KR940011694B1 - Ferrite for chip inductor - Google Patents

Ferrite for chip inductor

Info

Publication number
KR940011694B1
KR940011694B1 KR1019920017341A KR920017341A KR940011694B1 KR 940011694 B1 KR940011694 B1 KR 940011694B1 KR 1019920017341 A KR1019920017341 A KR 1019920017341A KR 920017341 A KR920017341 A KR 920017341A KR 940011694 B1 KR940011694 B1 KR 940011694B1
Authority
KR
South Korea
Prior art keywords
ferrite
mol
chip inductor
cuo
sintering
Prior art date
Application number
KR1019920017341A
Other languages
Korean (ko)
Other versions
KR940007909A (en
Inventor
김경용
장광호
이종규
김왕섭
Original Assignee
한국과학기술연구원
서정욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 서정욱 filed Critical 한국과학기술연구원
Priority to KR1019920017341A priority Critical patent/KR940011694B1/en
Publication of KR940007909A publication Critical patent/KR940007909A/en
Application granted granted Critical
Publication of KR940011694B1 publication Critical patent/KR940011694B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention relates to ferrite materal for chip inductor. The material can be sintered at 900 deg.C and thus, Ag can be used for inner conductor. The ferrite includes Fe2O3 48.5-50 mole%, NiO 5-30 mole%, CuO 5-15 mole%, and ZnO 5.5-35.5 mole%. The ferrite is manufactured by mixing, calcining, shape-forming, and sintering the compound.

Description

칩 인덕터 제조용 페라이트Ferrites for Chip Inductor Manufacturing

제 1 도는 본 발명 Ni-Cu-Zn 페라이트 조성에서 Fe2O3함량변화에 따른 투자율과, Q값의 변화를 보인 그래프.1 is a graph showing the change in permeability and Q value according to the Fe 2 O 3 content change in the Ni-Cu-Zn ferrite composition of the present invention.

제 2 도는 본 발명 Ni-Cu-Zn 페라이트 조성에서 CuO 함량변화에 따른 투자율과, Q값의 변화를 보인 그래프.2 is a graph showing the change in permeability and Q value according to the CuO content change in the Ni-Cu-Zn ferrite composition of the present invention.

제 3 도는 본 발명 Ni-Cu-Zn 페라이트 조성에서 ZnO 함량변화에 따른 투자율과, Q값의 변화를 보인 그래프.3 is a graph showing the change in permeability and Q value according to the ZnO content change in the Ni-Cu-Zn ferrite composition of the present invention.

본 발명은 칩 인덕터 제조용 자성체 재료에 관한 것으로, 특히 900℃ 이하의 저온소결이 가능한 Ni-Cu-Zn계 페라이트에 관한 것이다.The present invention relates to a magnetic material for producing a chip inductor, and more particularly to a Ni-Cu-Zn-based ferrite capable of low-temperature sintering at 900 ° C or lower.

종래의 일반적인 형태의 인덕터는 페라이트 코어(core)의 주위로 도선을 권회한 구조를 취하고 있으며, 이때 코어를 구성하는 페라이트로는 Ni페라이트, Ni-Zn페라이트등의 Ni계 페라이트가 사용되고 있는 바, 이와 같은 종래의 인덕터는 그 부피가 크기 때문에 소형화가 곤란하고 다른 부품과의 회로 구성이 용이하지 않음에 따라 최근에는 인덕터를 인쇄회로기판상에 표면실장이 가능하도록 칩(chip)화한 칩 인덕터가 널리 사용되고 있다.The conventional inductor has a structure in which a conductor is wound around a ferrite core. In this case, Ni-based ferrites such as Ni ferrite and Ni-Zn ferrite are used as ferrites. As the conventional inductor has a large volume, it is difficult to miniaturize and it is not easy to configure a circuit with other components. In recent years, a chip inductor in which the inductor is chipped to be surface mounted on a printed circuit board is widely used. have.

특히, 적층 칩 인덕터는 복수매의 시트상 자성체층 사이에 내부도체를 형성하고 그 내부도체와 접속되는 외부전극 단자를 칩 본체의 외부에 형성하여서 된 구조로서, 이때 내부도체로 사용되는 재료로는 칩 인덕터의 높은 Q값을 얻기 위해 될 수 있는 한 전기저항이 낮을 것이 요구되며, 이같은 요구에 부합되는 재료로서 Pt나 Pt-Ag 합금등이 주로 사용되고 있다.In particular, the multilayer chip inductor has a structure in which an inner conductor is formed between a plurality of sheet-like magnetic layers and an outer electrode terminal connected to the inner conductor is formed outside the chip body. In order to obtain a high Q value of the chip inductor, it is required to have a low electrical resistance, and Pt or Pt-Ag alloy is mainly used as a material that meets such requirements.

이와같이 종래의 적층 칩 인덕터는 내부전극으로 고가의 Pt나 Pt-Ag 합금등을 사용함에 따라 그 제조비용이 높다는 문제점을 지니고 있다는 면을 감안하고, 전기전도도, 내산화성, 및 제조비용 등을 고려할 때 내부도체 재료도는 Ag가 가장 적합한 것으로 알려지고 있다.As such, the conventional multilayer chip inductor has a problem in that its manufacturing cost is high due to the use of expensive Pt or Pt-Ag alloy as the internal electrode, and considering electric conductivity, oxidation resistance, manufacturing cost, etc. Ag is known to be the most suitable internal conductor material.

한편, 내부도체 재료와 자성체 재료를 적층한 후 동시소성하여 적층 칩 인덕터를 제조함에 있어서 Ag를 내부도체로 사용하기 위해서는 자성체 재료로서의 페라이트의 소결온도가 Ag의 융점(961℃)보다 충분히 낮아야 하며, 이에 더하여 Ag 확산에 의한 악영향을 고려하여 페라이트의 소결온도는 900℃ 이하로 유지되어야 한다.On the other hand, in order to use Ag as an internal conductor in the manufacture of a laminated chip inductor by laminating the internal conductor material and the magnetic material simultaneously and firing, the sintering temperature of the ferrite as the magnetic material must be sufficiently lower than the melting point (961 ° C.) of Ag. In addition, the sintering temperature of ferrite should be maintained below 900 ° C in consideration of the adverse effect of Ag diffusion.

그런데, 현재 인덕터용 자성체 재료로 널리 사용되고 있는 Ni-Cu-Zn계 페라이트 재료는 대개 1100~1200℃에서 소성이 진행됨에 따라 Ag를 내부도체 재료로 사용하는 적층 칩 인덕터용 자성체 재료로는 적합하지 않다.However, Ni-Cu-Zn-based ferrite materials, which are widely used as magnetic materials for inductors, are generally not suitable as magnetic materials for multilayer chip inductors using Ag as an internal conductor material as the baking proceeds at 1100 to 1200 ° C. .

이와같이 종래의 인덕터용 재료가 높은 소결온도를 나타냄에 따른 문제점을 해결하기 위한 방편으로 용제(flux)물질인 V2O3, Bi2O3또는 PbO등을 상기 재료에 첨가하여 소결온도를 낮추려는 시도가 행해지고 있다. 그러나 이 경우에는 용제물질의 융점이 Ag전극의 융점에 비해 낮기 때문에 용제물질과 Ag전극간에 반응과 상호확산이 일어나게 되어 적층 칩 인덕터의 신뢰성과 Q값(Q-factor)에 악 영향을 미치게 되는 문제점이 있다.As a way to solve the problems caused by the conventional inductor material exhibiting a high sintering temperature, a solvent material (V 2 O 3 , Bi 2 O 3 or PbO, etc.) is added to the material to lower the sintering temperature. Attempts are being made. However, in this case, since the melting point of the solvent material is lower than that of the Ag electrode, reaction and interdiffusion occur between the solvent material and the Ag electrode, which adversely affects the reliability and Q-value of the multilayer chip inductor. There is this.

따라서, 본 발명은 칩 인덕터 제조용 페라이트 조성으로서 900℃ 이하의 온도에서 소성이 이루어져 내부도체로 Ag의 사용이 가능한 칩 인덕터 제조용 페라이트를 제공하는 데 목적이 있다.Accordingly, an object of the present invention is to provide a ferrite for chip inductor manufacturing in which firing is performed at a temperature of 900 ° C. or less as a ferrite composition for chip inductor manufacturing, and Ag can be used as an internal conductor.

본 발명의 칩 인덕터 제조용 페라이트의 조성은 아래와 같다.The composition of the ferrite for manufacturing a chip inductor of the present invention is as follows.

Fe2O3: 48.5~50.5몰%Fe 2 O 3 : 48.5-50.5 mol%

NiO : 5~30몰%NiO: 5 ~ 30 mol%

CuO : 5~15몰%CuO: 5 ~ 15 mol%

ZnO : 5.5~35.5몰%ZnO: 5.5 ~ 35.5mol%

(단, Fe2O3+NiO+CuO+ZnO=100몰%)(Fe 2 O 3 + NiO + CuO + ZnO = 100 mol%)

이때 상기 각 성분산화물은 미립의 분말상태로서 이들 원료분말을 평량하여 혼합한 후 하소→건조→성형→소성함으로써 칩 인덕터의 제조가 이루어진다.At this time, each of the component oxide is a fine powder, and the raw material powders are mixed and weighed, followed by calcination → drying → molding → firing to produce a chip inductor.

칩 인덕터의 제조시 내부도체 재료로 Ag를 사용하기 위해서는 앞서 밝힌 바와같이 900℃ 이하에서 소결시켜야 하는 바, 세라믹스 재료를 저온소결 시키기 위해서는 저융점 산화물을 첨가하여 소성과정에서 액상을 발생시킴으써 확산을 촉진하여 소결을 진행시키는 방법과, 원재료의 미분말화로 표면에너지를 증가시킴으로써 확산을 촉진시켜 소결을 행하는 방법의 두가지 형태가 알려져 있다.In order to use Ag as an internal conductor material in the manufacture of chip inductors, as described above, sintering should be performed at 900 ℃ or lower. To sinter ceramic materials at low temperature, low melting point oxide is added to generate liquid phase during firing process. Two forms are known, a method of promoting sintering to promote sintering, and a method of promoting sintering by increasing diffusion of surface energy by fine powdering of raw materials.

그런데, 전자의 저융점 산화물을 첨가시켜 소결을 촉진시키는 경우로서 Ag의 소성온도보다 낮은 소결온도를 갖는 재료를 사용할 경우 소결체는 입자가 불균일하고 투자율이 낮으며 또한 손실이 크기 때문에 인덕턴스 재료로는 부적합하다.However, when a material having a sintering temperature lower than the sintering temperature of Ag is used to promote sintering by adding an electron melting point oxide, the sintered body is unsuitable as an inductance material because the particles are nonuniform, low permeability, and high loss. Do.

따라서, 본 발명에서는 CuO를 용제물질로 사용한 Ni-Cu-Zn계 페라이트 미립의 출발물질을 사용한다는 점에 기술적 특징이 있다.Therefore, the present invention has a technical feature in that it uses a starting material of Ni—Cu—Zn-based ferrite grains using CuO as a solvent material.

본 발명의 페라이트 조성을 자성체 재료로 하고 Ag만을 내부전극으로 하여 900℃ 이하의 온도에서 소성한 칩 인덕터는 Ag의 이동(migration)과 증발(evaporation)을 비롯한 확산 등의 발생이 억제되어 신뢰성의 향상을 가져올 수 있는 효과가 있다.The chip inductor fired at a temperature of 900 ° C. or less using the ferrite composition of the present invention as a magnetic material and only Ag as an internal electrode can suppress the migration of Ag and diffusion such as evaporation, thereby improving reliability. There is an effect that can be brought.

이하, 본 발명의 페라이트 조성물을 이용하여 인덕터를 제조하는 과정과 특성을 실시예를 들어 더욱 구체적으로 사용하면 다음과 같다.Hereinafter, the process and characteristics of manufacturing the inductor using the ferrite composition of the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

먼저, 인덕터 제조용 원료로서 고순도의 Fe2O3, NiO, CuO 및 ZnO 미립자분말을 본 발명의 조성범위내인 Fe2O348.5~50.5몰%, NiO 5~35몰%, CuO 5~15몰%와 ZnO 5.5~35.5몰%를 평량하여 폴리에틸렌자(jar)에서 스틸볼(steel ball)을 사용하고 분산매로 알콜을 사용하여 24시간에 걸쳐 혼합하였다.First, high purity Fe 2 O 3 , NiO, CuO, and ZnO particulate powders are used as raw materials for inductor production. Fe 2 O 3 48.5 to 50.5 mol%, NiO 5 to 35 mol%, CuO 5 to 15 mol in the composition range of the present invention. % And ZnO 5.5-35.5 mol% were weighed and mixed over 24 hours using steel balls in a polyethylene jar and alcohol as a dispersion medium.

혼합이 완료된 분말은 건조한 후 750-800℃에서 2시간동안 하소한 다음 폴리에틸렌 자에서 48시간 재분쇄하여 미립화한 후 전기건조기를 이용하여 건조하였다.The mixed powder was dried and calcined at 750-800 ° C. for 2 hours, and then regrind in a polyethylene jar for 48 hours to atomize and dried using an electric dryer.

이와같은 과정을 통해 얻어진 분말에 PVA바인더를 첨가하여 조립으로 만든 다음 외경 30mm, 내경 20mm, 높이 10mm의 토로이드(toroid)코아로 성형하여 900℃에서 2시간 성형한 다음 0.35mm 직경의 에나멜선을 20회 감은 후 HP4194A 측정기기를 사용하여 1MHz~40MHz의 주파수 범위에서 인덕턴스(Inductance) 및 Q값을 측정하였다.PVA binder is added to the powder obtained through this process to make granules, and then molded into a toroid core having an outer diameter of 30 mm, an inner diameter of 20 mm, and a height of 10 mm, and then molded at 900 ° C. for 2 hours, and an enameled wire of 0.35 mm diameter is formed. After winding 20 times, inductance and Q values were measured in the frequency range of 1 MHz to 40 MHz using an HP4194A measuring instrument.

제 1 도는 NiO 20몰%, CuO 10몰%, ZnO 20.5몰%에서 Fe2O3양을 변화시켰을때의 인덕턴스와 Q값의 변화를 보인 것으로, 50.5몰% 이상의 Fe2O3에서는 900℃ 2시간에서 완전한 소결이 일어나지 않아 기공이 많고 밀도가 낮아 바자계 효과에 의해 투자율이 저하되고 Q값도 낮게 나타남을 알 수 있다. 한편 Fe2O3양이 48.5몰% 이하인 경우에는 소결은 잘되나 인덕턴스 값과 Q값이 다시 떨어지게 되므로 Fe2O3의 최소치는 48.5몰%로 유지되어야 한다.1 shows the change in inductance and Q value when the Fe 2 O 3 content is changed at 20 mol% of NiO, 10 mol% of CuO, and 20.5 mol% of ZnO, and 900 ° C 2 at 50.5 mol% or more of Fe 2 O 3. The complete sintering does not occur in time, so the pores are low and the density is low, so the permeability is lowered and the Q value is lowered by the bazaar effect. On the other hand, when the amount of Fe 2 O 3 is 48.5 mol% or less, the sintering is good, but the inductance value and Q value fall again, so the minimum value of Fe 2 O 3 should be maintained at 48.5 mol%.

제 2 도는 Ni-Cu-Zn 페라이트 조성에서 Fe2O349.5몰%, ZnO 20.5몰%에서 CuO를 변화시켰을때의 인덕턴스와 Q값의 변화를 나타낸 것으로, CuO를 5몰% 이하 첨가하였을 경우에는 소결이 되지 않았기 때문에 잔류기공이 많이 존재하여 투자율이 낮고, 손실값도 크게 나타난다. 따라서 900℃에서 소결시키기 위해서는 CuO 함량이 5몰% 이상 되어야 하며, 반대로 CuO를 15몰% 이상 첨가했을 경우에는 CuO의 과량으로 포화자화가 감소하여 인덕턴스와 Q값이 저하된다.2 shows the change in inductance and Q value when CuO is changed at 49.5 mol% of Fe 2 O 3 and 20.5 mol% of ZnO in the Ni—Cu—Zn ferrite composition. Since sintering was not carried out, many residual pores exist, resulting in low permeability and large loss values. Therefore, in order to sinter at 900 ° C, the CuO content should be 5 mol% or more. On the contrary, when 15 mol% or more of CuO is added, the saturation magnetization decreases due to the excessive amount of CuO, thereby decreasing the inductance and the Q value.

제 3 도는 Ni-Cu-Zn계 페라이트 조성에서 Fe2O349.5몰%, CuO 10몰%에서 ZnO함량을 변화시켰을때의 인덕턴스와 Q값의 변화를 나타낸 것으로 ZnO함량이 증가함에 따라 투자율이 증가한다. 30몰% 이상 첨가시에는 투자율은 크지만 Q값이 낮아져 사용에 문제가 있으며 10몰% 이하에서는 인덕턴스 값이 낮게 나타난다.3 shows the change in inductance and Q value when the ZnO content is changed at 49.5 mol% of Fe 2 O 3 and 10 mol% of CuO in Ni-Cu-Zn based ferrite composition, and the permeability increases with increasing ZnO content. do. If more than 30 mol%, the permeability is large, but the Q value is low, so there is a problem in use, and below 10 mol%, the inductance value is low.

Claims (1)

Fe2O348.5~50.5몰%, NiO 5~35몰%, CuO 5~15몰% 및 ZnO 5.5~35.5몰%로 이루어진 칩 인덕터 제조용 페라이트Ferrite for chip inductor with Fe 2 O 3 48.5 ~ 50.5mol%, NiO 5 ~ 35mol%, CuO 5-15mol% and ZnO 5.5 ~ 35.5mol%
KR1019920017341A 1992-09-23 1992-09-23 Ferrite for chip inductor KR940011694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920017341A KR940011694B1 (en) 1992-09-23 1992-09-23 Ferrite for chip inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920017341A KR940011694B1 (en) 1992-09-23 1992-09-23 Ferrite for chip inductor

Publications (2)

Publication Number Publication Date
KR940007909A KR940007909A (en) 1994-04-28
KR940011694B1 true KR940011694B1 (en) 1994-12-23

Family

ID=19339991

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920017341A KR940011694B1 (en) 1992-09-23 1992-09-23 Ferrite for chip inductor

Country Status (1)

Country Link
KR (1) KR940011694B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907669B1 (en) * 2007-06-26 2009-07-14 에스씨씨(주) Composition for Electromagnetic Shielding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907669B1 (en) * 2007-06-26 2009-07-14 에스씨씨(주) Composition for Electromagnetic Shielding

Also Published As

Publication number Publication date
KR940007909A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US9984799B2 (en) Ferrite composition and electronic component
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
JP2010018482A (en) Ferrite, and manufacturing method thereof
KR102232105B1 (en) Ferrite composition and multilayer electronic component
US6669861B2 (en) Y-type hexagonal oxide magnetic material and inductor element
KR102362501B1 (en) Ferrite composition and multilayer electronic component
US5304318A (en) Sintered ferrite materials and chip parts
US5817250A (en) Magnetodielectric ceramic composite material, method of manufacturing same
KR940011694B1 (en) Ferrite for chip inductor
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
US6558566B2 (en) Oxide magnetic materials, chip components using the same, and method for producing oxide magnetic materials and chip components
JP2004153197A (en) Magnetic material and its producing process
JP3389937B2 (en) Manufacturing method of soft ferrite particles for low temperature sintering
US20220306541A1 (en) Ferrite composition and electronic component
JP4074437B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP2542776B2 (en) Low temperature magnetic material
JP3550258B2 (en) Ferrite material
JP2002179460A (en) Ferrite material and ferrite core by using the same
JPH10111184A (en) Magnetic oxide material for temperature-sensing element and temperature-sensing element using it
JPH0897025A (en) Chip transformer magnetic material and chip transformer
JPH1072252A (en) Ferrite material for plating
JP3300838B2 (en) Oxide magnetic material for inductor and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20000630

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee