KR950001155B1 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
KR950001155B1
KR950001155B1 KR1019910025343A KR910025343A KR950001155B1 KR 950001155 B1 KR950001155 B1 KR 950001155B1 KR 1019910025343 A KR1019910025343 A KR 1019910025343A KR 910025343 A KR910025343 A KR 910025343A KR 950001155 B1 KR950001155 B1 KR 950001155B1
Authority
KR
South Korea
Prior art keywords
temperature
manufacturing
semiconductor device
silicon oxide
oxide film
Prior art date
Application number
KR1019910025343A
Other languages
Korean (ko)
Other versions
KR930015113A (en
Inventor
이우성
정재경
Original Assignee
삼정전자 주식회사
김광호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼정전자 주식회사, 김광호 filed Critical 삼정전자 주식회사
Priority to KR1019910025343A priority Critical patent/KR950001155B1/en
Publication of KR930015113A publication Critical patent/KR930015113A/en
Application granted granted Critical
Publication of KR950001155B1 publication Critical patent/KR950001155B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The method includes the steps of forming a field region and an active region by a LOCOS process, growing a silicon oxide film thereon with maintaining an standby temperature at N2 purge, raising the temperature to 1100 deg.C by a rapid thermal process, and implanting O2 thereinto, forming an oxynitride film with maintaining the standby temp. by ramp idling, raising the temp. to 1150 deg.C, and implanting N2O, and patterning the film with maintaining the standby temp. by ramp idling at N2 purge and POCl3 doping, thereby forming the oxynitride (SiOxNy) to improve the film quality.

Description

반도체소자의 제조방법Manufacturing method of semiconductor device

제1도는 본 발명 반도체소자의 제조방법을 설명하기 위한 제조공정도.1 is a manufacturing process diagram for explaining a method for manufacturing a semiconductor device of the present invention.

제2도는 본 발명의 제조방법으로 제조된 반도체소자의 특성도로서,2 is a characteristic diagram of a semiconductor device manufactured by the manufacturing method of the present invention,

a도는 전계분포도.a is the field distribution plot.

b도는 경시절연 파괴특성도.b is the dielectric breakdown characteristic with time.

제3도는 일정두께의 실리콘산화막을 N2O가스로 산화시 온도에 따른 파괴전계분포를 도시한 그래프로서,3 is a graph showing the breakdown electric field distribution according to the temperature when the silicon oxide film having a predetermined thickness is oxidized with N 2 O gas.

a도는 1050℃의 N2O 산화공정.a is an N 2 O oxidation process at 1050 ° C.

b도는 1100℃의 N2O 산화공정.b is an N 2 O oxidation process at 1100 ° C.

c도는 1150℃의 N2O 산화공정.c is the N 2 O oxidation process at 1150 ℃.

d도는 1200℃의 N2O 산화공정.d is N 2 O oxidation step at 1200 ℃.

제4도는 일정두께의 실리콘산화막을 N2O가스로 온도에 따른 100초 미만의 경시절연파괴특성을 나타낸 그래프.4 is a graph showing the dielectric breakdown characteristics of the silicon oxide film having a predetermined thickness less than 100 seconds depending on the temperature with N 2 O gas.

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 반도체소자의 제조공정중 MOS소자의 옥시나이드라이트(Oxynitride)형성시에 듀얼폴리게이트 절연체인 실리콘산화막을 N2O가스로 산화시켜 옥시나이트드라이드(Oxynitride)를 형성시켜주는 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, during the manufacturing process of a semiconductor device, a silicon oxide film, which is a dual polygate insulator, is oxidized with N 2 O gas during oxynitride formation of an MOS device. The present invention relates to a method of manufacturing a semiconductor device for forming an oxide.

일반적으로 반도체소자의 제조 공정중 MOS소자의 듀얼폴리게이트(Dual Poly Gate)에 있어서도 P형 MOS의 게이트풀리에 이온주입으로 도핑된 붕소(B)가 후속 열처리공정을 거치면서 게이트절연체를 통과하여 (붕소의 투과)실리콘기판으로 확산되게 되므로 소자의 특성을 열화시키게 된다.In general, even in a dual poly gate of a MOS device during a manufacturing process of a semiconductor device, boron (B) doped by ion implantation into a gate pulley of a P-type MOS passes through a gate insulator through a subsequent heat treatment process ( Permeation of boron) diffuses into the silicon substrate, thereby deteriorating the characteristics of the device.

이러한 붕소(B)의 실리콘기판으로의 확산을 방지하기 위해서 종래에는 RTP (Rapid Thermal Process)장비로 게이트절연체인 실리콘산화막에 질소를 주입하여 옥시나이트라이드(Oxyniteride)를 형성시켜주고 있으므로 이에 의해 제조된 게이트절연체(SiOxNy)는 기존의 게이트절연체(SiO2)에 비해 후속열처리공정에 의한 붕소(B)의 확산을 억제할 수 있고, 옥시나이트라이드(Oxyniteride)의 제조방법에서도 실리콘산화막에 N2O가스만을 주입시키는 것보다 일정한 두께의 실리콘산화막을 RTP로 성장시킨후 N2O가스로 산화시키는 방법이 막의 신뢰성을 향상시킬 수 있으나, 온도에 따라 막의 신뢰성과 공정시간이 상이하여 최적의 공정온도와 공정시간을 설정하기가 매우 어렵다고 하는 결점이 있었다.In order to prevent the diffusion of boron (B) to the silicon substrate, conventionally, by injecting nitrogen into the silicon oxide film as a gate insulator by forming a thermal thermal process (RTP) device, oxynitride is formed. The gate insulator (SiOxNy) can suppress the diffusion of boron (B) by the subsequent heat treatment process compared to the conventional gate insulator (SiO 2 ), and the N 2 O gas in the silicon oxide film in the method of manufacturing oxynitride (Oxyniteride) The method of growing a silicon oxide film with RTP and oxidizing it with N 2 O gas can improve the reliability of the film rather than only injecting it. However, the reliability and processing time of the film are different depending on the temperature. The drawback was that it was very difficult to set the time.

본 발명은 상기한 종래 반도체소자의 제조방법이 갖는 결점을 제거하고자 발명된 것으로, 게이트절연체인 실리콘산화막을 성장시킨후 실리콘산화막을 N2O가스로 산화시켜 옥시나이드라이트를 형성함으로써 반도체제조의 공정시간이 단축되어 생산성이 향상되고 제품의 신뢰성이 향상되는 반도체소자의 제조방법을 제공함에 그 목적이 있다.The present invention has been invented to eliminate the drawbacks of the conventional method of manufacturing a semiconductor device, a semiconductor manufacturing process by growing a silicon oxide film as a gate insulator and oxidizing the silicon oxide film with N 2 O gas to form oxynitrite. It is an object of the present invention to provide a method for manufacturing a semiconductor device in which time is shortened, productivity is improved, and product reliability is improved.

이하 본 발명 반도체소자의 제조방법을 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, a method of manufacturing a semiconductor device of the present invention will be described in detail with reference to the accompanying drawings.

제1도는 본발명 반도체소자의 제조방법을 설명하기 위한 도면으로서, MOS소자의 제조방법에 있어서, 통상적인 LOCOS공정으로 필드와 액티브영역을 형성한 다음 N2퍼지(N2purge)에서 대략 300℃의 스탠드바이온도를 유지시켜 주고(S1단계), 온도를 약 50℃~150℃/sec의 온도상승비율로 1,100℃까지 상승시키면서 대략 3000 SCCM의 산소(O2)를 주입산화시켜(S2, S3단계 두께 약 35Å의 실리콘산화막을 성장시킨다.A first turn to form a method of manufacturing a, MOS device a view for explaining the manufacturing method of the present invention a semiconductor element, a typical LOCOS process, the field with the active zone, and then N 2 purged (N 2 purge) approximately 300 in ℃ stand give keep the by temperature (S step 1), the elevated while allowing a temperature rise rate of about 50 ℃ ~ 150 ℃ / sec to 1,100 ℃ about 3000 oxygen SCCM temperatures (O 2) to inject oxide (S 2 , A silicon oxide film having a thickness of about 35 mm 3 is grown.

여기서 S3단계 즉, 온도가 1,100℃인 상태는 대략 3초 정도이며, 이후 산소(O2)주입 및 산화시키는 S3단계 마지막에서 N2퍼지(N2purge)에서 램프아이들(Ramp idle)시켜 (S4단계) 상기 스탠바이온도(대략 300℃)로 떨어뜨려 유지시키고, 다시 온도를 약 50℃~150℃ C/sec의 온도상승비율로 1150℃까지 온도를 상승시키면서 3000SCCM의 N2O를 주입 더 산화시켜 옥시나이트라이드를 형성한다(S5단계 ; 이때 최종상승온도는 S6~S9단계로 다양하게 변화할 수 있다.Where S Step 3. That is, the degree of the temperature condition 1,100 ℃ is approximately 3 seconds after the oxygen (O 2) was injected, and (Ramp idle) children lamp in N 2 purged (N 2 purge) from the S 3 steps last for oxidizing (S 4 steps) the standby temperature dropped kept at (about 300 ℃) and, while the temperature was increased to 1150 ℃ back temperature at a temperature rise rate of about 50 ℃ ~ 150 ℃ C / sec injection of N 2 O of 3000SCCM Oxidation is further formed to form oxynitride (S 5 step; in this case, the final rise temperature may be variously changed to S 6 to S 9 step).

이어 상기 S6~S9단계에 따라 유지시키는 기간이 상이한데, 즉, S6단계는 1200℃로 가장 높은 온도이기 때문에 유지시간(약 15sec)이 짧고 S9단계는 가장 낮은 온도(1050℃)로 유지기간(약 95sec)은 가장 길게 된다(S7단계는 약 40sec, S8단계는 약 55sec이다.)Then, the maintenance period is different according to the steps S 6 to S 9 , that is, the S 6 step is the highest temperature of 1200 ℃, so the holding time (about 15 sec) is short and the S 9 step is the lowest temperature (1050 ℃) sustain period (about 95sec) is the longest (step S7 is about 40sec, S 8 step is about 55sec.)

상기한 유지시간이 끝나면 N2퍼지(N2purge)에서 램프아이들(Rampidle)시켜 (S10단계) 상기 스탠바이 온도를 떨어뜨려 유지시켜준다.After the above-described holding time purging N 2 (N 2 purge) lamp children (Rampidle) to (step S 10) gives in to maintain the separation between the standby temperature.

여기서 제1도에 도시한 A공정은 실리콘기판에다 산소로 일정한 두께의 산화막을 형성하는 공정으로 최고온도는 대략 1,100℃정도이며, B공정은 N2O가스로 실리콘산화막을 더 산화시켜 일정한 두께의 게이트 절연체인 옥시나이트라이드(Oxynitride)를 형성하는 공정으로 최고온도는 대략 1,200℃정도로서 이온도가 공정시간을 줄이고 두께의 균일성을 이룰 수 있는 온도이며, 그 이상의 온도에서는 RTP장비에 무리가 가기 때문에 공정진행이 어려워진다.Here, the process A shown in FIG. 1 is a process of forming an oxide film of a certain thickness with oxygen on a silicon substrate. The maximum temperature is about 1,100 ° C., and the process B further oxidizes the silicon oxide film with N 2 O gas to produce a constant thickness. Oxynitride, a gate insulator, is formed at a maximum temperature of about 1,200 ° C, the temperature of which the ionicity can shorten the process time and achieve uniformity of thickness. Process progress becomes difficult.

상기한 바와 같이 제조공정을 진행시키면, 대략 70Å정도 두께의 게이트절연체인 옥시나이트라이드(Oxynitride : SiOxNy)가 형성된다.As described above, when the manufacturing process is performed, oxynitride (SiO x N y ), which is a gate insulator having a thickness of about 70 mW, is formed.

이어 대략 900℃에서 POCL3로 도핑한후 일반적인 포토(Photo)와 식각(Etch)공정을 통해 패터닝(Patterning)한다.Subsequently, the doping with POCL 3 at approximately 900 ° C. is performed by patterning using a general photo and etching process.

다음으로 본 발명의 제조방법을 제조된 MOS캐패시터들의 특성을 분석한 결과를 설명한다.Next, the results of analyzing the characteristics of the MOS capacitors manufactured by the manufacturing method of the present invention will be described.

제2a도는 본 발명의 제조방법으로 제조된 반도체소자의 전계분포, 2b도는 경시절연파괴특성을 도시한 그래프로서, 2a그래프로부터 (1)SiO2와 (2)N2O→SiOxNy보다 (3)O2+NO2)→SiOxNy가 양호한 특성을 갖게됨을 알 수 있다. 즉, (1)은 일반적인 O2로 성장시킨 SiO2이고, (2) N2O로 성장시킨 SiOXNy이며, (3)은 O2로 성장시킨후 N2O로 성장시킨 SiOxNy로서 (3)의 경우가 가장 양호한 특성을 나타낸다. 2b도는 경사절연파괴의 특성을 보여주는 것으로 ① 일반적인 O2로 성장시킨 SiO2② N2O로 성장시킨 SiOxNy ③O2로 성장시킨후 N2O로 성장시키 SiOxNy로서 ③의 경우가 경시절연파괴의 특성이 가장 우수함을 알 수 있다.FIG. 2a is a graph showing the electric field distribution of a semiconductor device manufactured by the manufacturing method of the present invention, and FIG. 2b is a graph showing the dielectric breakdown characteristics over time, and from (a) SiO 2 and (2) N 2 O → SiO x N y from the 2a graph, FIG. It can be seen that O 2 + NO 2 ) → SiOxNy has good characteristics. That is, (1) is SiO 2 grown with general O 2 , (2) SiO X N y grown with N 2 O, (3) is SiOxNy grown with N 2 O after growing with O 2 ( Case 3) shows the best characteristics. 2b turns to show the characteristics of the gradient breakdown ① in which SiO 2 grown by common O 2 ②, after growing a SiOxNy ③O 2 was grown in N 2 O as SiOxNy to grow as N 2 O ③ the characteristics of the temporal breakdown for It can be seen that this is the best.

제3도는 일정두께의 실리콘산화막을 N2O가스로 산화시 온도에 따른 파괴전계분포를 도시한 그래프로서, 3a도는 1050℃의 N2O산화공정, 3b도는 1100℃의 N2O산화공정, 3c도는 1150℃의 N2O산화공정, 3d도는 1200℃의 N2O산화공정에서의 산화시 파괴전계분포이며, 파괴전계 6MV/cm미만의 불량율을 비교하면, 1100℃에서 진행시킨 것이나 1200℃에서 진행시키 것의 유의차가 거의 보이지 않으나, 파괴내압분포는 1200℃에서 진행시키 것이 높은 파괴전계에서 불량율이 높게 나타남을 알 수 있다.Figure 3 is a graph showing the breakdown field distribution according to the temperature when the silicon oxide film of a certain thickness is oxidized to N 2 O gas, 3a is N 2 O oxidation process of 1050 ℃, 3b is N 2 O oxidation process of 1100 ℃, 3c is turning during oxidation at 1150 ℃ of N 2 O oxidation process, 3d turn 1200 ℃ N 2 O oxidation process of the breakdown field distribution, as compared to the percent defective of the breakdown field than 6MV / cm, would that proceeds from 1100 ℃ 1200 ℃ Although the significant difference of progression is hardly seen at, the breakdown pressure distribution shows a high defect rate at the breakdown electric field which is advanced at 1200 ° C.

제4도는 일정두께의 실리콘산화막을 N2O가스로 산화시 온도에 따른 경시절연파괴특성을 나타낸 그래프로서, ①은 1050℃의 N2O산화공정, ②는 1100℃의 N2O산화공정, ③은 1150℃의 N2O산화공정, ④는 1200℃의 N2O산화공정, ⑤는 로(Furnace)에서 950℃로 성장시키는 SiO2형성공정을 각각 나타내며, 110초 미만의 경시절연파괴의 불량율은 1100℃에서 진행시킨 것이 27.27%이고, 1200℃로 진행시킨 것이 13.26%로 높은 온도로 진행시킨 경우가 대략 2배 정도 효과가 양호함을 알 수 있다.The fourth turn a silicon oxide film having a predetermined thickness a graph showing the temporal breakdown characteristics according to the temperature during the oxidation in N 2 O gas, ① is a 1050 ℃ N 2 O oxidation step ② is of 1100 ℃ N 2 O oxidation step, ③ is N 2 O oxidation of 1150 ℃, ④ are N 2 O oxidation of 1200 ℃, ⑤ is a (Furnace) in the temporal breakdown denotes a SiO 2 forming process, respectively, less than 110 seconds to grow to 950 ℃ The defect rate is 27.27% in the case of progressing at 1100 ℃, 13.26% in the case of advanced at a high temperature to proceed to 1200 ℃ it can be seen that the effect is approximately twice as good.

상기한 바와 같은 본 발명 반도체소자의 제조방법은 게이트절연체인 실리콘산화막을 성장시킨후 N2O가스로 다시 더 산화시켜 옥시나이트라이드(Oxynitride : SiOxNy)를 형성하게 됨을 제조공정시간이 단축되는 장점뿐만 아니라 막질이 향상되면서 각종 소자의 특성이 양호하여 신뢰성의 향상을 가할 수 있는 장점이 있다.The method of manufacturing a semiconductor device of the present invention as described above has the advantage of shortening the manufacturing process time by growing the silicon oxide film as the gate insulator and further oxidizing with N 2 O gas to form Oxynitride (SiOxNy). In addition, as the film quality is improved, the characteristics of various devices are good, and thus there is an advantage in that it is possible to improve reliability.

Claims (3)

옥시나이트라이드(oxynitride)형성공정을 갖는 일반적인 반도체소자의 제조방법에 있어서, MOS소자제조의 통상적인 LOCOS(local oxidation of silicon) 공정으로 필드영역과 액티브영역을 형성하고 N2퍼지(N2purge)에서 스탠바이온도를 유지시킨 후 RTP(Rapid Thermal Process)로 온도를 1,100℃까지 상승시키면서 산소를 주입 산화시켜 실리콘산화막을 성장시키고, 램프아이들(ramp idle)시켜 스탠바이온도를 유지시킨 다음 다시 온도를 1,150℃까지 상승시키면서 N2O를 주입 상기 실리콘산화막을 더 산화시켜 옥시나이트라이드를 형성하고, N2퍼지에서 램프아이들시켜 상기 스탠바이온도로 유지시키며, 이어 POCl3로 도핑한 후 포토(Photo)와 식각공정을 통해 패터링(patterning)하는 것을 특징으로 하는 반도체소자의 제조방법.In a typical method of manufacturing a semiconductor device having a oxy-nitride (oxynitride) forming step, MOS devices conventional LOCOS (local oxidation of silicon) process to form a field region and an active region, and N 2 purged (N 2 purge) of Preparation After maintaining the standby temperature in the RTP (Rapid Thermal Process) to increase the temperature to 1,100 ℃ while injecting and oxidizing oxygen to grow the silicon oxide film, ramp idle (ramp idle) to maintain the standby temperature and then the temperature again 1,150 ℃ Inject N 2 O while increasing the silicon oxide layer to form oxynitride, and lamp idle in N 2 purge to maintain the standby temperature, and then doped with POCl 3 and then photo and etching process Method of manufacturing a semiconductor device characterized in that the patterning (patterning) through. 제1항에 있어서, 스탠바이온도가 300℃이고, 실리콘산화막을 N2O가스로 산화시킬때의 온도가 300℃~1200℃인 것을 특징으로 하는 반도체소자의 제조방법.The method for manufacturing a semiconductor device according to claim 1, wherein the standby temperature is 300 deg. C and the temperature when the silicon oxide film is oxidized with N 2 O gas is 300 deg. 제2항에 있어서, N2O가스의 유량이 1000~5000SCCM인 것을 특징으로 하는 반도체소자의 제조방법.The method of manufacturing a semiconductor device according to claim 2, wherein the flow rate of the N 2 O gas is 1000 to 5000 SCCM.
KR1019910025343A 1991-12-30 1991-12-30 Manufacturing method of semiconductor device KR950001155B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910025343A KR950001155B1 (en) 1991-12-30 1991-12-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910025343A KR950001155B1 (en) 1991-12-30 1991-12-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
KR930015113A KR930015113A (en) 1993-07-23
KR950001155B1 true KR950001155B1 (en) 1995-02-11

Family

ID=19326854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910025343A KR950001155B1 (en) 1991-12-30 1991-12-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
KR (1) KR950001155B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432598B2 (en) 2005-05-11 2008-10-07 Samsung Sdi Co., Ltd. Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345662B1 (en) * 1995-12-16 2002-11-07 주식회사 하이닉스반도체 Method for forming gate insulating layer in semiconductor device
KR100361537B1 (en) * 1995-12-27 2003-02-05 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
US6040249A (en) * 1996-08-12 2000-03-21 Texas Instruments Incorporated Method of improving diffusion barrier properties of gate oxides by applying ions or free radicals of nitrogen in low energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432598B2 (en) 2005-05-11 2008-10-07 Samsung Sdi Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
KR930015113A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
US5827769A (en) Method for fabricating a transistor with increased hot carrier resistance by nitridizing and annealing the sidewall oxide of the gate electrode
US5464783A (en) Oxynitride-dioxide composite gate dielectric process for MOS manufacture
JP2008028403A (en) Method for forming first oxide layer, and second oxide layer
US6207586B1 (en) Oxide/nitride stacked gate dielectric and associated methods
US4626450A (en) Process for producing semiconductor devices
US7312139B2 (en) Method of fabricating nitrogen-containing gate dielectric layer and semiconductor device
CN103972070A (en) Method for manufacturing gate oxide layer
JP3593340B2 (en) Manufacturing method of integrated circuit device
KR950001155B1 (en) Manufacturing method of semiconductor device
US7601404B2 (en) Method for switching decoupled plasma nitridation processes of different doses
CN101252085A (en) Method for manufacturing semiconductor device
JP2002151684A (en) Semiconductor device and manufacturing method thereof
US6001694A (en) Manufacturing method for integrated circuit dielectric layer
JP3681525B2 (en) Manufacturing method of semiconductor device
US6407008B1 (en) Method of forming an oxide layer
KR100247904B1 (en) Method for manufacturing semiconductor device
JP2000091337A (en) Semiconductor device and manufacture thereof
US20020197784A1 (en) Method for forming a gate dielectric layer by a single wafer process
KR0119965B1 (en) Oxidation method of semiconductor device
KR100536627B1 (en) Method for fabricating gate oxide of semiconductor device
US20020177327A1 (en) Method for forming a gate dielectric layer by a single wafer process
US20210317559A1 (en) In-situ steam generated oxynitride
KR0118878B1 (en) Forming method for dielectric film in the capacitor
EP0844668A2 (en) MOS structure of semiconductor device and method of manufacturing the same
KR20100077756A (en) Method for fabricating semiconductor device using selective plasma nitridation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee