796B1 (en) Method for manufacturing electric sheet
JP4281119B2 (en) Manufacturing method of electrical steel sheet
KR102515028B1 (en) Method for manufactruing non-oriented electrical steel sheet and non-oriented electrical steel sheet prepared by the same
JP4292804B2 (en) Method for producing grain-oriented electrical steel sheet
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR100276280B1 (en) The manufacturing method for non oriented electric steel sheet with excellent tensile strength
KR100890812B1 (en) A electrical steel sheet manufacturing method having low iron loss and high magnetic property
KR100276328B1 (en) The manufacturing method for non oriented electric steelsheet with low hysterisis
KR100530047B1 (en) A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20010327

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee