KR940000205B1 - Process for the preparation of polyester engineering plastic - Google Patents

Process for the preparation of polyester engineering plastic Download PDF

Info

Publication number
KR940000205B1
KR940000205B1 KR1019900022342A KR900022342A KR940000205B1 KR 940000205 B1 KR940000205 B1 KR 940000205B1 KR 1019900022342 A KR1019900022342 A KR 1019900022342A KR 900022342 A KR900022342 A KR 900022342A KR 940000205 B1 KR940000205 B1 KR 940000205B1
Authority
KR
South Korea
Prior art keywords
filler
inlet
polymer
pellets
compounding
Prior art date
Application number
KR1019900022342A
Other languages
Korean (ko)
Other versions
KR920012157A (en
Inventor
송임복
Original Assignee
주식회사 코오롱
하기주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코오롱, 하기주 filed Critical 주식회사 코오롱
Priority to KR1019900022342A priority Critical patent/KR940000205B1/en
Publication of KR920012157A publication Critical patent/KR920012157A/en
Application granted granted Critical
Publication of KR940000205B1 publication Critical patent/KR940000205B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The method for preparing polyester pellets from base polymer, which is produced from polymerization of dimethyl terephthalate, terephthalic acid, butanediol and ethyleneglycol, comprises (1) mixing molten polymer in a static mixer and feeding it directly into a twin extruder, and (2) making pellets by compounding with filler and reinforcing agent, which are separately fed according to required properties of pellets. In the process silica and carbon fiber as hard fillter and glass fiber are fed into the inlet (a), and calcium carbonate as extender, soft filler and plastics are fed into the inlet (b). The method can improve the productivity by reducing facilities and energy costs and process steps.

Description

폴리에스테르 엔지니어링 플라스틱의 제조방법Manufacturing Method of Polyester Engineering Plastic

제1도는 종래기술의 제조공정 개략도.1 is a schematic of a manufacturing process of the prior art.

제2도는 본 발명 제조공정 개략도.2 is a schematic view of the manufacturing process of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 중합라인의 최종반응기(중합관) 2 : 플리머펌프1: final reactor of the polymerization line (polymerization tube) 2: polymer pump

3 : 스트랜드다이(Strand Die) 4 : 워터퀀취조3: strand die 4: water quenching tank

5 : 스트랜드컷트 6 : 웨트칩 블로어5: strand cut 6: wet chip blower

7 : 사이크론 8 : 버퍼탱크7: Cyclone 8: Buffer Tank

9 : 웨트칩 사이로 10 : 웨잉호퍼(Weighing Hopper)9: Between wet chips 10: Weighing hopper

11 : 바큠드라이어 12 : 건조칩 블로어11: bar change dryer 12: dry chip blower

13 : 건조칩 사이로 14 : 트윈익스트루더13: dry chip 14: twin extruder

15 : 스테틱믹서(Static Mixer)15: Static Mixer

본 발명은 폴리에스테르 엔지니어링 플라스틱의 제조방법에 관한 것으로서, 보다 구체적으로는 엔지니어링 플라스틱의 베이스폴리머 중합라인의 최종반응기로부터 폴리머펌프를 통하여 용융폴리머를 바로 트윈익스트루더로 피딩하여 트윈익스트루더에서 필러 및 강화제를 엔지니어링 플라스틱의 요구물성에 따라 첨가하여 엔지니어링 플라스틱을 연속적으로 생산함으로써 설비비 및 원가절감 효과와 생산성이 향상되는 엔지니어링 플라스틱의 제조방법에 관한 것이다.The present invention relates to a method for producing a polyester engineering plastic, and more particularly, a filler in a twin extruder by feeding a molten polymer directly to a twin extruder through a polymer pump from the final reactor of the base polymer polymerization line of the engineering plastic And a reinforcing agent is added according to the properties of the engineering plastics to continuously produce the engineering plastics.

종래 엔지니어링 제조방법으로는 제1도와 같이 엔지니어링 플라스틱의 베이스폴리머 중합라인의 최종반응기(1)로부터 용융폴리머를 폴리머펌프(2)로 압출하여 다이(3)을 통해 워터퀀취조(4)에서 냉각시켜 스트랜드컷트(5)에서 펠렛상으로 제조하고 이 펠렛트화시킨 웨트칩을 웨트칩 불로어(6)로 건조공정에서 불로잉시켜 사이클론(7)과 버퍼탱크(8)를 거쳐 웨트칩 사이로(9)에 저장후 호퍼(10)를 거쳐 진공건조기(11)에서 11~13시간 건조, 냉각시킨뒤 포장백에 포장시키거나 건조칩 블로어(12)로 건조칩 사이로(13)에 저장되며 사용시는 트윈익스트루터 컴파운딩기쪽으로 질소기류중 이송한후 투입구(a,b)가 부착된 트윈익스트루더(14)에서 재용융시키면서 필러 및 강화제를 엔지니어링 플라스틱의 특성에 맞게 첨가하여 엔지니어링 플라스틱을 제조한다.In the conventional engineering manufacturing method, as shown in FIG. 1, the molten polymer is extruded from the final reactor 1 of the base polymer polymerization line of the engineering plastic into the polymer pump 2 and cooled in the water quantification tank 4 through the die 3. Pellet-formed wet chips from the strand cut (5) are blown in a drying process with a wet chip blower (6), through a cyclone (7) and a buffer tank (8), and between the wet chips (9). After being stored in the vacuum dryer 11 through a hopper (10) for 11 to 13 hours, and then cooled and packaged in a packaging bag or stored in a dry chip between the drying chips (13) with a dry chip blower (12), Engineering plastics are prepared by transferring fillers and reinforcing agents in accordance with the characteristics of the engineering plastics while transferring them in the nitrogen stream toward the truth compounder and remelting them in the twin extruders 14 having the inlets (a, b) attached thereto.

따라서 상기한 종래기술의 공정에서는 최종반응기에서 280~300℃인 용융폴리머를 바로 컴파운딩시키지 않고 폴리머 스트랜드로 만들어 40~50℃로 냉각시키므로서 에너지가 낭비되고 펠렛화시킨 베이스폴리머를 건조공정으로 불로잉하여 저장, 건조시키고 다시 질소기류중 불로잉하여 이송하는데 따르는 진공건조기시스텝, 미건조칩, 건조칩불로잉시스템의 설비비, 동력비, 노동력이 소모되고 또한 건조시킨 베이스폴리머펠렛을 트윈익스트루더에서 재용융시켜 컴파운딩하여야 하므로 용융에너지 투입이 필요하고 재용융에 따른 엔지니어링 플라스틱의 베이스폴리머의 물성저하가 일어난다.Therefore, in the process of the prior art described above, the melted polymer having a temperature of 280-300 ° C. in the final reactor is not directly compounded, but is made of polymer strands and cooled to 40-50 ° C., thus wasting energy and pelletizing the base polymer into a drying process. The twin extruder uses the base polymer pellets, which are consumed in equipment costs, energy costs, and labor, and are dried by vacuum dryer systems, undried chips, and dry chip blowing systems, which are stored, dried, and transported in a nitrogen stream. Since it needs to be remelted and compounded at, melt energy input is required, and the physical properties of the base polymer of engineering plastic decrease due to remelting.

따라서 본 발명에서는 폴리에스테르 엔지니어링 플라스틱을 제조함에 있어서 베이스폴리머 최종반응기로 부터 베이스폴리머를 폴리머펌프로 폴리머라인에 따라 트윈익스트루더로 이송시켜 필러 및 강화제를 엔지니어링 플라스틱의 요구물성에 따라 첨가하므로서 종래기술의 제조방법에서 엔지니어링 플라스틱의 융점저하, 열적안정성 및 강도저하가 발생되며 생산성이 저하되고 에너지가 낭비되는 종래기술의 문제점을 해결하는데 그 목적이 있다.Therefore, in the present invention, in the production of polyester engineering plastics, the base polymer is transferred from a final polymer reactor to a twin extruder along a polymer line by a polymer pump, and thus fillers and reinforcing agents are added according to the properties of the engineering plastics. In the manufacturing method of the purpose of solving the problems of the prior art that lowering the melting point, thermal stability and strength of the engineering plastic, the productivity is reduced and energy is wasted.

본 발명을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 제2도와 같이 디메틸테레프탈레이트 및 테레프탈산과 부탄디올 및 에틸렌글리콜을 원료로 하여 폴리에스테르 엔지니어링 플라스틱을 제조하는데 있어서 중합라인의 최종반응기(1)로부터 베이스폴리머를 펠렛화시키지 않고 폴리머펌프(2)로 스테틱믹서(15)에서 혼합한후 그대로 트윈익스트루더(14)로 보내 투입구(a,b)로 연질필러와 경질필러 및 유리섬유 등 강화제를 요구물성에 따라 구분투입하여 컴파운딩시킨 후 스트랜드다이(3)를 통해 압출시켜 워터퀀취조(4)에서 냉각고화시킨후 스트랜드컷트(5)에서 펄렛트상으로 엔지니어링 플라스틱을 생산함으로써 펠렛트화시키기 위한 워터퀀칭시스템(280~300℃의 용융폴리머를 40~50℃의 스트랜드로 냉각), 웨트칩저장설비 및 공간과 진공도 1~3mmHg에서 100~140℃로 11~13시간 히팅하는 건조공정이 생략되어 이에 따라 설비비 및 에너지절감, 생산성이 향상되며 또한 종래의 제조방법과 같이 건조펠렛트를 트윈익스트루더에서 재용융하지 않으므로서 공정이 생략되며, 재용융으로 인한 베이스폴리머의 열이력변화가 적어 물성이 향상된다.The present invention is a polymer pump (2) without pelletizing the base polymer from the final reactor (1) of the polymerization line in the production of polyester engineering plastics using dimethyl terephthalate, terephthalic acid, butanediol and ethylene glycol as raw materials as shown in FIG. After mixing in the low static mixer (15) and sent to the twin extruder 14 as it is compounded by injecting the reinforcing agent, such as soft filler, hard filler and glass fiber according to the required physical properties through the inlet (a, b) The water quenching system (280-300 ° C. melted polymer) for extruding through the strand die (3) to be cooled and solidified in the water quenching tank (4) and then pelletized by producing engineering plastics in the form of pellets in the strand cut (5). Cooling with strand of 40 ~ 50 ℃), wet chip storage facility and drying process for heating 11 ~ 13 hours at space and vacuum degree of 1 ~ 3mmHg to 100 ~ 140 ℃ As a result, equipment cost, energy saving, and productivity are improved, and the process is omitted because the dry pellet is not remelted in the twin extruder as in the conventional manufacturing method, and the change in the thermal history of the base polymer due to remelting is small. This is improved.

이하 본 발명을 실시예와 비교예에 따라 상세히 설명하면 다음과 같으며 그 결과를 표 1에 나타낸다.Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The results are shown in Table 1 below.

[실시예 1]Example 1

중합관(1)에서 중합된 폴리부티렌테레프탈레이트 100중량부에 내충격용 MBS 고무를 15중량부와 탄소섬유 3중량부, 내열경화제로 IRGANOX(시바가이기사제) 0.25중량부를 투입하고 스테틱믹서(15)로 혼합한 후 용융온도 250~290℃의 트윈익스트루더(14)의 다이(3)을 통하여 워터퀀취조(4)로 토출하고 스트랜드컷트(5)에서 펠렛트상으로 제조하였다.15 parts by weight of MBS rubber for impact resistance, 3 parts by weight of carbon fiber, 0.25 parts by weight of IRGANOX (manufactured by Ciba-Geigy Co., Ltd.) as a heat-resistant curing agent were added to 100 parts by weight of polybutyrene terephthalate polymerized in the polymerization tube (1). After mixing with (15), it was discharged into the water quenching tank 4 through the die 3 of the twin extruder 14 having a melting temperature of 250 to 290 ° C, and prepared in the form of pellets in the strand cut 5.

[실시예 2]Example 2

중합관(1)에서 중합된 폴리부티렌테레프탈레이트 100중량부, 인산연제 20중량부, 내열강화제로 IR-GANOX 0.3중량부, 이비엑스계 이형제 0.3중량부, 강화제로 유리섬유 10중량부를 투입한 것을 재외하고는 실시예 1과 같다.100 parts by weight of polybutyrene terephthalate polymerized in the polymerization tube (1), 20 parts by weight of phosphate softener, 0.3 parts by weight of IR-GANOX as a heat-resistant reinforcing agent, 0.3 parts by weight of IBEX-based release agent, and 10 parts by weight of glass fiber as a reinforcing agent. Except that, it is the same as Example 1.

[실시예 3]Example 3

중합관(1)에서 중합된 폴리에티렌테레프탈레이트 100중량부에 이산화티탄 0.1중량부, 내열강화제로 IRGANOX 0.15중량부, 형광증백제 0.02중량부, 인산연제 10중량부를 투입하는 것을 제외하고는 실시예 1과 같다.Except for adding 0.1 parts by weight of titanium dioxide, 0.15 parts by weight of IRGANOX, 0.02 parts by weight of optical brightener, and 10 parts by weight of phosphate softener to 100 parts by weight of polystyrene terephthalate polymerized in the polymerization tube (1). Same as Example 1.

[비교예 1]Comparative Example 1

실시예 1과 동일한 조성을 사용하였으며 종래기술의 제조공정인 중합관(1)로부터 용융폴리머를 폴리머펌프(2)로 압출하여 다이(3)을 통해 워터퀀취조(4)에서 냉각시켜 스트랜드컷트(5)에서 펄렛트상으로 제조하고 진공건조기에서 건조하고 냉각시킨 후 트윈익스트루더(14)에서 재용융시켜 다이(3)을 통해 워터퀀취조(4)로 토출하고 스트랜드컷트(5)에서 펠렛트상으로 제조하였다.The same composition as in Example 1 was used, and the molten polymer was extruded from the polymerization tube (1), which is a manufacturing process of the prior art, to the polymer pump (2) and cooled in the water quenching tank (4) through the die (3). ) Into a pellet form, dried in a vacuum dryer, cooled, remelted in a twin extruder (14), discharged through a die (3) to a water quench tank (4), and from a strand cut (5) to pellets Prepared.

[비교예 2]Comparative Example 2

실시예 2와 동일한 조성을 사용하였으며 제조공정은 비교예 1과 같다.The same composition as in Example 2 was used, and the manufacturing process was the same as in Comparative Example 1.

[비교예 3]Comparative Example 3

실시예 3과 동일한 조성을 사용하였으며 제조공정은 비교예 1과 같다.The same composition as in Example 3 was used and the manufacturing process is the same as in Comparative Example 1.

[표 1]TABLE 1

※ 각 비교물성값은 시험횟수 n=5회 측정값의 평균임.※ Each comparative property value is an average of n = 5 test times.

※ 에너지소모량은 종전방법을 기준(100)으로하여 중합라인의 최종반응기로부터 엔지니어링 플라스틱의 제품까지의 에너지 소모량※ Energy consumption is based on previous method (100). Energy consumption from final reactor of polymerization line to product of engineering plastic

※ 인장강도시험 : ASTM D 638에 의거 시험, 덤벨형시료※ Tensile strength test: Test according to ASTM D 638, dumbbell type sample

※ 충격강도시험 : ASTM D 256에 의거 시험, 0.635×1.27×1270m/m 시험편.※ Impact strength test: Test according to ASTM D 256, test piece of 0.635 × 1.27 × 1270m / m.

※ 수분 : Karl-Fisher 측정법※ Moisture: Karl-Fisher Measurement

표 1의 실시예 및 비교예의 결과로부터 본 발명의 폴리에스테르 엔지니어링 플라스틱의 제조방법은 베이스폴리머를 웨트칩공정을 거치지 않고 용융폴리머를 바로 트윈익스트루더로 보내 요구되는 물성에 따라 첨가제를 투입하여, 엔지니어링 플라스틱을 생산함으로서 종래기술의 워터퀀칭시스템, 웨트침 저장설비 및 공간, 진공건조공정이 생략되어 이에 따른 설비비 및 에너지 절감, 공정생략으로 인한 생산성이 향상된다.According to the results of the examples and comparative examples of Table 1, the method of manufacturing the polyester engineering plastics of the present invention sends the molten polymer directly to the twin extruder without passing the base polymer through the wet chip process, thereby adding an additive according to the required physical properties. By producing engineering plastics, water quenching systems, wet needle storage facilities and spaces of the prior art, and vacuum drying processes are omitted, thereby improving equipment costs, energy savings, and productivity due to process omission.

Claims (2)

디메틸테레프탈레이트 및 테레프탈산과 부탄디올 및 에틸렌글리콜을 중합시키는 중합라인의 최종반응기로부터 생산되는 베이스폴리머로 펄렛트상을 제조하는데 있어서, 용융폴리머를 스테틱믹서에서 혼합한후 바로 트윈익스트루더 피딩하여 트윈익스트루더에서 요구물성에 따라 필러와 강화를 구분투입하고 콤파운딩하여 펠렛트상으로 제조하는 것을 특징으로 하는 폴리에스테르 엔지니어링 플라스틱의 제조방법.In the preparation of the pellet phase from the base polymer produced from the final reactor of the polymerization line polymerizing dimethyl terephthalate and terephthalic acid, butanediol and ethylene glycol, the molten polymer is mixed in a static mixer and then immediately fed with twin extruder and twine Method for producing a polyester engineering plastic, characterized in that the filler and reinforcing according to the required physical properties in the Trudder, compounding and compounding to produce a pellet. 제1항에 있어서, 구분투입되는 필러와 강화제로는 투입구(a)에 실리카, 탄소섬유같은 경질필러와 유리섬유이고, 투입구(b)로는 칼슘카보네이트와 같은 익스텐드와 연질필러 및 플라스틱류인 것을 특징으로 하는 폴리에스테르 엔지니어링 플라스틱의 제조방법.According to claim 1, the filler and reinforcing agent to be separately input is a hard filler such as silica, carbon fiber and glass fiber in the inlet (a), the inlet (b) is an extender, such as calcium carbonate, soft filler and plastics The manufacturing method of polyester engineering plastics made into.
KR1019900022342A 1990-12-29 1990-12-29 Process for the preparation of polyester engineering plastic KR940000205B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900022342A KR940000205B1 (en) 1990-12-29 1990-12-29 Process for the preparation of polyester engineering plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900022342A KR940000205B1 (en) 1990-12-29 1990-12-29 Process for the preparation of polyester engineering plastic

Publications (2)

Publication Number Publication Date
KR920012157A KR920012157A (en) 1992-07-25
KR940000205B1 true KR940000205B1 (en) 1994-01-12

Family

ID=19308862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900022342A KR940000205B1 (en) 1990-12-29 1990-12-29 Process for the preparation of polyester engineering plastic

Country Status (1)

Country Link
KR (1) KR940000205B1 (en)

Also Published As

Publication number Publication date
KR920012157A (en) 1992-07-25

Similar Documents

Publication Publication Date Title
US3553157A (en) Polyester compositions and shaping process
US20040192857A1 (en) Modified post-condensed polyesters
US8771583B2 (en) Polyester composition and method for preparing articles by extrusion blow molding
CA1056985A (en) Polyesters for extrusion applications
US3560605A (en) Polyethylene terephthalate injection molding compositions containing a polyepoxide
US8080191B2 (en) Extrudable polyethylene terephthalate blend
CN113265098A (en) High-transparency super-tough ETFE film and preparation method thereof
ZA200507348B (en) Process for controlling molecular weight of polymer
CN115011081A (en) Glass fiber reinforced PET composition with rapid crystallization and preparation method thereof
CN115433441A (en) Full-biodegradable material and preparation method thereof
EP0475142A2 (en) Moulding composition of polyethylene terephthalate reacted with a copolymer of maleic anhydride
KR940000205B1 (en) Process for the preparation of polyester engineering plastic
KR20050021509A (en) Glass-Fibre Reinforced Thermoplastic Plastics
CA2607216C (en) Extrudable polyethylene terephthalate blend
US3578730A (en) Thermoplastic polyester-poly-3-methyl butene-1 moulding compositions
CN114456474B (en) Thin-wall multilayer hollow blow molding material and preparation method thereof
US5659009A (en) Production of filler-containing thermoplastic molding compositions and molding compositions obtainable in this way
US6403728B1 (en) Formed articles from polyester resins
CN112111805B (en) Preparation method of enhanced PET flat filament
US3564075A (en) Polyamides with improved transparency containing polyvinyl pyrrolidone
US3728312A (en) Molten production of polyamides from terephthalic acid dialkyl ester and trimethyl hexamethylene diamine under reduced pressure
US3825516A (en) Glass fiber-reinforced,terephthalic acid-containing polyamide molding compounds
CN100465216C (en) Nucleating agent of polytrimethylene terephthalate and injection moulding method
KR101912917B1 (en) Poly(1,4-cyclohexylenedimethylene terephthalate) having enhanced crystallization rate
KR100601757B1 (en) Process for manufacturing Polytrimethyleneterephthalate films

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19981229

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee