KR950007597B1 - Method for preparing ktp single crystal by high temperature flux method - Google Patents

Method for preparing ktp single crystal by high temperature flux method Download PDF

Info

Publication number
KR950007597B1
KR950007597B1 KR1019920006668A KR920006668A KR950007597B1 KR 950007597 B1 KR950007597 B1 KR 950007597B1 KR 1019920006668 A KR1019920006668 A KR 1019920006668A KR 920006668 A KR920006668 A KR 920006668A KR 950007597 B1 KR950007597 B1 KR 950007597B1
Authority
KR
South Korea
Prior art keywords
single crystal
seed
solution
crystal growth
temperature
Prior art date
Application number
KR1019920006668A
Other languages
Korean (ko)
Other versions
KR930021833A (en
Inventor
문상진
김희영
김형천
윤경구
감기술
Original Assignee
재단법인한국화학연구소
채영복
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인한국화학연구소, 채영복 filed Critical 재단법인한국화학연구소
Priority to KR1019920006668A priority Critical patent/KR950007597B1/en
Publication of KR930021833A publication Critical patent/KR930021833A/en
Application granted granted Critical
Publication of KR950007597B1 publication Critical patent/KR950007597B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The KPT optical single crystal is produced by (a) reacting KH2PO4 with K2HPO4 (mixt. mol. ratio = 1:1) at 400 deg.C for 10 hr. to obtain K6P4O13 as a flux, (b) reacting KH2PO4 with TiO2 (mixt. mol. ratio = 1:1) at 900 deg.C for 20 hr. to obtain a KTP powder as a solute, (c) agitating 350g flux and 210g KPT powder by the platinum agitator at 1050 deg.C for 24 hr. to obtain a crystal growth solution, and (d) sticking a seed to the tip of a seeded solution growth shaft, and locating the seed to the center of the growth solution to perform a crystal growth process.

Description

고온융제법을 이용한 KTP 광학단결정의 제조방법Manufacturing Method of KTP Optical Single Crystal Using High Temperature Melting Method

제1도는 단결정 성장로의 개략도.1 is a schematic diagram of a single crystal growth furnace.

제2도는 종자담금축의 측면도.2 is a side view of the seed pit.

제3도는 방열판의 평면도.3 is a plan view of the heat sink.

제4도는 교반편의 평면도.4 is a plan view of the stirring piece.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 전열완충관 2 : 히터1: electrothermal shock absorber 2: heater

3 : 보호관 4 : 도가니3: sheriff 4: crucible

5 : 도가니 지지대 6 : 알루미나봉5: crucible support 6: alumina rod

7 : 백금축 8 : 방열판7: platinum shaft 8: heat sink

9 : 종자 10 : 패들형태 교반편9: seed 10: paddle-shaped stirring piece

11 : 프로펠러형태 교반편11 propeller type stirring piece

본 발명은 상부 종자담금방식의 고온융제법에 의해 KTP(KTiOPO4)의 비선형 광학단결정을 제조하기 위한 방법에 관한 것이다. 더 상세히 말하면, 크고 고품질의 K TP 단결정을 보다 용이하게 성장시키기 위해 도가니내 결정성장용액의 온도분포 균일성을 증대시킨 개선된 방법에 관한 것이다.The present invention relates to a method for producing a nonlinear optical single crystal of KTP (KTiOPO 4 ) by a high temperature melting method of the upper seed immersion method. More specifically, the present invention relates to an improved method of increasing the temperature distribution uniformity of the crystal growth solution in the crucible for easier growth of large, high quality K TP single crystals.

지금까지 알려진 바에 의하면, KTP 단결정은 수열법(hydrothermal method)과 융제법(flux method)에 의해 제조되고 있다. 이중 수열법은 먼저 실용화된 방법이나, 고온고압의 성장조건때문에 장치비가 고가이고 결정성장속도가 느려, 크고 값싼 단결정을 빠른 속도로 얻기가 어려운 문제점이 있다. 반면 융제법은 대기분위기하에서 성장되므로 장치비가 상대적으로 저렴하며 성장속도 또한 빨라 경제성면에서 유리한 것으로 평가되고 있다.As is known so far, KTP single crystals have been prepared by hydrothermal and flux methods. The double hydrothermal method is a practical method, but due to the growth conditions of high temperature and high pressure, the device cost is high and the crystal growth rate is low, making it difficult to obtain large and cheap single crystals at high speed. On the other hand, since the flux is grown in the atmosphere, the equipment cost is relatively inexpensive and the growth rate is also fast.

그러나 이 방법에서는 자발적 핵생성에 의한 다결정의 생성이나 단결정내 용매혼입에 따른 결정의 품질저하가 심각한 문제점으로 지적되었다. 이같은 융제법상의 문제점은 고온에서의 여러가지 열전달 메카니즘에 의해 도가니내 용액의 온도분포가 균일하지 못함에 따른 근원적인 문제점으로, 이의 해결을 위해 상부 종자 담금법(top-seed ed solution growth method), 도가니 회전법(crucible rotation method)등과 같은 잘 알려진 세부기술이 개발되었다.In this method, however, it is pointed out that the formation of polycrystals by spontaneous nucleation or the degradation of crystals due to solvent incorporation into single crystals are serious problems. This problem of fluxing is a fundamental problem caused by the uneven temperature distribution of the solution in the crucible due to various heat transfer mechanisms at high temperatures. For this, the top-seed ed solution growth method and the crucible rotation were solved. Well-known details such as the crucible rotation method have been developed.

융제법에 있어 도가니내 용액의 위치에 따라 온도가 균일하지 못하면, 이는 위치에 따른 용액 과포화도의 불균일성을 야기시켜 불필요한 핵생성을 유발시키고 이로인해 도가니내 여러 위치에서 다발적으로 단결정이나 다결정들이 성장하게 된다. 또한 위치에 따른 균일성과 아울러 시간에 따른 용액온도의 안정성도 매우 중요한 요소인데, 이는 결정성장면의 성장속도에 직접적으로 영향을 미쳐 단결정 내부체 불순물(용매등) 혼입이나 결정결합등을 유발시키고, 따라서 결정품질의 저하를 가져온다. 시간에 따른 안정성은 결정성장의 온도조절시 전원중단과 같은 외부의 급격한 변화에 의해 야기될 수도 있으나, 그보다는 훨씬, 공급전원의 시간에 따른 미세한 불균일성, 밤과 낮의 실내온도차이, 장치상의 단열문제등 간과되기 쉬운 사항들로부터 야기되기 쉽다. 특히 본원과 같이 900℃ 이상의 고온결정성장에 있어서는 복사에 의한 열전달 효과가 매우 커서 이의 세밀한 조절이 단결정 성장의 성패를 좌우할 수도 있다.If the temperature is not uniform according to the location of the solution in the crucible in the fluxing process, it causes unevenness of the solution supersaturation according to the location, causing unnecessary nucleation, which causes multiple single crystals or polycrystals to grow in multiple locations in the crucible. do. In addition, the stability of solution temperature with time is very important as well as the uniformity according to the position, which directly affects the growth rate of the crystal growth surface, leading to the incorporation of single crystal internal impurities (solvent, etc.), crystal bonding, etc. Therefore, the crystal quality is lowered. Stability over time may be caused by external abrupt changes, such as power interruptions during temperature control of the crystal growth, but much more so than the slight unevenness of the supply power over time, differences in room temperature between day and night, and thermal insulation on the device. Problems are likely to arise from things that are easily overlooked. In particular, in the high temperature crystal growth of more than 900 ℃ as described herein, the heat transfer effect by radiation is very large, its fine control may determine the success or failure of single crystal growth.

본 발명의 KTP 광학단결정은 이같은 결정성장용액내의 위치와 시간에 따른 온도 불균일성에 아주 민감한 단결정으로서 기존의 일반적인 기술로서는 고품질의 단결정을 빠른 속도로 얻기가 용이하지 않았다.The KTP optical single crystal of the present invention is a single crystal that is very sensitive to temperature nonuniformity with time and location in such a crystal growth solution, and it is not easy to obtain a high quality single crystal at a high speed using conventional techniques.

본 발명에서는 아래와 같은 개선된 결정성장장치와 방법을 사용하므로써 상기와 같은 고온융제법상의 일반적인 문제점을 극소화시켜 고품질의 KTP의 비선형 광학단결정을 제조하는 성공하였다. 개선된 결정성장방법의 핵심은, 도가니내 결정성장용액 표면에서의 복사에 의한 열손실의 방출을 막아주는 방열판(防熱板)의 사용과, 교반편에 의한 종자의 적절한 교반효과에 있다. 이하 아래에서는 본원에서 사용한 결정성장장치를 중심으로 상기 내용을 설명하고자 한다.In the present invention, by using the improved crystal growth apparatus and method as described below, the general problems in the high temperature melting method are minimized, and thus, a high-quality nonlinear optical single crystal of KTP has been successfully manufactured. The core of the improved crystal growth method is the use of a heat sink to prevent the release of heat loss by radiation on the surface of the crystal growth solution in the crucible and the proper stirring effect of the seed by the stirring piece. Hereinafter, the above description will be described based on the crystal growth apparatus used in the present application.

결정성장장치는 크게 결정성장로(제1도)와 종자담금축(제2도)으로 구성되었다. 결정성장로내에 설치된 전열완충관(1), 즉 열관의 특징은 매우 빠른 열전달 속도와 매우 큰 열용량에 있는데, 원리상 고온에서 나트륨의 응축과 증발에 의한 잠열을 이용하여 온도조절을 행하므로 아주 넓은 범위에 걸쳐 균일한 온도유지가 용이하다.The crystal growth apparatus was largely composed of a crystal growth furnace (Figure 1) and a seed soaking shaft (Figure 2). The characteristics of the heat transfer buffer tube (1), that is, the heat tube installed in the crystal growth furnace, are characterized by very fast heat transfer rate and very large heat capacity. In principle, the temperature is controlled by using latent heat by condensation and evaporation of sodium at high temperature. It is easy to maintain a uniform temperature over the range.

이 열관은 여러가지 형태와 크기로써 여러 용도의 온도조절용으로 실용화되어 사용되고 있는데(일본 공개 특허공보 평1-119598) 본 결정성장장치의 용도조절을 하기 위해서는 긴 원통형 형태가 바람직하며, 이 열관을 쓴 경우에는 성장로 전길이에 걸쳐 하나의 단일 히터와 하나의 온도조절기로써 안정된 온도조절이 가능하였다.This heat pipe is used in various shapes and sizes for temperature control of various uses (Japanese Patent Application Laid-Open No. 1-1919598). A long cylindrical shape is preferable for controlling the use of the crystal growth apparatus. In the growth furnace, stable temperature control was possible with one single heater and one thermostat.

이 열관을 채택하지 않은 경우에 있어서는 최소 두개 혹은 세개의 분리된 영역히터를 결정성장로 축방향에 상하로 설치하고 또한 히터숫자만큼의 온도조절기로 동시에 조절하므로써 도가니 내부의 균일하고 안정된 온도조절을 성취하였다.In the case of not adopting this heat pipe, at least two or three separate zone heaters are installed up and down in the axial direction of the crystal growth furnace, and the same temperature controller as the number of heaters is used to achieve uniform and stable temperature control inside the crucible. It was.

이때 그림(제1도)에서 열관 대신에 열용량이 큰 금속이나 세라믹 재질의 완충관 (liner)이 설치되어 안정적인 온도조절역할을 수행하였다. 열관의 채택여부는 본 비선형 단결정의 생산량의 크기에 달려있는데, 열관의 가격이 매우 비싸고 수명이 1년정도로 제한되어 있어 상업적 규모의 생산에서는 세밀한 가격비교가 요구되었다.In the figure (Figure 1), instead of the heat pipe, a large-capacity metal or ceramic buffer tube (liner) was installed to perform a stable temperature control role. The adoption of the heat pipe depends on the size of the production of this nonlinear single crystal. The price of the heat pipe is very expensive and the lifetime is limited to about 1 year. Therefore, detailed price comparison is required for commercial scale production.

제1도의 보호판(3)은 증발된 융제증기에 의한 완충관의 부식을 막고 도가니 내부에 불순물이 혼입되는 것을 막기 위한 보호관으로서 석영이나 알루미나 재질을 사용하였다. 히터(2)의 열선은 부식방지를 위해 매몰식으로 설계되었으며, 성장용액과 직접 접촉되는 도가니(4)재질로는 순도 99.9%의 백금을 사용하였다.The protection plate 3 of FIG. 1 is made of quartz or alumina as a protection tube to prevent corrosion of the buffer tube by evaporated flux and to prevent impurities from being mixed into the crucible. The heating wire of the heater 2 was designed to be buried to prevent corrosion, and as the crucible 4 which is in direct contact with the growth solution, platinum having a purity of 99.9% was used.

제2도의 종자담금축은 용액내에 종자를 담궈 정역(正逆)방향의 회전을 시켜줌으로써 강제적인 교반효과에 의해 단결정 종자표면에서의 물질전달을 촉진시켜 주고 또한 용액내부의 온도분포를 균일화하고 안정되게 유지시키는 작용을 한다.Seed immersion shaft in Fig. 2 soaks the seeds in the solution and rotates them in the forward and reverse directions to promote mass transfer on the surface of the single crystal seed by the forced stirring effect and to uniformize and stabilize the temperature distribution inside the solution. It acts to maintain.

제3도는 본원 발명의 핵심인 백금재질의 방열판으로서, 용액표면의 복사에 의한 열손실을 막아줌으로써 온도균일성을 유지시켜주고 용액표면 근처에서의 자발적 핵생성에 의한 다결정 성장을 막아주는 역할을 한다. 이 방열판을 종자담금축 하부에 부착하여 사용하거나 도가니 위에 뚜껑형태로 설치하는 것도 가능하였다.3 is a heat sink made of platinum material, which is the core of the present invention, which maintains temperature uniformity by preventing heat loss due to radiation of the solution surface and prevents polycrystalline growth by spontaneous nucleation near the solution surface. . The heat sink could be attached to the lower part of the seed quench shaft or installed in the form of a lid on the crucible.

또한 결정성장 용액온도를 낮게 유지하여 용액의 점도가 낮은 상태에서 조업할때는 종자담금축 하부에 백금재질의 패들형태의 교반편(10)이나 프로펠러형태 교반편 (11)을 부착하여 용액을 교반시켜 줌으로써 한층더 온도균일성을 확보하였다.In addition, when operating in a state in which the crystal growth solution temperature is low and the viscosity of the solution is low, a platinum paddle type stirring piece 10 or a propeller type stirring piece 11 is attached to the lower part of the seed quench shaft to stir the solution. Furthermore, temperature uniformity was secured.

본원에서는 상기와 같은 방법들을 채택하여 ±2℃이내의 도가니내 온도균일성과 온도오차 ±0.1℃이내의 안정성을 확보하므로써, 결정성질이 우수하고 큰 KTP 단결정을 제조하는데 성공하였다.In the present application, by adopting the above methods to ensure the temperature uniformity within the crucible within ± 2 ℃ and stability within the temperature error ± 0.1 ℃, it was successful in producing a large KTP single crystal with excellent crystallinity.

실시예를 들어 상세히 설명하면 다음과 같다.For example, it will be described in detail as follows.

[실시예 1]Example 1

제1도에서 단일히터(2)와 전열완충관(1)으로서 열관을 사용하고 제2도의 종자담금축 하부에 제3도의 방열판(8)을 장착하여 KTP 단결정 성장실험을 수행하였다. 먼저 시료 KH2PO4와 K2HOP4를 몰비 1 : 1로 섞은 뒤 400℃에서 10시간 동안 반응시켜 융제, K6P4O13를 합성하였다. 용질인 KTP 분말은 KH2PO4와 TiO2를 몰비 1 : 1로 섞어 900℃에서 20시간 반응시켜 합성하였다.In FIG. 1, a single heater 2 and a heat transfer tube 1 were used, and a heat sink 8 of FIG. 3 was mounted below the seed immersion shaft of FIG. First, samples KH 2 PO 4 and K 2 HOP 4 were mixed at a molar ratio of 1: 1, and reacted at 400 ° C. for 10 hours to synthesize a flux and K 6 P 4 O 13 . The solute KTP powder was synthesized by mixing KH 2 PO 4 and TiO 2 in a molar ratio of 1: 1 and reacting at 900 ° C. for 20 hours.

이렇게 하여 제조된 융제 350g과 KTP 분말 210g을 백금 도가니에 함께 넣고, 1050℃까지 온도를 올려 백금 교반기로 24시간 저어주면서 완전히 균일한 농도의 결정성장용액을 제조하였다.350 g of the flux and 210 g of the KTP powder thus prepared were put together in a platinum crucible, and the temperature was raised to 1050 ° C. and stirred for 24 hours using a platinum stirrer to prepare a crystal growth solution having a completely uniform concentration.

그리고 크기 9×6×5㎣의 종자를 종자담금축 끝에 부착한 다음, 성장용액의 온도를 서서히 강하시켜 성장용액의 온도가 포화온도(약 970℃)까지 떨어지면 종자를 성장용액의 중심부에 위치시켰다. 교반모타를 작동시켜 종자담금축을 일정속도로 회전시키면서 온도 프로그램에 의해 결정성장작업을 수행하였다.A seed of size 9 × 6 × 5 mm was attached to the end of the seed quench shaft, and then the temperature of the growth solution was gradually lowered. When the temperature of the growth solution dropped to the saturation temperature (about 970 ° C.), the seed was placed in the center of the growth solution. . The crystal growth operation was performed by the temperature program while the stirring motor was operated to rotate the seed quench shaft at a constant speed.

이때 교반속도는 시간에 따라 10~100rpm 범위에 있었으며, 20초 주기로 주기적인 정역회전을 해주었다. 결정성장용액의 냉각속도는 0.1~1℃/hr 범위로 하였으며, 총 결정성장기간은 약 10일이 소요되었다.At this time, the stirring speed was in the range of 10 ~ 100rpm with time, and the periodic forward and reverse rotation was performed every 20 seconds. The cooling rate of the crystal growth solution was in the range of 0.1 ~ 1 ℃ / hr, the total crystal growth period was about 10 days.

이 방법에 의해, 결정성장기간중 성장용액 내부의 온도분포 균일성은 ±1.8 ℃로, 안정성은 ±0.1℃ 이내로 조절되었다. 최종 제조된 KTP 단결정의 크기는 45×36×17㎣이었으며, 종자와의 경계면을 제외한 타부분은 결정결함이 없는 무색투명의 완전한 단결정이었다.By this method, the temperature distribution uniformity within the growth solution during the crystal growth period was controlled to within ± 1.8 ° C and stability within ± 0.1 ° C. The final size of KTP single crystal was 45 × 36 × 17㎣, and the other part except the interface with seeds was colorless and transparent single crystal without defect.

[실시예 2]Example 2

제1도에서 3단영역 히터(2)와 전열완충관(2)으로서 두께 1㎝의 스테인레스관을 사용하고 제2도의 종자담금축 하부에 제3도의 방열판을 장착하여 KTP 단결정 성장실험을 수행하였다. 종자의 크기는 7×5×4㎣인 외에는 실시예 1과 동일하게 실시하였다.In FIG. 1, a KTP single crystal growth experiment was performed by using a stainless steel tube having a thickness of 1 cm as the three-stage region heater 2 and the heat transfer buffer tube 2, and a heat sink of FIG. 3 mounted below the seed immersion shaft of FIG. . Seed size was carried out in the same manner as in Example 1 except that the seed was 7 × 5 × 4 mm 3.

총 결정성장기간은 8일이었으며, 장치상 이 방법의 적용에 의해 결정성장기간중 성장용액 내부의 온도분포 균일성은 ±2.0 ℃로, 안정성은 ±0.1℃ 로 조절하었다. 최종 제조된 KTP 단결정의 크기는 36×26×15㎣이었으며, 종자와의 경계면을 제외한 타부분은 결정결함이 없는 무색투명의 완전한 단결정이었다.The total crystal growth period was 8 days, and by the application of this method, the temperature distribution uniformity within the growth solution was adjusted to ± 2.0 ℃ and stability to ± 0.1 ℃. The final size of KTP single crystal was 36 × 26 × 15 mm 3, and the other part except the interface with seeds was colorless and transparent single crystal without crystal defects.

Claims (3)

상부 종자담금방식의 고온융제법에 의해 KTP 광학단결정을 제조하는데 있어서, 도가니에 담겨있는 결정성장용액 액면 상부에 방열판(8)을 설치하고, 종자담금축을 일정속도로 회전하여 상기 용액내의 온도분포를 균일하게 유지하게 하여서 된 것을 특징으로 하는 고온융제법을 이용한 KTP 광학단결정의 제조방법.In manufacturing KTP optical single crystal by high temperature melting method of upper seed immersion method, a heat sink 8 is installed on the surface of the crystal growth solution contained in the crucible, and the seed immersion shaft is rotated at a constant speed to distribute the temperature distribution in the solution. A method for producing a KTP optical single crystal using a high temperature melting method, characterized in that it is kept uniform. 제1항에 있어서, 방열판(8)은 종자담금축에 붙어있거나, 도가니 뚜껑형태로 설치하는 것을 특징으로 하는 고온융제법을 이용한 KTP 광학단결정의 제조방법.The method of claim 1, wherein the heat dissipation plate (8) is attached to the seed quench shaft or installed in the form of a crucible lid. 제1항에 있어서, 방열판의 재질이 백금인 것을 특징으로 하는 고온융제법을 이용한 KTP 광학단결정의 제조방법.The method of claim 1, wherein the heat sink is made of platinum.
KR1019920006668A 1992-04-21 1992-04-21 Method for preparing ktp single crystal by high temperature flux method KR950007597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920006668A KR950007597B1 (en) 1992-04-21 1992-04-21 Method for preparing ktp single crystal by high temperature flux method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920006668A KR950007597B1 (en) 1992-04-21 1992-04-21 Method for preparing ktp single crystal by high temperature flux method

Publications (2)

Publication Number Publication Date
KR930021833A KR930021833A (en) 1993-11-23
KR950007597B1 true KR950007597B1 (en) 1995-07-12

Family

ID=19332057

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920006668A KR950007597B1 (en) 1992-04-21 1992-04-21 Method for preparing ktp single crystal by high temperature flux method

Country Status (1)

Country Link
KR (1) KR950007597B1 (en)

Also Published As

Publication number Publication date
KR930021833A (en) 1993-11-23

Similar Documents

Publication Publication Date Title
EP0252537B1 (en) Process for crystal growth of ktiopo4 from solution
Cheng et al. Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes
CN105734668A (en) Growth method of Ba3P3O10Cl monocrystal
US5343827A (en) Method for crystal growth of beta barium boratean
Gentile et al. A constant temperature method for the growth of KTN single crystals
CN106835262B (en) A method of growth aluminium tetraborate salt crystal
KR950007597B1 (en) Method for preparing ktp single crystal by high temperature flux method
Jing et al. Growth of La2CaB10O19 single crystals from CaO–Li2O–B2O3 flux
US5370076A (en) Method of producing single crystal of KTiOPO4
Tolksdorf Growth of magnetic garnet single crystals from high temperature solution
Kimura et al. Crystal growth of Ba (B1− xAlx) 2O4 using a new Fz furnace with double ring-shaped halogen lamp heater
JPH11228293A (en) Growth of single crystal and growing apparatus
Aggarwal et al. Czochralski and modified Bridgman-Stockbarger growth of pure, Cd2+ and Nd3+ doped benzil single crystals
KR100206343B1 (en) Lbo single crysral manufacturing device and method
KR100276969B1 (en) Mixing apparatus for Potassium niobate melt and method of fabricating Potassium niobate single crystal using the same
US3428438A (en) Potassium tantalate niobate crystal growth from a melt
RU2103425C1 (en) Method of growing strontium tetraborate monocrystals
KR100292087B1 (en) Rubidium titanyl acenate (RBTIOASO₄) melt mixing device and RTA single crystal manufacturing method using the same
Bordui et al. Process for crystal growth of KTiOPO 4 from solution
RU904347C (en) Method and apparatus for growing monocrystals on the base of complex oxides
CN1115428C (en) Method for growing monocrystal of yttrium boride
Hutton et al. Growth Studies and X-Ray Topographical Assessment of KTP
JPH0224799B2 (en)
JPH0948697A (en) Production of lithium triborate single crystal
Noda et al. The crystal growth of synthetic fluor-phlogopite by the moving crucible technique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990528

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee