KR890702257A - Low noise photodetection and light detector for it - Google Patents

Low noise photodetection and light detector for it

Info

Publication number
KR890702257A
KR890702257A KR1019890701084A KR890701084A KR890702257A KR 890702257 A KR890702257 A KR 890702257A KR 1019890701084 A KR1019890701084 A KR 1019890701084A KR 890701084 A KR890701084 A KR 890701084A KR 890702257 A KR890702257 A KR 890702257A
Authority
KR
South Korea
Prior art keywords
photovoltaic device
amorphous silicon
film
oxide film
contact
Prior art date
Application number
KR1019890701084A
Other languages
Korean (ko)
Inventor
윙고 챠유어-지흐 휴앙
루이스 에프. 스자보
제럴드 피. 시사르
Original Assignee
원본 미기재
스템코 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/108,920 external-priority patent/US4772335A/en
Application filed by 원본 미기재, 스템코 코포레이션 filed Critical 원본 미기재
Publication of KR890702257A publication Critical patent/KR890702257A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

내용 없음No content

Description

저 노이즈 광검출 및 그것을 위한 광 검출기Low noise photodetection and light detector for it

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is an open matter, no full text was included.

제 1 도는 본 발명에 따른 적외선 반응장치의 단면도. 제 2 도는 본 발명에 따른 적외선 반응장치의 다른 실시예의 단면도. 제 3 도는 본 발명에 따른 적외선 반응장치의 제 3 의 실시예의 단면도.1 is a cross-sectional view of an infrared reactor according to the present invention. 2 is a cross-sectional view of another embodiment of an infrared reactor according to the present invention. 3 is a cross-sectional view of a third embodiment of an infrared reactor according to the present invention.

Claims (40)

전자스펙트럼의 자외선 범위의 입사에너지에 반응하는 것으로서, 적어도 부분적으로 도전성이 있는 층과, 이 층상에 배치되는 비정질 실리콘 몸체와, 상기 층의 맞은 편 비정질 몸체상에 배치되며 약 30nm보다 작은 두께를 갖는 입사광을 받아들이기 위한 도전성 광투과 산화물로 된 박막으로 구성되는 광기전성장치.Responsive to incident energy in the ultraviolet range of the electron spectrum, at least partially conductive, an amorphous silicon body disposed on the layer, and having a thickness less than about 30 nm disposed on the opposite amorphous body of the layer A photovoltaic device comprising a thin film of conductive light transmitting oxide for receiving incident light. 제 1 항에 있어서, 상기 산화막은 주석 또는 주석산화물로 도핑된 인듐산화물로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 광기전성장치.The photovoltaic device of claim 1, wherein the oxide film is selected from the group consisting of tin or indium oxide doped with tin oxide. 제 1 항에 있어서, 상기 비정질 실리콘 몸체는 적어도 약 15nm의 두께를 갖는 것을 특징으로 하는 광기전성장치.The photovoltaic device of claim 1, wherein the amorphous silicon body has a thickness of at least about 15 nm. 제 1 항에 있어서, 상기 비정질실리콘몸체는 p타입 구역과 n타입 구역 사이에 샌드위치되는 근본적으로 진성인 구역을 포함하고, 상기 3구역은 3구역을 통한 광의 연속적 통과를 위해 상기 층상에 배치되는 것을 특징으로 하는 광기전성장치.2. The amorphous silicon body of claim 1, wherein the amorphous silicon body comprises a essentially intrinsic zone sandwiched between a p-type zone and an n-type zone, wherein the three zones are disposed on the layer for continuous passage of light through the three zones. Photovoltaic device characterized in that. 제 4 항에 있어서, 상기 전성구역은 500nm보다 크지 않은 두께를 갖는 것을 특징으로 하는 광기전성장치.5. The photovoltaic device of claim 4, wherein the malleable zone has a thickness no greater than 500 nm. 제 4 항에 있어서, 상기 전성구역은 250nm보다 크지 않은 두께를 갖는 것을 특징으로 하는 광기전성장치.5. The photovoltaic device of claim 4, wherein the malleable zone has a thickness no greater than 250 nm. 제 4 항에 있어서, 상기 산화막과 접촉하고 있는 상기 비정질 실리콘몸체구역은 미정질 비정질 실리콘으로 이루어지는 것을 특징으로 하는 광기전성장치.5. The photovoltaic device of claim 4, wherein the amorphous silicon body region in contact with the oxide film is comprised of amorphous amorphous silicon. 제 4 항에 있어서, 상기 산화막과 접촉하고 있는 상기 비정질 실리콘 몸체구역은 탄소와 질소 중 어느 하나로 이루어지는 밴드갭중가제를 포함하는 것을 특징으로 하는 광기전성장치.5. The photovoltaic device of claim 4, wherein the amorphous silicon body region in contact with the oxide film comprises a bandgap weighting agent made of either carbon or nitrogen. 제 1 항에 있어서, 상기 층은 상기 광기전성장치에 대한 기계적 지지를 제공하는 기판을 구성하는 것을 특징으로 하는 광기전성장치.The photovoltaic device of claim 1, wherein said layer constitutes a substrate that provides mechanical support for said photovoltaic device. 제 9 항에 있어서, 상기 기판은 도전성막으로 코팅된 유리로 이루어지는 것을 특징으로 하는 광기전성장치.10. The photovoltaic device of claim 9, wherein the substrate is made of glass coated with a conductive film. 제 9 항에 있어서, 상기 기판은 금속, 금속합금 및 실리콘으로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 광기전성장치.10. The photovoltaic device of claim 9, wherein the substrate is selected from the group consisting of metals, metal alloys and silicon. 제 1 항에 있어서, 상기 비정질 실리콘몸체는 p타입 도전율과 n타입 도전율 중 어느 하나로 도핑된 막으로 이루어지며, 상기 층은 상기 비정질 실리콘과 반대로 도핑된 결정성 실리콘인 것을 특징으로 하는 광기전성장치.The photovoltaic device of claim 1, wherein the amorphous silicon body is formed of a film doped with either p-type conductivity or n-type conductivity, and the layer is crystalline silicon doped opposite to the amorphous silicon. 제 12 항에 있어서, 상기 도핑된 비정질막은 n타입이고, 상기 결정성 실리콘을 p타입인 것을 특징으로 하는 광기전성장치.13. The photovoltaic device of claim 12, wherein the doped amorphous film is n-type and the crystalline silicon is p-type. 제 12 항에 있어서, 상기 비정질 실리콘 막은 미정질 실리콘인 것을 특징으로 하는 광기전성장치.13. The photovoltaic device of claim 12, wherein the amorphous silicon film is microcrystalline silicon. 제 12 항에 있어서, 상기 비정질 실리콘 막은 탄소와 질소 중 어느 하나로 이루어지는 밴드갭증가제를 포함하는 것을 특징으로 하는 광기전성장치.13. The photovoltaic device of claim 12, wherein the amorphous silicon film comprises a bandgap increasing agent made of either carbon or nitrogen. 제 1 항에 있어서, 상기 산화막의 광간섭특성을 변경하기 위해 상기 비정질 실리콘몸체의 맞은 편 상기 산화막만상에 배치되는 제 2 의 투명막을 포함하는 것을 특징으로 하는 광기전성장치.2. The photovoltaic device of claim 1, further comprising a second transparent film disposed only on the oxide film opposite the amorphous silicon body to change the optical interference characteristics of the oxide film. 제 16 항에 있어서, 상기 제 2 의 투명막은 이산화실리콘, 질화실리콘, 불화마그네슘, 및 불화칼슘으로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 광기전성장치.17. The photovoltaic device of claim 16, wherein said second transparent film is selected from the group consisting of silicon dioxide, silicon nitride, magnesium fluoride, and calcium fluoride. 제 16 항에 있어서, 상기 산화막 및 제 2 의 투명막의 광간섭 특성을 변경하기 위해 상기 산화막의 맞은 편 상기 제 2 의 투명막상에 배치되는 제 3 의 투명막을 포함하는 것을 특징으로 하는 광기전성장치.17. The photovoltaic device of claim 16, further comprising a third transparent film disposed on said second transparent film opposite said oxide film to alter optical interference characteristics of said oxide film and said second transparent film. 제 1 항에 있어서, 산화막의 일부상에 배치되는 금속전류 모집장치를 포함하는 것을 특징으로 하는 광기전성장치.2. The photovoltaic device of claim 1, comprising a metal current recruitment device disposed on a portion of the oxide film. 제 1 항에 있어서, 상기 산화막과 접촉하는 자외선 투과유리 기판을 포함하는 것을 특징으로 하는 광기전성장치.The photovoltaic device of claim 1, comprising an ultraviolet-transmissive glass substrate in contact with the oxide film. 제 20 항에 있어서, 상기 유리기판은 수정인 것을 특징으로 하는 광기전성장치.21. The photovoltaic device of claim 20, wherein the glass substrate is quartz. 제 20 항에 있어서, 상기 산화막은 주석산화물인 것을 특징으로 하는 광기전성장치.21. The photovoltaic device of claim 20, wherein said oxide film is tin oxide. 제 20 항에 있어서, 상기 비정질 실리콘몸체는 p타입 구역과 n타입 구역 사이에 샌드위치되는 근본적으로 진성인 구역을 포함하고, 상기 3구역은 3구역을 통한 광의 연속적 통과를 위해 상기 막상에 배치되는 것을 특징으로 하는 광기전성장치.21. The method of claim 20, wherein the amorphous silicon body comprises essentially intrinsic regions sandwiched between p-type and n-type regions, wherein the three zones are disposed on the film for continuous passage of light through the three zones. Photovoltaic device characterized in that. 제 23 항에 있어서, 상기 산화막과 접촉하고 있는 구역은 탄소와 질소 중 어느 하나로 이루어지는 밴드갭증가제를 포함하는 것을 특징으로 하는 광기전성장치.24. The photovoltaic device of claim 23, wherein the region in contact with the oxide film comprises a bandgap increasing agent made of either carbon or nitrogen. 제 23 항에 있어서, 상기 진성구역은 약 500nm 보다 크지 않은 두께를 갖는 것을 특징으로 하는 광기전성장치.24. The photovoltaic device of claim 23, wherein the intrinsic zone has a thickness no greater than about 500 nm. 제 23 항에 있어서, 상기 진성구역은 약 250nm 보다 크지 않은 두께를 갖는 것을 특징으로 하는 광기전성장치.24. The photovoltaic device of claim 23, wherein the intrinsic zone has a thickness no greater than about 250 nm. 제 20 항에 있어서, 상기 유리기판만의 광간섭특성을 변경하기 위해 상기 산화막의 맞은 편 상기 기판상에 배치되는 제 2 의 투명막을 포함하는 것을 특징으로 하는 광기전성장치.21. The photovoltaic device of claim 20, comprising a second transparent film disposed on said substrate opposite said oxide film to alter optical interference characteristics of only said glass substrate. 제 27 항에 있어서, 상기 제 2 의 투명막은 불화마그네슘과 불화칼슘으로 이루어지는 그룹으로부터 선택되는 것을 특징으로 하는 광기전성장치.28. The photovoltaic device of claim 27, wherein said second transparent film is selected from the group consisting of magnesium fluoride and calcium fluoride. 제 27 항에 있어서, 상기 유리 및 제 2 의 투명막의 광간섭 특성을 변경하기 위해 상기 유리기판의 맞은 편 상기 제 2 의 투명막상에 배치되는 제 3 의 투명막을 포함하는 것을 특징으로 하는 광기전성장치.28. The photovoltaic device of claim 27, comprising a third transparent film disposed on said second transparent film opposite said glass substrate to alter the optical interference characteristics of said glass and said second transparent film. . 광이 입사되는 제 1 의 접점으로서의 투명한 도전성 산화막과, 입사광의 방향에 대해 횡으로 상기 제 1 의 접점상에 연속적으로 배치되며, 2외부층은 각각 n타입과 p타입이고, 중심층은 사실상 진성인 도전타입인 3층을 포함하는 무질서한 실리콘 몸체와, 상기 제 1 의 맞은 편 상기 실리콘 몸체상에 배치되는 제 2 의 접점을 포함하는 반도체 다이오드를 광검출기로 이용하고, 상기 제 1 과 제 2 의 접점을 통해 상기 실리콘 몸체 양단에 역바이어스 전압을 가하고, 그리고 역바이어스된 다이오드가 조명을 받지 않은 때의 전류 흐름을 기준으로 역바이어스된 다이오드를 통해 흐르는 전류의 변화를 측정하는 것으로 이루어지는 비교적 약한 광신호를 검출하는 방법.A transparent conductive oxide film serving as a first contact point into which light is incident, and continuously disposed on the first contact point laterally with respect to the direction of incident light, and the outer layers are n-type and p-type, respectively, and the center layer is essentially intrinsic A semiconductor diode comprising a disordered silicon body comprising three layers of a phosphorus conductive type and a second contact disposed on the silicon body opposite to the first is used as a photodetector, and the first and second A relatively weak optical signal consisting of applying a reverse bias voltage across the silicon body via a contact and measuring the change in current through the reverse biased diode relative to the current flow when the reverse biased diode is not illuminated. How to detect it. 제 30 항에 있어서, 상기 실리콘 몸체는 상기 앞접점에 인접한 미정질 실리콘층을 포함하고, 상기 다른 2층은 비정질 실리콘은 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.31. The method of claim 30, wherein the silicon body comprises a layer of microcrystalline silicon adjacent the front contact and the other two layers are amorphous silicon. 제 30 항에 있어서, 상기 실리콘 몸체는 앞접점에 인접한 상기층에 비정질 실리콘합금을 포함하고, 상기 합금은 상기 다이오드의 에너지 밴드갭과 스펙트럼 반응을 변경하기 위해 게르마늄, 탄소 및 질소 중 어느 하나를 포함하는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.31. The method of claim 30, wherein the silicon body comprises an amorphous silicon alloy in the layer adjacent the front contact and the alloy comprises any one of germanium, carbon and nitrogen to alter the energy bandgap and spectral response of the diode. A method of detecting a relatively weak optical signal, characterized in that. 제 30 항에 있어서, 상기 실리콘 몸체는 비정질 실리콘으로 이루어지는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.31. The method of claim 30, wherein the silicon body is made of amorphous silicon. 제 33 항에 있어서, 선택된 스펙트럼구역의 대부분의 입사에너지를 상기 사실상 진성인 구역에 전달하기 위해 상기 제 1 의 접점에 인접한 상기층의 두께를 조정하는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.34. The method of claim 33, wherein the thickness of the layer adjacent to the first contact is adjusted to deliver most of the incident energy of the selected spectral region to the substantially intrinsic region. . 제 34 항에 있어서, 자외선을 검출하는 것을 포함하며, 거기서 상기 제 1 의 접점에 인접한 상기 층의 두께가 약 20nm 보다 작게 조성되는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.35. The method of claim 34, comprising detecting ultraviolet light, wherein a thickness of said layer adjacent said first contact is made less than about 20 nm. 제 30 항에 있어서, 선택된 스펙트럼구역에서 광검출기의 반응을 개선하기 위해 앞접점의 두께를 조정하는 것을 포함하는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.31. The method of claim 30, comprising adjusting the thickness of the front contact to improve the response of the photodetector in the selected spectral region. 제 36 항에 있어서, 자외선을 검출하는 것을 포함하며, 거기서 상기 앞접점의 두께가 30nm 보다 작게 조정되는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.37. The method of claim 36, comprising detecting ultraviolet light, wherein the thickness of the front contact is adjusted to be less than 30 nm. 제 30 항에 있어서, 증폭기로 전류 흐름의 변화를 증폭하는 것을 포함하는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.31. The method of claim 30, comprising amplifying a change in current flow with an amplifier. 제 38 항에 있어서, 증폭기와 광검출기간의 상호 연결길이를 감소시키고, 증폭기와 광검출기를 유사한 온도로 유지시키기 위해 증폭기와 광검출기를 동일 몸체상에 장착하는 것을 포함하는 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.39. The relatively weak of claim 38, comprising mounting the amplifier and photodetector on the same body to reduce the interconnection length of the amplifier and photodetector period and to maintain the amplifier and photodetector at a similar temperature. Method of detecting an optical signal. 제 30 항에 있어서, 상기 다이오드의 온도는 약 40℃ 보다 더 큰 것을 특징으로 하는 비교적 약한 광신호를 검출하는 방법.31. The method of claim 30, wherein the temperature of the diode is greater than about 40 ° C. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: The disclosure is based on the initial application.
KR1019890701084A 1987-10-15 1988-10-13 Low noise photodetection and light detector for it KR890702257A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US108,920 1987-10-15
US07/108,920 US4772335A (en) 1987-10-15 1987-10-15 Photovoltaic device responsive to ultraviolet radiation
US17810288A 1988-04-06 1988-04-06
US178,102 1988-04-06
PCT/US1988/003579 WO1989003593A1 (en) 1987-10-15 1988-10-13 Low noise photodetection and photodetector therefor

Publications (1)

Publication Number Publication Date
KR890702257A true KR890702257A (en) 1989-12-23

Family

ID=26806421

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890701084A KR890702257A (en) 1987-10-15 1988-10-13 Low noise photodetection and light detector for it

Country Status (3)

Country Link
JP (1) JPH03502148A (en)
KR (1) KR890702257A (en)
WO (1) WO1989003593A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846651B2 (en) * 1989-03-31 1999-01-13 三洋電機株式会社 Photovoltaic device
JPH05303116A (en) * 1992-02-28 1993-11-16 Canon Inc Semiconductor device
DE69329603T2 (en) * 1992-02-28 2001-05-10 Canon Kk Semiconductor device with an ITO layer
US6879014B2 (en) 2000-03-20 2005-04-12 Aegis Semiconductor, Inc. Semitransparent optical detector including a polycrystalline layer and method of making
AU2001245916A1 (en) * 2000-03-22 2001-10-03 Aegis Semiconductor A semitransparent optical detector with a transparent conductor and method of making
WO2001073857A2 (en) * 2000-03-27 2001-10-04 Aegis Semiconductor A semitransparent optical detector including a polycrystalline layer and method of making
US6670599B2 (en) 2000-03-27 2003-12-30 Aegis Semiconductor, Inc. Semitransparent optical detector on a flexible substrate and method of making
US7221827B2 (en) 2003-09-08 2007-05-22 Aegis Semiconductor, Inc. Tunable dispersion compensator
CN103137776B (en) * 2013-01-31 2015-05-27 西安电子科技大学 Resonant cavity type double-metal oxide semiconductor (MOS) photoelectric detector
CN103077997B (en) * 2013-01-31 2015-04-08 西安电子科技大学 Photodetector with double MOS (metal oxide semiconductor) structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703336B2 (en) * 1978-03-16 1993-06-01 Photodetection and current control devices
US4233514A (en) * 1978-12-14 1980-11-11 General Electric Company Solid state radiation detector and arrays thereof
US4532537A (en) * 1982-09-27 1985-07-30 Rca Corporation Photodetector with enhanced light absorption
JPS59108370A (en) * 1982-12-14 1984-06-22 Kanegafuchi Chem Ind Co Ltd Photovoltaic device
FR2597662B1 (en) * 1986-04-22 1988-06-17 Thomson Csf PIN PHOTODIODE MADE FROM AMORPHOUS SEMICONDUCTOR

Also Published As

Publication number Publication date
JPH03502148A (en) 1991-05-16
WO1989003593A1 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
US4442310A (en) Photodetector having enhanced back reflection
EP0642179B1 (en) Solid state imaging device and process for production thereof
KR890702257A (en) Low noise photodetection and light detector for it
KR840008541A (en) Narrow bandgap photovoltaic device
US4885622A (en) Pin photodiode and method of fabrication of the same
KR840004309A (en) Optoelectronic device with incident light indicator for total internal reflection
JPS5980978A (en) Infrared detector
FR2525819A1 (en) SEMICONDUCTOR PHOTOELECTRIC CELL
Lamkin et al. Ultraviolet photodiodes based on AlGaN solid solutions
US4137544A (en) Mercury cadmium telluride photodiode
TW512524B (en) Fabrication of amorphous silicon/amorphous silicon gemine NI1PI2N infrared position defectors
KR940022927A (en) Infrared light detector
EP0045258B1 (en) Photovoltaic detector sensitive in the near infrared range
EP0148703A1 (en) Method for the temperature-adjustment of a photoconductor detector
JPH0738138A (en) Ultraviolet sensor
US5115123A (en) Contact type photoelectric transducer
Fortunato et al. New materials for large-area position-sensitive detectors
JPH0480974A (en) Semiconductor photodetector
KR950014283B1 (en) Structure of photo diode
JPS6473684A (en) Optical sensor
FR2800201A1 (en) Photovoltaic detector comprising n and p-doped layers connected by electrodes
JPH0216777A (en) Semiconductor optical detector device
Duboz et al. UV imaging based on AlGaN arrays
Fajardo et al. Indium and gallium p‐type doping of hydrogenated amorphous germanium thin films
Uryu et al. CMOS image sensor using SOI-MOS/photodiode composite photodetector device

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid