KR920002587B1 - Inverter control system - Google Patents

Inverter control system Download PDF

Info

Publication number
KR920002587B1
KR920002587B1 KR1019890006758A KR890006758A KR920002587B1 KR 920002587 B1 KR920002587 B1 KR 920002587B1 KR 1019890006758 A KR1019890006758 A KR 1019890006758A KR 890006758 A KR890006758 A KR 890006758A KR 920002587 B1 KR920002587 B1 KR 920002587B1
Authority
KR
South Korea
Prior art keywords
output
current
vector
voltage
phase
Prior art date
Application number
KR1019890006758A
Other languages
Korean (ko)
Other versions
KR900019332A (en
Inventor
강준구
설승기
권봉현
Original Assignee
금성계전 주식회사
백중영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성계전 주식회사, 백중영 filed Critical 금성계전 주식회사
Priority to KR1019890006758A priority Critical patent/KR920002587B1/en
Publication of KR900019332A publication Critical patent/KR900019332A/en
Application granted granted Critical
Publication of KR920002587B1 publication Critical patent/KR920002587B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The controller controls the output current of the resonant inverter to follow reference current without errors. The 3 phase output current of the inverter is converted by 2 phase current (iq(t),id(t)) by a 3 to 2 phase converter (25). Reference currents for the 2 phase currents (iq(t+T),id(t+T)) are converted to corresponding voltage levels (Vq(t),Vd(T)) by a reference voltage generator (13), and then output voltage vectors (V0-V6) are discriminated by a voltage vector selector (14).

Description

공진형 인버터의 최적출력전류제어시스템Optimal Output Current Control System of Resonant Inverter

제1도는 일반적 공진형 인버터를 이용한 전동기제어시스템의 개략도.1 is a schematic diagram of a motor control system using a general resonant inverter.

제2도는 종래 델타모듈레이션 방식 출력전류제어기의 구성도.2 is a block diagram of a conventional delta modulation type output current controller.

제3도는 종래 최적화방식 출력전류제어기의 구성도.3 is a block diagram of a conventional optimization type output current controller.

제4도는 일반적 인버터 전동기의 등가회로도.4 is an equivalent circuit diagram of a general inverter motor.

제5도는 본 발명 출력전류제어시스템의 구성도.5 is a configuration diagram of the output current control system of the present invention.

제6도는 본 발명 전압벡터선정기의 출력전압벡터 선정에 대한 신호흐름도.6 is a signal flow diagram for selecting an output voltage vector of the voltage vector selector of the present invention.

제7도는 본 발명 전압벡터선정기의 출력전압벡터 설정에 대한 원리도.7 is a principle diagram for setting an output voltage vector of the voltage vector selector of the present invention.

제8도는 본 발명 전압벡터선정기의 출력전압벡터에 대한 게이팅신호의 표.8 is a table of gating signals for output voltage vectors of the voltage vector selector of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 시스템제어기 2 : 출력전류제어기1: System Controller 2: Output Current Controller

3 : 디코더 4-6 : 감산기3: decoder 4-6: subtractor

7-9 : 비교기 10 : 출력전류계산기7-9: Comparator 10: Output Current Calculator

11 : 오차전류계산기 12 : 최소오차선택기11: error current calculator 12: minimum error selector

13 : 지령전압계산기 14 : 전압벡터선정기13: Command voltage calculator 14: Voltage vector selector

15 : 게이팅신호기15: gating signal

본 발명은 3상유도전동기의 제어시스템에 관한 것으로, 특히 공진형 인버터의 출력전류를 제어하여 오차없이 목표로 하는 지령전류로 제어하기에 적당하도록 한 공진형 인버터의 최적출력 전류제어시스템에 관한 것이다.The present invention relates to a control system of a three-phase induction motor, and more particularly, to an optimum output current control system of a resonant inverter that is suitable for controlling the output current of the resonant inverter to control the target command current without error. .

일반적으로 공진형 인버터는 전동기제어나 교류부하의 제어에 광범위하게 이용되는 산업전자기기인 것으로, 제1도에 도시한 바와같이, 공진된 높은 주파수의 교류전압이 인버터(21)의 파워스위치(SW1-SW6)를 통해 유도전동기(22)를 제어하여 시스템제어기(1)를 구동하며, 이의 출력이 출력전류제어기(2)를 통해 상기 인버터(21)의 파워스위치(SW1-SW6)를 제어하여 정현파출력으로 전동기의 속도 및 토오크를 제어하는 것이다.In general, a resonant inverter is an industrial electronic device widely used for controlling a motor or controlling an AC load. As shown in FIG. 1, an AC voltage of a resonant high frequency is applied to a power switch SW1 of the inverter 21. -Controlling the induction motor 22 through SW6 to drive the system controller 1, the output of which is controlled by the output current controller 2, the power switch (SW1-SW6) of the inverter 21 by a sine wave The output is to control the speed and torque of the motor.

제2도는 종래 델타모듈레이션방식 출력전류제어기의 구성도로서 이에 도시한 바와같이, 출력지령전류(ia *,ib *,ic *)와 실제출력전류(ia,ib,ic)가 감산기(4,5,6)를 통해 감산연산되어 오차전류(ea,eb,ec)를 발생한 후 비교기(7-9)를 통해 부호를 판단하며, 이의 값이 디코더(3)를 통해 게이팅신호(g1-g6)를 출력하여 인버터(21)의 파워스위치(SW1-SW6)를 온, 오프시킴에 따라 출력전류가 원하는 지령치에 도달하게 된다. 즉 일예로 A상의 오차전류(ea)가 양(+)의 값을 갖게 되면 실제전류(ia)가 지령전류(ia *)보다 작은 경우이므로 파워스위치(SW1)(SW4)를 온, 오프하여 실제전류(ia)를 감소시키며, 반대로 오차전류(ea)가 음(-)의 값을 갖게 되면 스위치(SW1)(SW4)를 오프, 온하여 실제전류(ia)를 증가시킨다.A second turn and also a structure of a conventional delta-modulation scheme output current controller as illustrated to this, the output instruction current (i a *, i b * , i c *) and the actual output current (i a, i b, i c) Is subtracted through the subtractor (4, 5, 6) to generate error currents (e a , e b , e c ), and then the sign is determined by the comparator (7-9). By outputting the gating signals g1-g6 through the power switches SW1-SW6 of the inverter 21, the output current reaches a desired command value. That is, for example, when the error current e a of phase A has a positive value, since the actual current i a is smaller than the command current i a * , the power switch SW1 (SW4) is turned on. Off to decrease the actual current (i a ), on the contrary, when the error current (e a ) has a negative value (-), the switch (SW1) (SW4) is turned off, on to increase the real current (i a ) .

여기서 실제전류(ic)의 발생은 가산기(23)를 통해 실제전류(ia,ib)를 ic=-(ia+ib)로 연산하여 출력하는 옵티멀(optimal)전류이다.Optimal the (optimal) for calculating and outputting a current to the (i + a i b), - wherein the generation of the actual current (i c) is the actual current (i a, i b) = a i c through the adder 23.

제3도는 종래 최적화방식 출력전류제어기의 구성도로서 이에 도시한 바와같이, 실제전류 ia(t), ib(t), ic(t)와 역기전력 Ea(t), Eb(t), Ec(t)를 이용하여 전압벡터 Vk(t+T)를 통해 다음시간(t+T)에 출력가능한 전류 iak(t+T), ibk(t+T), ick(t+T), (단 K=0, 1…7)를 계산하는 출력전류계산기(10)와, 상기 출력전류계산기(10)의 출력과 지령전류발생부(24)의 지령전류 ia *(t+T), ib *(t+T), ic *(t+T)사이의 오차전류를 계산하여 전압벡터(J0-J7)를 출력하는 오차전류계산기(11)와, 상기 전압벡터(J0-J7)를 판단하여 게이팅신호(g1-g6)를 출력하는 최소오차선택기(12)로 구성된다.3 is a block diagram of a conventional optimized output current controller. As shown in FIG. 3, the actual currents i a (t), i b (t), i c (t) and counter electromotive force E a (t), E b (t ), The current i ak (t + T), i bk (t + T), i ck that can be output at the next time (t + T) through the voltage vector V k (t + T) using E c (t) output current calculator 10 for calculating (t + T), (where K = 0, 1 ... 7), the output of said output current calculator 10, and the command current i a * of the command current generator 24; an error current calculator 11 for calculating an error current between (t + T), i b * (t + T), and i c * (t + T) and outputting a voltage vector (J0-J7); It consists of a minimum error selector 12 that determines the vectors J0-J7 and outputs the gating signals g1-g6.

이와같이 구성된 출력전류제어기의 기술을 설명하면 파워스위치의 온, 오프하여 조합하는 전압벡터는 V0(0,0,0)…V7(1,1,1)의 8가지이며, 이중 한전압벡터 Vk(t+T), (K=0, …7)가 출력전압으로 선택되는 것으로, 전압벡터 Vk(t+T)가 출력될 때 전압, 전류관계는 제4도에 도시한 바와같은 등가회로로 표현된다.When describing the technology of the output current controller configured as described above, the voltage vector to combine the power switch on and off is V 0 (0,0,0). Eight kinds of V 7 (1,1,1), of which one voltage vector V k (t + T), (K = 0,… 7) is selected as an output voltage, and the voltage vector V k (t + T Is outputted, the voltage and current relationship is represented by an equivalent circuit as shown in FIG.

이때 전압벡터 Vk(t+T)는The voltage vector V k (t + T) is

Figure kpo00001
Figure kpo00001

단, Rs : 전동기의 저항, L : 인덕턴스, Ek(t+T) : 역기전력로 되는 식(1)에 의해 출력되는 ik(t+T)가 출력전류계산기(10)를 통해 계산되고, 오차전류계산기(11)에서는However, Rs: resistance of the motor, L: inductance, E k (t + T): i k (t + T) output by Eq. (1), which becomes a counter electromotive force, is calculated by the output current calculator 10. In the error current calculator 11

Figure kpo00002
Figure kpo00002

로 되는 식(2)에 의해 전압벡터 Jk(t+T)를 산출한다.The voltage vector J k (t + T) is calculated by the following equation (2).

이와같이 하여 상기 식(2)에 K=0…7를 대입한 후 J(t+T)가 가장작게 되는 K값을 선택하여 해당하는 전압벡터 Vk(t+T)를 선정함에 따라 가장작은 출력전류오차를 갖는 전압벡터 Vk(t+T)가 선택되며, 이의 벡터에 해당하는 게이팅신호(g1-g6)를 출력하여 최적화전류제어를 한다.In this manner, K = 0. After substituting the 7 J (t + T) has the smallest select the K value by having the smallest output current error as the selection of the voltage vector V k (t + T) in which the voltage vector V k (t + T ) Is selected, and outputs the gating signals g1-g6 corresponding to the vector to perform optimization current control.

그런데 상기와 같은 종래 델타모듈레이션방식 전류제어기에 있어서는 구성이 매우 단순하여 설계가 용이하게 되지만 오차의 크기를 고려하지 못한 상태에서 부호만을 판단하므로 출력전류제어에 정밀도가 떨어지게 되는 문제점이 있었다.By the way, in the conventional delta modulation current controller as described above, the design is very simple and easy to design, but there is a problem in that the accuracy of output current control is lowered because only the sign is judged in the state of not considering the magnitude of the error.

또한 종래 최적화방식 출력전류제어기에 있어서는 정밀한 출력전류제어를 수행할 수는 있으나, 마이크로프로세서를 이용하여 설계할 경우 계산량이 방대하고, 복잡하게 되므로 실제로 출력전류제어기로 사용되지 못하게 되는 문제점이 있었다.In addition, in the conventional optimized output current controller, precise output current control can be performed. However, when designing using a microprocessor, the calculation amount is enormous and complicated, so there is a problem in that it cannot be actually used as an output current controller.

본 발명의 목적은 이와같은 종래의 문제점을 개선하기 위해 창안한 것으로 설계를 단순화하면서 최적화전류제어방식을 통해 정밀한 출력제어를 가능하게 한 공진형 인버터의 최적출력제어시스템을 제공하고자 한다.An object of the present invention is to provide an optimum output control system for a resonant inverter which enables precise output control through an optimized current control method while simplifying the design.

이와같은 목적을 달성하기 위해 본 발명은 인버터의 3상출력을 2상으로 변화하여 현재전류치를 출력한 후 출력전류지령치를 받아 출력지령전압을 산출하고, 지령전압에 가장 오차가 적게 접근하는 전압벡터를 선정한 후 게이팅신호를 출력하여 출력전류를 최적화제어하게 구성함을 특징으로 하는 것으로, 이하 첨부한 도면에 의해 상세히 설명한다.In order to achieve the above object, the present invention changes the three-phase output of the inverter into two phases, outputs a current current value, receives an output current command value, calculates an output command voltage, and has a voltage vector approaching the command voltage with the least error. It is characterized in that the configuration to configure the output current by controlling the output current by outputting the gating signal, it will be described in detail by the accompanying drawings.

제5도는 본 발명 출력전류제어시스템의 구성도로서 이에 도시한 바와같이, 실제전류 ia(t), ib(t), 가산기(23)를 통해 -(ia(t)+ib(t)로 얻어지는 실제전류 ic(t)를 2상출력전류 iq(t), id(t)로 변환하는 3상/2상변환기(25)와, 상기 2상출력전류 iq(t), id(t)를 수용하고, 역기전력 E(t)과 함께 지령전류발생부(24)의 지령전류 iq *(t+T), id *(t+T)를 수용하여 지령전압 Vq *(t+T), Vd *(t+T)을 계산하는 지령전압계산기(13)와, 상기 지령전압 Vq *(t+T), Vd *(t+T)을 수용하여 오차가 적게 하는 전압벡터 Vk(t+T)를 선정하는 전압벡터선정기(14)와, 상기 전압벡터 Vk(t+T)에 의해 게이팅신호(g1~g6)를 발생하여 인버터를 제어하는 게이팅신호기(15)로 구성한다.5 is a configuration diagram of the output current control system of the present invention, as shown therein, through the actual current i a (t), i b (t) and the adder 23-(i a (t) + i b ( a three-phase / two-phase converter 25 for converting the actual current i c (t) obtained by t) into a two-phase output current i q (t) and i d (t), and the two-phase output current i q (t ), i d (t) and the command voltage i q * (t + T), i d * (t + T) of the command current generator 24 together with the counter electromotive force E (t). Accepts a command voltage calculator 13 for calculating V q * (t + T), V d * (t + T), and the command voltages V q * (t + T), V d * (t + T) The voltage vector selector 14 which selects a voltage vector V k (t + T) having a small error and generates the gating signals g1 to g6 by the voltage vector V k (t + T). It consists of a gating signal 15 to control.

이와같이 구성된 본 발명은 3상교류전류 ia(t), ib(t), ic(t)가 ia(t)+ib(t)+ic(t)=0와 같이 평행을 이루게 되어 3상/2상변환기(25)에 인가되므로 3상/2상변환기(25)에서는 2상출력전류 iq(t), id(t)는 출력되어 지령전압계산기(13)에 인가된다. 이와같이 하여 지령전압계산기(13)에서는 지령전류발생부(24)로부터의 지령전류 iq *(t+T), id *(t+T)가 있을때 제4도에 도시한 등가회로에 의해The present invention constructed in this way are in line, such as three-phase alternating currents i a (t), i b (t), a i c (t) i a ( t) + i b (t) + i c (t) = 0 Since the two-phase output current i q (t), i d (t) is output from the three-phase / two-phase converter 25 is applied to the command voltage calculator 13 do. In this way, the command voltage calculator 13 uses the equivalent circuit shown in FIG. 4 when the command currents i q * (t + T) and i d * (t + T) from the command current generation unit 24 are present.

Figure kpo00003
Figure kpo00003

단, T : 지령치의 출력시간간격, Rs : 전동기의 고정자저항T: Output time interval of command value, Rs: Stator resistance of motor

L : 전동기의 고정자인덕턴스, Eq(t+T), Ed(t+T) : 역기전력L: Stator inductance of the motor, E q (t + T), E d (t + T): Back EMF

와같이 연산되어 출력지령전압 Vq *(t+T), Vd *(t+T)을 계산한 후 전압벡터선정기(14)에 인가되며, 이때 역기전력 Eq(t+T), Ed(t+T)은 Eq(t), Ed(t)으로 가정한다.After calculating the output command voltage V q * (t + T), V d * (t + T), it is applied to the voltage vector selector 14, where the counter electromotive force E q (t + T), E Assume that d (t + T) is E q (t), E d (t).

여기서 제7도는 본 발명 전압벡터선정기(14)의 출력전압벡터 설정에 대한 원리도로서 이에 도시한 바와같이, 전압벡터선정지령치 Vq *, Vd *의 위치를 q-d의 좌표축에 표시하여 Vd *2+Vq *2=

Figure kpo00004
으로 되는 일정영역을 벡터(VO)로 설정하고, 벡터(V1-V6)로 설정한 상태에서 상기 벡터(V1-V6)를 Vd *=
Figure kpo00005
, Vd *=-
Figure kpo00006
로 되는 직선에 의해 등간격으로 분할하여 벡터선정영역을 설정한 것을 나타낸 것으로, 일예로 벡터 1선정영역에 의해 벡터(V6)을 표시함을 나타낸 것이다.7 is a principle diagram for setting an output voltage vector of the voltage vector selector 14 according to the present invention. As shown therein, the positions of the voltage vector selection command values V q * and V d * are displayed on the coordinate axis of qd, and V is shown. d * 2 + V q * 2 =
Figure kpo00004
Set the constant area to be the vector (VO) and set the vector (V1-V6) to V d * =
Figure kpo00005
, V d * =-
Figure kpo00006
This shows that the vector selection region is set by dividing the data at equal intervals by a straight line. For example, the vector V6 is displayed by the vector selection region.

이와같이 하여 제6도의 신호흐름도에 의해 전압벡터선정기(14)의 출력전압벡터선정기능을 설명하면 다음과 같다.In this way, the output voltage vector selection function of the voltage vector selector 14 is described with reference to the signal flow diagram in FIG.

우선 전압벡터선정지령치 (Vd *+Vq *)가

Figure kpo00007
보다 적게 되면 벡터 0선정영역을 통해 벡터(VO)를 설정하며,
Figure kpo00008
보다 크게 되면 Vq *>0, Vd *
Figure kpo00009
로 되는 상태에서 벡터 6선정영역을 통해 벡터(V5)를 설정하고, Vq *<0, Vd *>-
Figure kpo00010
로 되는 상태에서 벡터 5선정영역을 통해 벡터(V5)를 설정한다.First, the voltage vector line setpoint (V d * + V q * )
Figure kpo00007
If less, the vector (VO) is set through the vector 0 selection area.
Figure kpo00008
If greater than V q * > 0, V d *
Figure kpo00009
Set vector V5 through the vector 6 selection area in the state of V, and V q * <0, V d * >
Figure kpo00010
The vector V5 is set through the vector five selection area in the state of.

이후 Vd *

Figure kpo00011
로되면 -Vd *
Figure kpo00012
인 상태에서 벡터 2선정영역을 통해 벡터(V2)를 설정하고, -Vd *
Figure kpo00013
인 상태에서 벡터 1선정영역을 통해 벡터(V6)를 설정한다. 또한 Vd *<-
Figure kpo00014
로 되면 -Vd *>-
Figure kpo00015
인 상태에서 벡터 3영역을 통해 벡터(V3)를 설정하고 -Vd *<-
Figure kpo00016
인 상태에서 벡터 4영역을 통해 벡터(V4)를 설정한다.V d * <
Figure kpo00011
-V d *
Figure kpo00012
Set the vector (V2) through the vector 2-selection area and set -V d * <
Figure kpo00013
In the state of V, vector V6 is set through the vector 1 selection area. V d * <-
Figure kpo00014
Becomes -V d * >-
Figure kpo00015
Set the vector (V3) through the vector 3 area and set -V d * <-
Figure kpo00016
In the state of V, vector V4 is set through four vector regions.

이와같이하여 발생된 전압벡터선정기(14)의 출력(V1-V6)은 게이팅신호기(15)를 통해 제8도에 도시한 표와같이, 게이팅신호(g1-g6)를 발생하여 인버터의 파워스위치(SW1-SW6)의 온, 오프를 결정함에 따라 새로운 출력전류가 발생된다.The output V1-V6 of the voltage vector selector 14 generated in this way generates the gating signals g1-g6 through the gating signal 15 as shown in the table shown in FIG. A new output current is generated as the (SW1-SW6) is turned on and off.

이상에서 상세히 설명한 바와같이 본 발명은 공진형 인버터의 출력제어기를 전압벡터선정방식으로 간단하게 설계하여 최적의 출력전류제어를 가능하게 하므로 인버터의 정밀도향상 및 인버터를 사용하는 시스템의 고정밀도 제어를 가능하게 할 수 있는 효과가 있다.As described in detail above, the present invention enables the optimum output current control by simply designing the output controller of the resonant inverter using the voltage vector selection method, thereby improving the precision of the inverter and controlling the high precision of the system using the inverter. It can be effective.

Claims (1)

공진형 인버터의 출력전류제어기에 있어서, 3상/2상변환기(25)를 통해 상기 공진형 인버터의 3상출력을 2상 출력전류 iq(t), id(t)로 변화하고, 지령전압계산기(13)를 통해 지령전류 iq *(t+T), id *(t+T)를 수용하여 출력지령전압 Vq *(t), Vd *(t)으로 출력하고, 전압벡터선정기(14)의 벡터 설정수단을 통해 출력전압벡터(V0-V6)를 판정하여 상기 공진형 인버터를 제어하는 것을 특징으로 하는 공진형 인버터의 최적출력전류제어시스템.In the output current controller of the resonant inverter, the three-phase / two-phase converter 25 changes the three-phase output of the resonant inverter to two-phase output currents i q (t) and i d (t) It receives the command currents i q * (t + T), i d * (t + T) through the voltage calculator 13 and outputs the output command voltages V q * (t), V d * (t) The output voltage vector (V0-V6) is determined by the vector setting means of the vector selector (14) to control the resonant inverter.
KR1019890006758A 1989-05-19 1989-05-19 Inverter control system KR920002587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890006758A KR920002587B1 (en) 1989-05-19 1989-05-19 Inverter control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890006758A KR920002587B1 (en) 1989-05-19 1989-05-19 Inverter control system

Publications (2)

Publication Number Publication Date
KR900019332A KR900019332A (en) 1990-12-24
KR920002587B1 true KR920002587B1 (en) 1992-03-30

Family

ID=19286340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890006758A KR920002587B1 (en) 1989-05-19 1989-05-19 Inverter control system

Country Status (1)

Country Link
KR (1) KR920002587B1 (en)

Also Published As

Publication number Publication date
KR900019332A (en) 1990-12-24

Similar Documents

Publication Publication Date Title
Bowes et al. The relationship between space-vector modulation and regular-sampled PWM
Holmes et al. Implementation of a direct digital predictive current controller for single and three phase voltage source inverters
Kazmierkowski et al. Novel space vector based current controllers for PWM-inverters
US5657217A (en) Multi-coupled power conversion system and control method for the same
US6005783A (en) Method of synthesizing poly-phase AC voltage
CA2112238A1 (en) Programmed pwm inverter controller
KR100960043B1 (en) Apparatus and method for controlling space voltage vector in two-phase synchronous permanent magnet motor
JP2003111472A (en) Switching method for ground referenced voltage controlled electric machine
WO1996018234A1 (en) Pulse width modulating waveforms for inverter/converter circuits
Chen et al. A novel simplified space-vector-modulated control scheme for three-phase switch-mode rectifier
US20020196645A1 (en) Control circuit of power converting apparatus
Bowes et al. Novel space-vector-based harmonic elimination inverter control
EP0713285B1 (en) Three-phase PWM signal generating device for inverters
KR102091589B1 (en) Apparatus for reducing common mode voltage of system for controlling multi phase motor using interleaved
Martins et al. A novel and simple current controller for three-phase PWM power inverters
EP0338798B1 (en) Pulse width modulation control unit of inverter
Loh et al. Flux modulation for multilevel inverters
KR920002587B1 (en) Inverter control system
CN109617467B (en) Low-complexity predictive control method for permanent magnet synchronous motor
Sikorski et al. Current controller reduced switching frequency for VS-PWM inverter used with AC motor drive applications
JP2703711B2 (en) Control method of PWM inverter
US6259611B1 (en) PWM power converter
Le-Huy et al. An adaptive current controller for PWM inverters
JP3781069B2 (en) Inverter control method and apparatus
KR920002588B1 (en) Inverter control system

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19971227

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee