KR940001255B1 - Method of making capacitor of semiconductor memory device - Google Patents

Method of making capacitor of semiconductor memory device Download PDF

Info

Publication number
KR940001255B1
KR940001255B1 KR1019910016078A KR910016078A KR940001255B1 KR 940001255 B1 KR940001255 B1 KR 940001255B1 KR 1019910016078 A KR1019910016078 A KR 1019910016078A KR 910016078 A KR910016078 A KR 910016078A KR 940001255 B1 KR940001255 B1 KR 940001255B1
Authority
KR
South Korea
Prior art keywords
oxide film
film
photoresist
etching
gate
Prior art date
Application number
KR1019910016078A
Other languages
Korean (ko)
Other versions
KR930006915A (en
Inventor
서현환
Original Assignee
금성일렉트론 주식회사
문정환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성일렉트론 주식회사, 문정환 filed Critical 금성일렉트론 주식회사
Priority to KR1019910016078A priority Critical patent/KR940001255B1/en
Publication of KR930006915A publication Critical patent/KR930006915A/en
Application granted granted Critical
Publication of KR940001255B1 publication Critical patent/KR940001255B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

The method is for increasing the condenser capacity by forming a part of the capacitor electrode in advance while forming the gate. A first polycrystal silicon which is a part of the storage node is formed on a gate protection layer in advance while forming the transistor gate. The gate is connected to a second polycrystal silicon deposited on the buried contact so that the length of the storage node is prolonged as much as the gate line. The prolonged length causes the increase of the capacity of the capacitor.

Description

반도체 메모리 소자의 캐패시터 제조방법Capacitor Manufacturing Method of Semiconductor Memory Device

제1도는 종래 반도체 메모리 소자의 캐패시터 제조공정도.1 is a manufacturing process diagram of a capacitor of a conventional semiconductor memory device.

제2도는 본 발명에 따른 반도체 메모리 소자의 캐패시터 제조공정도.2 is a capacitor manufacturing process diagram of a semiconductor memory device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 반도체기판 2 : 필드산화막1: semiconductor substrate 2: field oxide film

3 : 게이트산화막 4 : 게이트전극용 다결정실리콘3: gate oxide film 4: polycrystalline silicon for gate electrode

5 : 게이트 보호산화막 6 : 제1다결정실리콘5: gate protective oxide film 6: first polycrystalline silicon

7 : 제1산화막 8,13,15,16 : 감광막7: first oxide film 8,13,15,16 photosensitive film

9,9' : 제1 및 제2불순물영역 10 : 질화막9,9 ': first and second impurity regions 10: nitride film

10' : 질화막측벽 11 : 제2산화막10 ': nitride film side wall 11: second oxide film

11' : 제2산화막측벽 12 : 제3산화막11 ': second oxide film side wall 12: third oxide film

14 : 제2다결정실리콘 17 : 유전막14 second polycrystalline silicon 17 dielectric film

18 : 제3다결정실리콘18: third polycrystalline silicon

본 발명은 반도체 메모리 소자의 캐패시터 제조방법에 관한 것으로, 특히 게이트 형성시 캐패시터 전극의 일부를 미리 형성시켜 캐패시터 용량을 증대시켜 제한된 면적 내에서 고집적화를 이룰 수 있도록 하는 반도체 메모리 소자의 캐패시터 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a capacitor of a semiconductor memory device, and more particularly, to a method of manufacturing a capacitor of a semiconductor memory device, in which a part of the capacitor electrode is formed in advance in forming a gate to increase the capacity of the capacitor to achieve high integration within a limited area. will be.

일반적으로 사용되는 종래 반도체 메모리 소자의 캐패시터 제조방법은 제1도에 도시된 바와 같이 반도체 기판(21)상에 필드 산화막(22)을 형성한 다음 전면에 게이트 산화막(23), 게이트 전극용 다결정실리콘(24) 및 게이트 보호산화막(25)을 소정 두께를 갖도록 차례로 증착한 후 감광막을 사용한 에치 공정을 통해 게이트를 형성한다.In a conventional method of manufacturing a capacitor of a semiconductor memory device, a field oxide film 22 is formed on a semiconductor substrate 21, as shown in FIG. 1, and then a gate oxide film 23 and a polysilicon for a gate electrode are formed on the front surface. (24) and the gate protective oxide film 25 are sequentially deposited to have a predetermined thickness, and then a gate is formed through an etch process using a photosensitive film.

그 다음 LDD 이온 주입 후 전면에 산화막을 증착 및 에치백하여 게이트의 측벽에 사이드월(26)을 형성하고, 전면에 이온을 주입하여 소스(27)/드레인(27')을 형성한 다음 전면에 산화막(26)을 증착시킨 후 감광막의 도포 및 사진식각 공정을 실시하여 베리드 콘택 영역을 정의한 후 상기 감광막을 마스크로서 에치를 실시하여 베리드 콘택 영역에 있는 절연막(28)을 제거한 다음 전면에 캐패시터의 스토리지 노드로 사용될 폴리실리콘(29)을 증착시킨 후 감광막(30)을 도포 및 사진식각 공정으로 스토리지 영역을 정의한다(제1도의 (a)도).After the LDD ion implantation, an oxide film is deposited and etched back on the front surface to form sidewalls 26 on the sidewalls of the gate, and ions are implanted on the front surface to form a source 27 / drain 27 'and then on the front surface. After depositing the oxide layer 26, a photoresist coating and photolithography process is performed to define a buried contact region, and then the photoresist is etched using a mask to remove the insulating layer 28 in the buried contact region, and then a capacitor on the front surface. After the deposition of the polysilicon 29 to be used as a storage node of the photosensitive film 30 is applied to the photolithography process to define the storage region (Fig. 1 (a)).

상기 공정 후 (b)도와 같이 상기 감광막(30)을 마스크로서 에시를 실시하여 감광막(30)이 도포된 이외의 부분에 있는 폴리실리콘(29)을 제거하고, 이어 감광막(30)을 제거한 다음 전면에 유전체(31), 및 플레이트전극(32)을 차례로 증착 및 에치함으로서 반도체 메모리 소자의 캐패시터 제조를 완성하게 된다.After the step (b), the photosensitive film 30 is subjected to ashing as a mask to remove polysilicon 29 in a portion other than the photosensitive film 30 is applied, and then the photosensitive film 30 is removed, and then the entire surface of the photosensitive film 30 is removed. The capacitor 31 and the plate electrode 32 are sequentially deposited and etched on the substrate, thereby completing the fabrication of the capacitor of the semiconductor memory device.

이와 같은 종래 반도체 메모리 소자의 캐패시터 제조방법은 게이트 폴리실리콘 위에 존재하는 게이트 보호산화막의 높이를 증가시켜 단차를 크게함으로서 캐패시터 용량을 증가시키게 되는데, 이 경우 캐패시터 용량을 증가하기에는 한계가 있고, 이 후의 공정에서 평탄화가 어렵게되는 문제점이 야기되는 것이다.Such a capacitor manufacturing method of a conventional semiconductor memory device increases the capacitor capacity by increasing the height of the gate protective oxide film present on the gate polysilicon, thereby increasing the capacitor capacity. In this case, there is a limit to increasing the capacitor capacity. The problem is that the flattening becomes difficult.

본 발명은 상기와 같은 문제점을 해결하기 위해 트랜지스터 게이트 형성시 스토리지 노드의 일부인 제1다결정실리콘을 게이트 보호산화막 위에 미리형성하고, 매몰 콘택에 증착된 제2다결정실리콘과 서로 연결시킴에 따라 게이트 라인 크기만큼 스토리지 노드의 길이를 증가시켜 캐패시터의 용량을 증대할 수 있도록 하는 반도체 메모리 소자의 캐패시터 제조방법을 제공하는데 본 발명의 목적이 있는 것이다.The present invention solves the above problems by forming a first polysilicon, which is a part of the storage node, on the gate protection oxide and forming a gate line size by interconnecting the second polysilicon deposited in the buried contact. It is an object of the present invention to provide a method for manufacturing a capacitor of a semiconductor memory device that can increase the capacity of the capacitor by increasing the length of the storage node by as much as possible.

본 발명은 반도체 메모리 소자의 캐패시터 제조 방법에 있어서, 반도체 기판 위에 필드산화막을 형성하고, 전면에 게이트 산화막, 게이트 전극용 다결정실리콘, 게이트 보호산화막, 제1다결정실리콘, 제1산화막을 순차적으로 형성하고, 감광막의 도포 및 사진식각 공정으로 게이트 전극영역을 정의하는 단계와, 상기 감광막을 마스크로서 에치하여 게이트 전극을 형성하고, 이온주입으로 제1, 제2불순물영역을 형성한 후 질화막을 소정 두께로 형성하는 단계와, 상기 질화막을 이방성 식각하여 질화막측벽을 형성하고, 제1산화막을 식각하여 제거하는 단계와, 전면에 제2산화막을 증착 및 이방성식각하여 질화막측벽의 측면에 제2산화막측벽을 형성 및 제3산화막을 전면에 형성하고, 감광막의 도포 및 사진식각 공정으로 매몰 콘택영역을 정의하는 단계와, 상기 감광막을 마스크로서 식각하여 매몰콘택을 형성 및 전면에 제2다결정실리콘을 증착하고, 감광막의 도포 및 사진식각 공정으로 스토리지 노드전극 영역을 정의하는 단계와 , 상기 감광막을 마스크로서 제2다결정실리콘을 선택식각하여 스토리지 노드전극 영역에 제2다결정 실리콘을 잔류시키고, 감광막을 도포시키는 단계와, 상기 감광막을 제1다결정실리콘이 위치한 높이까지 식각하고, 상기 감광막을 마스크로서 에치하여 상기 감광막위에 노출된 제2산화막측벽과 제3산화막을 제거하는 단계와, 상기 제1 및 제2다결정실리콘의 노출된 표면에 유전체막을 형성하고, 상기 유전체막 위에 제3다결정실리콘을 증착하여 플레이트 전극을 형성하는 단계로 이루어진 것이다.In the method of manufacturing a capacitor of a semiconductor memory device, a field oxide film is formed on a semiconductor substrate, and a gate oxide film, a polycrystalline silicon for a gate electrode, a gate protective oxide film, a first polycrystalline silicon, and a first oxide film are sequentially formed on a front surface thereof. Defining a gate electrode region by applying a photoresist film and etching the photoresist; etching the photoresist film as a mask to form a gate electrode; forming first and second impurity regions by ion implantation; Forming the nitride film sidewall by anisotropically etching the nitride film, and removing the first oxide film by etching, and depositing and anisotropically etching the second oxide film on the entire surface to form a second oxide film sidewall on the side of the nitride film sidewall. And forming a third oxide film on the entire surface and defining a buried contact region by applying and photolithography a photoresist film; Etching the photoresist as a mask to form a buried contact and depositing a second polysilicon on the entire surface, and defining a storage node electrode region by applying and photolithography the photoresist; and using the photoresist as a mask, the second polysilicon Selectively etching to leave the second polycrystalline silicon in the storage node electrode region, applying a photoresist, etching the photoresist to a height where the first polysilicon is located, and etching the photoresist as a mask to expose the photoresist. Removing the second oxide side wall and the third oxide film, and forming a dielectric film on exposed surfaces of the first and second polycrystalline silicon, and depositing a third polycrystalline silicon on the dielectric film to form a plate electrode. will be.

이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings as follows.

제2도는 본 발명에 따른 반도체 메모리 소자의 캐패시터 제조공정도로서, 먼저 (a)도에서와 같이 반도체 기판(1)위에 필드산화막(2)을 형성하고, 전면에 게이트 산화막(3)과 게이트 전극용 다결정실리콘(4), 게이트 보호산화막(5), 제1다결정실리콘(6 ), 제1산화막(7)을 각각 소정두께를 갖도록 순차적으로 형성하고, 전면에 감광막(8)을 도포한 후 상기 감광막(8)을 사진식각하여 게이트 전극영역을 정의한다.2 is a manufacturing process diagram of a capacitor of a semiconductor memory device according to the present invention. First, as shown in (a), a field oxide film 2 is formed on a semiconductor substrate 1, and a gate oxide film 3 and a polycrystal for a gate electrode are formed on the entire surface thereof. The silicon 4, the gate protective oxide film 5, the first polycrystalline silicon 6, and the first oxide film 7 are sequentially formed to have a predetermined thickness, and the photoresist film 8 is coated on the entire surface, and then the photoresist film ( 8) is used to define the gate electrode region.

상기 공정 후 (b)도에서와 같이 상기 감광막(8)을 마스크로서 에치하여 게이트 전극을 제외한 영역의 제1산화막(7), 제1다결정실리콘(6), 게이트 보호산화막(5), 게이트 전극용 다결정실리콘(4), 게이트 산화막(3)을 순차적으로 식각하여 제거하고, 반도체기판(1)과 역도전형의 불순물을 주입하여 제1,제2불순물영역(9)(9')을 형성한 다음 반도체기판(1) 전면에 질화막(10)을 약 200~300Å 정도의 두께로 형성한다.After the process, as shown in (b), the first photoresist 7, the first polysilicon 6, the gate protective oxide 5, and the gate electrode of the region except the gate electrode are etched by etching the photoresist 8 as a mask. The polysilicon 4 and the gate oxide film 3 are sequentially etched and removed, and the first and second impurity regions 9 and 9 'are formed by implanting impurities of the semiconductor substrate 1 and the reverse conductivity type. Next, the nitride film 10 is formed on the entire surface of the semiconductor substrate 1 to a thickness of about 200 to 300 Å.

상기 공정이 완료되면 (c)도와 같이 상기 질화막(10)을 이방성 식각하여 게이트 산화막(3), 게이트 전극용 다결정실리콘(4), 게이트 보호산화막(5), 제1다결정실리콘(6), 제1산화막(7)의 측면에 질화막 측벽(10')을 형성한 후 제1산화막(7)을 식각하여 제거한다.When the process is completed, as shown in (c), the nitride film 10 is anisotropically etched to form a gate oxide film 3, a polycrystalline silicon 4 for a gate electrode, a gate protective oxide film 5, a first polysilicon 6, and After forming the nitride film sidewall 10 ′ on the side of the first oxide film 7, the first oxide film 7 is etched and removed.

그 다음 (d)도와 같이 전면에 제2산화막(11)을 소정 두께로 증착하고, (e)도와 같이 상기 제2산화막(11)을 이방성식각하여 질화막측벽(10')의 측면에 제2산화막측벽(11')을 형성한 후 다시 제3산화막(12)을 전면에 형성하고, 감광막(13)의 도포 및 사진식각 공정으로 게이트전극 상측과 게이트전극 하측사이에 매몰콘택(buried conta ct) 영역을 정의한다.Then, as shown in (d), the second oxide film 11 is deposited to a predetermined thickness on the entire surface, and as shown in (e), the second oxide film 11 is anisotropically etched to form a second oxide film on the side surface of the nitride film side wall 10 '. After the sidewalls 11 'are formed, a third oxide film 12 is formed on the entire surface, and a buried contact region is formed between the upper side of the gate electrode and the lower side of the gate electrode through the application and photolithography process of the photosensitive layer 13. Define.

이 후 (f)도와 같이 상기 감광막(13)을 마스크로서 제3산화막(12)을 선택식각하여 매몰 콘택을 형성한다음 전면에 스토리지 노드로 사용될 제2다결정실리콘(14)을 증착한 후 감광막(15)의 도포 및 사진식각 공정으로 매몰 콘택위에 스토리지 노드전극 영역을 정의한다.Thereafter, as shown in (f), the third oxide film 12 is selectively etched using the photoresist film 13 as a mask to form a buried contact, and then the second polysilicon 14 to be used as a storage node is deposited on the front surface, and then the photoresist film ( The storage node electrode region is defined on the buried contact in the application and photolithography process of 15).

상기 공정이 완료되면 (g)도와 같이 상기 감광막(13)을 마스크로서 제2다결정실리콘(14)을 선택식각하여 스토리지 노드전극 영역에 제2다결정실리콘을 잔류시키고, 다시 전면에 감광막(12)을 도포시킨다.When the process is completed, as shown in (g), the second polysilicon 14 is selectively etched using the photosensitive film 13 as a mask to leave the second polycrystalline silicon in the storage node electrode region, and then the photosensitive film 12 is placed on the entire surface. Apply.

그 다음 (h)도와 같이 감광막(15)을 제1다결정실리콘(5)이 위치한 높이까지 식각한 후 (i)도와 같이 상기 감광막(16)을 마스크로서 에치하여 감광막(16)위에 노출된 제2산화막측벽(11')과 제3산화막(12)을 제거한다.Next, as shown in (h), the photoresist film 15 is etched to the height at which the first polycrystalline silicon 5 is located, and then, as shown in (i), the photoresist film 16 is etched as a mask to expose the second photoresist on the photoresist film 16. The oxide film side wall 11 'and the third oxide film 12 are removed.

이 후 (j)도와 같이 제1 및 제2다결정실리콘(6)(14)의 노출된 표면에 유전막(17)을 형성하고, 상기 유전막(17)위에 제3다결정실리콘(18)을 증착하여 플레이트 전극을 형성함으로서 반도체 메모리 소자의 캐패서터 제조를 완료하게 된다.Thereafter, as shown in (j), a dielectric film 17 is formed on the exposed surfaces of the first and second polysilicon silicon 6 and 14, and a third polysilicon 18 is deposited on the dielectric film 17 to form a plate. By forming the electrode, the capacitor manufacturing of the semiconductor memory device is completed.

이상에서 상술한 바와 같이 본 발명은 트랜지스터 게이트 형성시 스토리지 노드의 일부인 제1다결정실리콘을 게이트 보호산화막 위에 미리 형성하고, 매몰 콘택에 증착된 제2다결정실리콘과 서로 연결시킴에 따라 게이트 라인 크기 만큼 스토리지 노드의 길이가 증가하게 되어 캐패시터의 용량을 증대함으로서 제한된 면적내에서 반도체 메모리 소자의 고집적화를 이룰 수 있는 것이다.As described above, according to the present invention, when the transistor gate is formed, the first polysilicon, which is a part of the storage node, is previously formed on the gate protection oxide layer, and is connected to the second polysilicon deposited on the buried contact, thereby storing as much as the gate line size. By increasing the length of the node to increase the capacity of the capacitor, it is possible to achieve high integration of the semiconductor memory device within a limited area.

Claims (1)

반도체 메모리 소자의 캐패시터 제조 방법에 있어서, 반도체기판 위에 필드산화막을 형성하고, 전면에 게이트 산화막, 게이트 전극용 다결정실리콘, 게이트 보호산화막, 제1다결정실리콘, 제1산화막을 순차적으로 형성하고, 감광막의 도포 및 사진식각 공정으로 게이트 전극영역을 정의하는 단계와, 상기 감광막을 마스크로서 에치하여 게이트 전극을 형성하고, 이온주입으로 제1, 제2불순물영역을 형성한 후 질화막을 소정 두께로 형성하는 단계와, 상기 질화막을 이방성 식각하여 질화막측벽을 형성하고, 제1산화막을 식각하여 제거하는 단계와, 전면에 제2산화막을 증착 및 이방성식각하여 질화막측벽의 측면에 제2산화막측벽을 형성 및 제3산화막을 전면에 형성하고, 감광막의 도포 및 사진식각 공정으로 매몰 콘택영역을 정의하는 단계와, 상기 감광막을 마스크로서 식각하여 매몰 콘택을 형성 및 전면에 제2다결정실리콘을 증착하고, 감광막의 도포 및 사진식각 공정으로 스토리지 노드전극 영역을 정의하는 단계와, 상기 감광막을 마스크로서 제2다결정실리콘을 선택식각하여 스토리지 노드전극 영역에 제2다결정실리콘을 잔류시키고, 감광막을 도포시키는 단계와, 상기 감광막을 제1다결정실리콘이 위치한 높이까지 식각하고, 상기 감광막을 마스크로서 에치하여 상기 감광막위에 노출된 제2산화막측벽과 제3산화막을 제거하는 단계와, 상기 제1 및 제2다결정실리콘의 노출된 표면에 유전체막을 형성하고, 상기 유전체막 위에 제3다결정실리콘을 증착하여 플레이트 전극을 형성하는 단계로 이루어진 것을 특징으로 하는 반도체 메모리 소자의 캐패시터 제조방법.In the method of manufacturing a capacitor of a semiconductor memory device, a field oxide film is formed on a semiconductor substrate, and a gate oxide film, a polycrystalline silicon for a gate electrode, a gate protective oxide film, a first polycrystalline silicon, and a first oxide film are sequentially formed on the entire surface of the photoresist film. Defining a gate electrode region by coating and photolithography, forming a gate electrode by etching the photoresist as a mask, forming first and second impurity regions by ion implantation, and then forming a nitride layer to a predetermined thickness And anisotropically etching the nitride film to form a nitride film sidewall, and etching and removing the first oxide film; depositing and anisotropically etching a second oxide film on the entire surface to form a second oxide film sidewall on a side surface of the nitride film sidewall. Forming an oxide film on the entire surface and defining a buried contact region by applying and photo-etching the photosensitive film; Using a mask as a mask to form a buried contact and depositing a second polysilicon on the entire surface, and defining a storage node electrode region by a photoresist coating and photolithography process, and selectively etching the second polycrystalline silicon using the photoresist as a mask Leaving second polysilicon in the storage node electrode region, applying a photoresist film, etching the photoresist to a height at which the first polysilicon is located, and etching the photoresist as a mask to expose the second oxide film on the photoresist. Removing sidewalls and a third oxide film, and forming a dielectric film on exposed surfaces of the first and second polycrystalline silicon, and depositing a third polycrystalline silicon on the dielectric film to form a plate electrode. A method for manufacturing a capacitor of a semiconductor memory device.
KR1019910016078A 1991-09-16 1991-09-16 Method of making capacitor of semiconductor memory device KR940001255B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910016078A KR940001255B1 (en) 1991-09-16 1991-09-16 Method of making capacitor of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910016078A KR940001255B1 (en) 1991-09-16 1991-09-16 Method of making capacitor of semiconductor memory device

Publications (2)

Publication Number Publication Date
KR930006915A KR930006915A (en) 1993-04-22
KR940001255B1 true KR940001255B1 (en) 1994-02-18

Family

ID=19319965

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910016078A KR940001255B1 (en) 1991-09-16 1991-09-16 Method of making capacitor of semiconductor memory device

Country Status (1)

Country Link
KR (1) KR940001255B1 (en)

Also Published As

Publication number Publication date
KR930006915A (en) 1993-04-22

Similar Documents

Publication Publication Date Title
US5525552A (en) Method for fabricating a MOSFET device with a buried contact
US5670401A (en) Method for fabricating a deep submicron mosfet device using an in-situ polymer spacer to decrease device channel length
KR940001255B1 (en) Method of making capacitor of semiconductor memory device
KR940010346A (en) DRAM manufacturing method of semiconductor integrated device
KR100209280B1 (en) Method for forming a contact of semiconductor device
KR930005234B1 (en) Cell manufacture method of fin-stack cell
JP2742432B2 (en) Method for manufacturing semiconductor device
KR0122752B1 (en) Contact hole formation method of semiconductor element
KR100321758B1 (en) Method for fabricating semiconductor device
KR100280539B1 (en) Semiconductor device manufacturing method
KR100192365B1 (en) Method for manufacturing capacitor of semiconductor device
US5691221A (en) Method for manufacturing semiconductor memory device having a stacked capacitor
KR930000883B1 (en) Method of fabricating dram cell
KR100215871B1 (en) Method for fabricating semiconductor device
KR100280537B1 (en) Semiconductor device manufacturing method
JP2777494B2 (en) Method of forming storage electrode in capacitor
KR100192398B1 (en) Capacitor fabrication method of semiconductor device
KR0136920B1 (en) Manufacturing method of semiconductor device
KR0178996B1 (en) Method for manufacturing the capacitor of semiconductor memory device
KR0156170B1 (en) Capacitor manufacturing method of semiconductor device
KR920007791B1 (en) Manufacturing method of dram cell stack capacitor
KR0151376B1 (en) Manufacture of semiconductor memory device
KR930012118B1 (en) Method of fabricating a semicondcutor device
KR0122845B1 (en) Manufacture of stacked capacitor for semiconductor device
KR0135174B1 (en) Manufacture of dram cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030120

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee