KR820000847B1 - Process for preparation of terephthalic acid - Google Patents

Process for preparation of terephthalic acid Download PDF

Info

Publication number
KR820000847B1
KR820000847B1 KR7903548A KR790003548A KR820000847B1 KR 820000847 B1 KR820000847 B1 KR 820000847B1 KR 7903548 A KR7903548 A KR 7903548A KR 790003548 A KR790003548 A KR 790003548A KR 820000847 B1 KR820000847 B1 KR 820000847B1
Authority
KR
South Korea
Prior art keywords
terephthalic acid
reaction zone
oxidation
temperature
reaction
Prior art date
Application number
KR7903548A
Other languages
Korean (ko)
Inventor
히로시 하시즈메
시게끼 하라다
Original Assignee
스즈끼 에이지
미쓰비시 가세이고오교 가부시끼 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스즈끼 에이지, 미쓰비시 가세이고오교 가부시끼 가이샤 filed Critical 스즈끼 에이지
Priority to KR7903548A priority Critical patent/KR820000847B1/en
Application granted granted Critical
Publication of KR820000847B1 publication Critical patent/KR820000847B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Title acid was prepd. by oxidn. of p-xylene in HOAc containing Co (OAc)2, Mn (OAc)2, and HBr in a first zone at 180≰C-230≰C (95% oxidn.), then in a second zone at a temp. 2-30≰C below that of the first zone without addn. of further xylene and finally in a third zone at 235-300≰C.

Description

테레프탈산의 제조법Preparation of Terephthalic Acid

본 발명은 고순도 테레프탈산의 제조법에 관한 것이며, 상세하게는 직접, 글리콜성분과 반응시켜서 폴리에스테르를 제조할 수 있는 고순도 테레프탈산의 제조법에 관한 것이다.The present invention relates to a method for producing high-purity terephthalic acid, and more particularly, to a method for producing high-purity terephthalic acid in which a polyester can be produced by reacting with a glycol component.

테레프탈산은 폴리에스테르의 원료로서 유용한 것이며, 보통, 파라키실렌을 초산용매중, 중금속을 함유한 촉매의 존재하에, 분자상산소와 반응시키는 소위, SD법에 의하여 제조되고 있다. 그러나, 보통 SD법에 의하여 얻어진 테레프탈산중에는 1000∼3000ppm정도의 다량의 부생물인 4-카르복시벤즈알데히드(이하, 4CBA라 약칭함)가 함유되어 있으므로, 그대로, 예를들면, 섬유용, 필름용등의 폴리에스테르 원료로서 사용할 수가 없다.Terephthalic acid is useful as a raw material of polyester, and is usually produced by the so-called SD method in which paraxylene is reacted with molecular oxygen in the presence of a catalyst containing heavy metals in an acetic acid solvent. However, since terephthalic acid obtained by the SD method is usually contained a large amount of by-product 4-carboxybenzaldehyde (hereinafter abbreviated as 4CBA) of about 1000 to 3000ppm, as it is, for example, for fibers, films, etc. It cannot be used as a polyester raw material.

그로 인하여, 종래, 테레프탈산을 메탄올과 반응시켜 디메틸테레프타레이트로 하여 정제한 다음, 글리콜성분과 반응시키는 방법이 채용되어 왔었다. 또, 최근, SD법에 의하여 얻어진 테레프탈산을 고온, 고압하에서 용해하고, 예를들면, 파라듐등의 귀금속촉매와 접촉시켜 정제하므로 4CBA 함유량이 30ppm이하의 고순도의 테레프탈산을 얻는 방법이 알려지고 있다. 그러나, 전자의 방법으로서는 디메틸테레프타레이트를 폴리에스테르원료로 하기 때문에, 폴리에스테르의 제조공정에서 메탄올이 부생하는 결점이 있으며 또, 후자의 방법은 테레프탈산 그대로의 상태로서 정제되므로 바람직하지만, 테레프탈산의 제조공정 및 정제공정에서의 용매, 촉매계 및 처리조건이 다르므로, 다른 계열의 두 개의 플랜트가 필요하게 된다.Therefore, conventionally, the method of making terephthalic acid react with methanol, refine | purifying to dimethyl terephthalate, and then reacting with a glycol component has been employ | adopted. Moreover, in recent years, the terephthalic acid obtained by the SD method is melt | dissolved under high temperature and high pressure, for example, and it refine | purifies by contacting with noble metal catalysts, such as palladium, for example, The method of obtaining the high purity terephthalic acid whose 4CBA content is 30 ppm or less is known. However, in the former method, since dimethyl terephthalate is used as a polyester raw material, there is a drawback in that methanol is by-produced in the production process of the polyester, and the latter method is preferable because it is purified as it is in terephthalic acid. Since the solvent, catalyst system and treatment conditions in the process and purification process are different, two plants of different series are required.

그래서, 최근, 파라키실렌의 산화에 즈음해서 특정의 촉매, 산화조건 및 산화방식을 채용하므로서, 하나의 플랜트로서 직접 고순도의 테레프탈산을 제조하는 시도가 행하여지고 있다. 파라키실렌의 산화플랜트에 있어서, 테레프탈산의 순도를 향상시키는 방법으로 하나로서, 소위 추가산화법이 알려져 있다. 이 방법은, 파라키실렌의 산화반응에 의해 생성된 테레프탈산 슬러리를, 그리고 테레프탈산을 고액 분리하기전에, 비교적 고온의 상태에 있어서 분자상 산소로서 처리하는 방법이며, 파라키실렌의 산화에 의하여 생성된 중간체, 착색성 불순물등의 제거를 겨냥한 것이다. 구체적으로는 예를들면, 테레프탈산 슬러리를 반응 온도보다 높은 온도로 가열하여 분자상 산소로서 처리하는 방법(특공소 40-1295), 반대로, 반응온도보다 낮은 온도로서 처리하는 방법(특개소 51-16630, 특개소 51-39642, 특개소 52-85136, 특개소 53-37636) 등이 제안되고 있다. 또 추가산화를 간결적 또한 회분적으로 행하는 특수힌 방법이 제안도 있다.(특개소 47-31947)Thus, in recent years, attempts have been made to produce high purity terephthalic acid directly as a single plant by employing a specific catalyst, oxidation conditions and oxidation method in accordance with the oxidation of paraxylene. As a method of improving the purity of terephthalic acid in the para-xylene oxide plant, a so-called additional oxidation method is known. This method is a method of treating terephthalic acid slurry produced by the oxidation reaction of paraxylene and molecular oxygen in a relatively high temperature state before solid-liquid separation of terephthalic acid, which is produced by oxidation of paraxylene. It is aimed at the removal of intermediates and coloring impurities. Specifically, for example, a method in which a terephthalic acid slurry is heated to a temperature higher than the reaction temperature to be treated as molecular oxygen (Specific Office 40-1295), on the contrary, a method to be treated as a temperature lower than the reaction temperature (Special Area 51-16630) , 51-39642, 52-85136, 53-37636, and the like. There are also proposals for special methods that perform additional oxidation simply and batchly.

이들 방법중에는, 반응온도보다 저온으로 추가산화를 행하는 방법이 가장 뛰어나고 있으며, 재래식인 파라키실렌의 산화만으로서 얻어지는 테레프탈산에 비하면 어느정도 고순도의 것이 얻어진다. 그러나, 이 방법으로서는 테레프탈산의 4CBA농도가 100∼500ppm이라고 하는 글리콜성분과 직접, 중합하여도 상관없는 중간순도의 테레프탈산은 얻어지지만, 공업적으로는 이것이 한도이며, 상술한 파라듐촉매등에 의한 정제 처리를 베푼 테레프탈산 보다 순도는 뒤떨어진다.Among these methods, the method of further oxidizing at a lower temperature than the reaction temperature is most excellent, and a certain degree of purity is obtained in comparison with terephthalic acid obtained only by oxidation of conventional paraxylene. However, in this method, terephthalic acid of intermediate purity irrelevant to polymerization may be obtained directly with a glycol component having a 4CBA concentration of terephthalic acid of 100 to 500 ppm, but industrially, this is the limit, and the purification treatment by the above-mentioned paradium catalyst or the like is obtained. Purity is inferior to terephthalic acid which gave.

본 발명자들은 하나의 플랜트로서 직접 고순도의 테레프탈산을 제조하는 방법에 있어서, 다시, 경제적으로 유리한 고순도의 것을 얻을 수 있도록 여러 가지로 검톨한 결과, 본 발명에 도달하였다.The present inventors arrived at the present invention in a method of producing terephthalic acid of high purity directly as one plant, and in various ways so as to obtain economically advantageous high purity.

즉, 본 발명의 요지는, 파라키실렌을 초산용매중, 중금속 및 취소를함유한 촉매의 존재하여, 분자상 산소와 반응시켜서 테레프탈산을 제조하는 방법에 있어서,That is, the gist of the present invention is a method for producing terephthalic acid by reacting paraxylene with a molecular oxygen in the presence of a catalyst containing a heavy metal and a cancellation in acetic acid solvent,

① 180∼230℃로 유지한 제1반응대역에 파라키실렌과 분자상 산소를 공급하고, 파라키실렌의 적어도 95중량%를 테레프탈산에 산화시키고,① paraxylene and molecular oxygen are supplied to the first reaction zone maintained at 180 to 230 ° C., at least 95% by weight of paraxylene is oxidized to terephthalic acid,

② 제1반응대역에서 생성된 반응혼합물을, 제1반응대역의 온도보다 0∼50℃ 낮은 온도로 유지한 제2반응대역에 있어서, 파라키실렌을 공급함이 없이 분자상 산소에 의하여 추가산화 처리하고② In the second reaction zone in which the reaction mixture generated in the first reaction zone is maintained at a temperature of 0 to 50 ° C. lower than the temperature of the first reaction zone, further oxidation is performed by molecular oxygen without supplying paraxylene. and

③ 제2반응대역에서 얻어진 반응혼합물을, 이어서, 230℃ 이상의 온도로 유지한 제3반응대역에 있어서, 파라키실렌을 공급함이 없이 분자상 산소에 의하여 재차 추가산화 처리하고, 얻어진 반응혼합물을 정석하고, 고액분리하므로서 테레프탈산을 얻는 것을 특징으로 하는 고순도 테레프탈산의 제조법에 있다.(3) In the third reaction zone in which the reaction mixture obtained in the second reaction zone is maintained at a temperature of 230 DEG C or higher, further oxidation of the reaction mixture is carried out by molecular oxygen without supplying paraxylene, and the reaction mixture obtained is crystallized. And terephthalic acid is obtained by solid-liquid separation.

이하, 본 발명을 상세히 설명하겠다.Hereinafter, the present invention will be described in detail.

본 발명에서 대상이 되는 테레프탈산의 제조법으로서는, 파라키실렌을 초산용매중, 중금속을 함유한 촉매의 존재하에, 분자상 산소와 반응시키는 방법이라면 어떠한 방법이더라도 좋다.As a method for producing terephthalic acid as an object of the present invention, any method may be used as long as paraxylene is reacted with molecular oxygen in the presence of a catalyst containing heavy metal in an acetic acid solvent.

본 발명에서는, 먼저, 제1반응대역에서 파라키실렌의 95중량%이상, 바람직하게로는 98중량%이상을 테레프탈산으로 산화시키는데, 보통, 그 반응온도는 180∼230℃ 바람직하게로는 205∼225℃이며, 압력은 1∼100kg/cm2바람직하게로는 10∼40kg/cm2이다. 반응온도가 너무 낮으면 파라키실렌을 충분히 산화시킬 수가 없으며, 반대로, 너무 높으면 고순도의 테레프탈산이 얻어지지 않을 뿐만 아니라 초산용매의 연소손실이 증대되므로 바람직하지 못하다.In the present invention, first, at least 95% by weight, preferably at least 98% by weight, of paraxylene is oxidized to terephthalic acid in the first reaction zone, and usually, the reaction temperature is 180 to 230 캜, preferably 205 to It is 225 degreeC, and a pressure is 1-100 kg / cm <2>, Preferably it is 10-40 kg / cm <2> . If the reaction temperature is too low, paraxylene cannot be sufficiently oxidized. On the contrary, if the reaction temperature is too high, high purity terephthalic acid is not obtained and the combustion loss of the acetic acid solvent is not preferable.

또, 제1반응대역의 반응시간은 파라키실렌의 95중량%이상이 테레프탈산으로 산화시킬 수 있는 시간으로서, 필요하며, 보통, 30∼200분, 바람직하게로는 40∼150분 정도이다.The reaction time of the first reaction zone is required to oxidize at least 95% by weight of paraxylene to terephthalic acid, which is usually 30 to 200 minutes, preferably 40 to 150 minutes.

본 발명에서 사용하는 촉매는 보통, 코발트-망간-취소의 3원소를 함유한 것이며, 예를들면, 용매에 대하여 코발트 금속으로서는 120∼600ppm, 바람직하게로는 200∼400ppm의 코발트화합물, 코발트에 대하여 망간금속으로서 0.5∼1.5배의 망간화합물 및 용매에 대하여 취소로서 500∼2000ppm, 바람직하게로는 600∼1500ppm의 취소화합물이 사용된다. 이들 화합물의 구체예로서는, 초산코발트, 나프텐산 코발트등의 코발트화합물, 초산망간, 나프텐산 망간등의 망간화합물 및 취화수소, 취화나트륨, 취화코발트, 취화망간 등의 취소화합물을 예거할 수 있다. 그리고 취화망간, 취화코발트를 사용한 경우에는, 2종류의 촉매성분을 겸할 수도 있다.The catalyst used in the present invention usually contains three elements of cobalt-manganese-cancellation. For example, 120 to 600 ppm of cobalt metal, preferably 200 to 400 ppm of cobalt compound and cobalt for solvent. As a manganese metal, 500-2000 ppm, preferably 600-1500 ppm of cancellation compounds are used as a cancellation | cancellation with respect to 0.5-1.5 times of a manganese compound and a solvent. As a specific example of these compounds, cobalt compounds, such as cobalt acetate and cobalt naphthenate, manganese compounds, such as manganese acetate and manganese naphthenate, and canceling compounds, such as hydrogen sulfide, sodium embrittlement, cobalt halide, and manganese halide, can be mentioned. In addition, when manganese embrittlement and cobalt embrittlement are used, it can also serve as two types of catalyst components.

제1반응대역에서 공급하는 파라키실렌과 용매와의 비율은 보통, 파라키실렌에 대하여 2∼5중량배이며, 용매가 너무 적으면 반응기내의 교반이 양호하게 되지 않으며, 더우기, 후술하는 제3공정에서의 재추가 산화처리가 양호하게 행하여지지 않으므로 바람직하지 않다. 또, 초산용매중에는, 예를들면 20중량%의 이하의 물을 함유하고 있어도 좋다. 제1반응대역의 액상중에 공급하는 분자상 산소로서는, 보통, 공기이며 파라키실렌 1몰에 대하여 3∼100몰의 비율로서 공급한다.The ratio of paraxylene and solvent supplied in the first reaction zone is usually 2 to 5 times by weight with respect to paraxylene, and when the solvent is too small, the stirring in the reactor is not good. Re-addition in the process is not preferable because the oxidation treatment is not performed well. The acetic acid solvent may contain, for example, 20% by weight or less of water. As molecular oxygen to be supplied to the liquid phase of the first reaction zone, it is usually air and supplied at a rate of 3 to 100 moles with respect to 1 mole of paraxylene.

상술한 제1반응대역에서는, 반화반응기로부터의 응축성가스를 냉각시켜 얻은 응축액의 일부를 반응기로 환류시킴이 없이 계외(系外)로 뽑아내는 것에 의해서, 산화반응기내의 수분농도를 예를들면, 5∼15중량%정도의 저농도로 조절하여도 좋다.In the above-described first reaction zone, a part of the condensate obtained by cooling the condensable gas from the semi-reaction reactor is drawn out of the system without refluxing to the reactor, whereby the water concentration in the oxidation reactor is, for example, It may be adjusted at a low concentration of about 5 to 15% by weight.

또, 산화반응기내의 반응모액중의 4CBA농도를 반응온도, 압력, 시간 및 촉매등을 조절하므로서, 예를 들면, 2000ppm 이하, 바람직하게로는 1500oom이하로 유지하면 후술하는 제2공정 및 제3공정의 처리가 양호하게 행하여지며 특히 고순도의 테레프탈산이 얻어지므로 바람직하다.In addition, the 4CBA concentration in the reaction mother liquor in the oxidation reactor is controlled by adjusting the reaction temperature, pressure, time, catalyst, and the like. For example, the second process and the third process, which will be described later, are maintained at 2000 ppm or less, preferably 1500oom or less. It is preferable because the treatment of is well performed and particularly high purity terephthalic acid is obtained.

다음에, 제1반응대역에서, 얻어진 테레프탈산을 함유한 슬러리를 뽑아내고, 다른 제2반응대역의 교반조형의 용기안에서 파라키실렌을 공급함이 없이 제1반응대역의 온도보다 0∼50℃ 바람직하게로는 2∼30℃ 낮은 온도로서 추가산화처리가 행하여진다. 추가산화의 온도가 너무 낮은 경우에는, 반응슬러리중에 함유되는 산화중간체를 충분히 산화시킬 수가 없으며, 한편, 제1반응대역의 온도보다 고온일 경우에는, 제품테레프탈산의 착색성분으로서 되는 불순물이 생성되므로 바람직하지 않다. 또, 추가산화처리의 시간은 보통, 20∼90분, 바람직하게로는 30∼60분이다.Next, in the first reaction zone, the slurry containing the obtained terephthalic acid is taken out, and 0-50 ° C. is more preferable than the temperature of the first reaction zone without supplying paraxylene in a stirred tank of another second reaction zone. The furnace is subjected to further oxidation at a low temperature of 2 to 30 ° C. If the temperature of the additional oxidation is too low, the intermediate oxide contained in the reaction slurry cannot be sufficiently oxidized. On the other hand, if the temperature is higher than the temperature of the first reaction zone, impurities as the coloring component of the product terephthalic acid are produced. Not. The time for the additional oxidation treatment is usually 20 to 90 minutes, preferably 30 to 60 minutes.

이 제2반응대역의 처리장치는 제1반응대역의 산화반응기와 같은 타입의 것이라도 좋다. 추가산화로서 사용하는 분자상산소는 피산화물이 소량이므로, 보통 불활성가스로서 희석한 공기 또는 제1공정의 산화배가스등을 사용하는 것이 바람직하다. 산소로서의 공급량은 보통, 제1반응대역의 공급량의 1/10∼1/1000정도이다.The treatment apparatus of the second reaction zone may be of the same type as the oxidation reactor of the first reaction zone. Molecular oxygen used as additional oxidation has a small amount of pioxide. Therefore, it is preferable to use diluted air or an exhaust gas of the first step as an inert gas. The supply amount as oxygen is usually about 1/10 to 1/1000 of the supply amount in the first reaction zone.

본 발명의 추가산화에 즈음해서는, 산화촉매, 용매등을 새로히 가하지 않아도 충분히 산화를 행할 수 있다.On the basis of the additional oxidation of the present invention, it is possible to sufficiently oxidize without newly adding an oxidation catalyst, a solvent or the like.

제2반응대역에서 추가산화를 한 슬러리는, 다시, 제3반응대역에 있어서 230℃ 이상, 바람직하게로는 235∼300℃, 특히 바람직하게로는 240∼260℃로서 재차 추가산화를 행한다.The slurry which has been further oxidized in the second reaction zone is subjected to further oxidation again in the third reaction zone as 230 ° C or higher, preferably 235 to 300 ° C, particularly preferably 240 to 260 ° C.

이 제3반응대역의 처리에서는 보통 제1 및 제2반응대역에서 석출하고 있던 테레프탈산의 결정의 적어도 일부가 용해된 상탱서 산화처리된다. 제3반응대역의 처리온도가 너무 낮으면 테레프탈산을 용매중에 적당히 용해할 수가 없으므로 고순도품을 얻을 수가 없으며, 또, 반대로 높으면 조작적으로 어렵고 경제적인 것이 못될뿐 아니라 착색불순물이 생성될 가능성이 있으므로 바람직하지 못하다. 재차 추가산화의 처리시간은 보통, 5∼120분, 바람직하게로는 20∼60분 정도이다. 분자상산소의 공급은 보통, 제2공정과 같이 희석공기 또는 산화배가스가 바람직하며, 산소로서의 공급량은 제1공정의 공급량의 1/10∼1/100이다. 제3반응대역에 있어서 산소가 부족했을 경우에는, 착색불순물이 생성될 염려가 있으므로 계내가 산소 결핍상태로 되지 않도록 하는 것이 바람직하다.In the treatment of the third reaction zone, at least part of the crystals of terephthalic acid, which have been precipitated in the first and second reaction zones, is usually dissolved in a phase tanker. If the treatment temperature of the third reaction zone is too low, terephthalic acid cannot be properly dissolved in a solvent, and thus a high purity product cannot be obtained. On the contrary, a high purity product is not only economically difficult and economical, but also may cause colored impurities. I can't. Again, the treatment time for further oxidation is usually 5 to 120 minutes, preferably about 20 to 60 minutes. As for the supply of molecular oxygen, dilution air or oxidizing exhaust gas is usually preferable as in the second step, and the supply amount as oxygen is 1/10 to 1/100 of the supply amount in the first step. When oxygen is insufficient in the third reaction zone, there is a possibility that colored impurities may be generated, so it is desirable to prevent the system from becoming an oxygen deficient state.

본 발명에서는 제2반응대역에 있어서, 제1반응대역에서 얻은 반응슬러리의 모액중에 함유되는 산화중간체를 추가 산화시킨다음, 제3반응대역에서 석출된 테레프탈산을 적어도 일부를 용매하고 테레프탈산 결정중에 함유되는 산화중간체를 산화하므로서 매우 고순도의 테레프탈산을 얻을 수가 있는 것이다. 예를 들면, 제2반응대역을 거치지 않고 제3공정의 처리를 베푼 경우에는, 착색불순물의 생성이 현저하게 많고 저품질의 테레프탈산 밖에 얻어지지 않는다.In the present invention, in the second reaction zone, the intermediate intermediate oxide contained in the mother liquor of the reaction slurry obtained in the first reaction zone is further oxidized, and at least a part of the terephthalic acid precipitated in the third reaction zone is dissolved in the terephthalic acid crystal. By oxidizing the intermediate intermediate, very high purity terephthalic acid can be obtained. For example, when the third process is performed without passing through the second reaction zone, the generation of colored impurities is remarkably large and only terephthalic acid of low quality is obtained.

제3반응대역으로부터의 반응대역은 통상적인 방법에 따라서 정석 처리된다. 정석처리는 보통, 다단계적으로 행하여지며 서서히 온도, 압력을 내려서 행하는 것이 바람직하다.The reaction zone from the third reaction zone is crystallized according to conventional methods. The crystallization treatment is usually carried out in multiple stages, and is preferably carried out by gradually lowering the temperature and pressure.

다음에, 예를들면, 원심분리등의 고액분리를 행하고, 테레프탈산 결정을 회수할 수 있다. 테레프탈산 결정은 필요에 따라서, 예를들면, 물, 초산등으로서 세정한 다음 건조처리되며 제품으로 된다. 한편, 반응모액은 보통 증류탑으로 보내지며 생성수, 촉매, 부생물을 제거하고 초산을 회수한다. 또, 본 발명에서는 반응모액중에 부생물, 특히 산화반응을 방해하는 불순물이 매우 적으므로, 반응모액의 10∼80중량%를 그대로 제1반응대역의 산화반응기로 리사이클할 수도 있다.Next, for example, solid-liquid separation such as centrifugation can be performed to recover the terephthalic acid crystals. The terephthalic acid crystals are washed as needed, for example, with water, acetic acid, and then dried to obtain a product. On the other hand, the reaction mother liquor is usually sent to a distillation column to remove the produced water, catalyst, by-products and recover the acetic acid. Further, in the present invention, since there are very few by-products, particularly impurities which interfere with the oxidation reaction, the reaction mother liquor can be recycled to the oxidation reactor in the first reaction zone as it is in the range of 10 to 80% by weight.

이상, 본 발명에 의하면 하나의 플랜트에 있어서 정제한 테레프탈산과 같은 정도, 예를들면, 4CBA함유량이 50ppm이하라고 하는 매우 고순도의 테레프탈산을 얻을 수가 있으며, 공업적 또한 경제적으로 매우 바람직한 것이다.As described above, according to the present invention, a very high purity terephthalic acid having a content of 4 CBA or less of 50 ppm or less, such as terephthalic acid purified in one plant, can be obtained, which is industrially and economically very desirable.

또, 본 발명의 주산화-저온추가산화-고온추가산화로서 된 특정의 3단계의 산화법에 의하여, 예를들면 4CBA함유량이 100∼500ppm이다. 글리콜성분과 직접 중합할 수 있는 중간순도의 테레프탈산을 제조할 수 있다. 이 경우에는 모든 제조공정중에서 연소 손실되는 초산용매의 양이, 종래 공지의 주산화-저온추가산화로서 되는 2단계의 산화법에 의하여, 같은 품질의 테레프탈산을 제조하는 방법과 비교하여 현저하게 적다고 하는 효과를 갖는다.Moreover, 4 CBA content is 100-500 ppm, for example by the specific three-step oxidation method used as main oxidation-low temperature addition oxidation-high temperature addition oxidation of this invention. The intermediate purity terephthalic acid which can be directly polymerized with the glycol component can be prepared. In this case, the amount of acetic acid solvent which is lost in combustion in all the manufacturing processes is remarkably small compared with the method of producing terephthalic acid of the same quality by a two-stage oxidation method which is a conventionally known main oxidation-low temperature addition oxidation. Has an effect.

종래의 2단계 산화법이 비교하여, 본 발명에서는, 주산화공정에서의 테레프탈산의 품질을 대폭적으로 시켜도 2단계의 추가산화에 의하여 최종적으로 고품질의 테레프탈산이 얻어지므로, 예를들면, 다른 조건을 동일하게 했을 경우, 산화에서의 체류시간을 짧게할 수가 있으며, 따라서, 주산화고정에서의 초산용매의 연소손실을 대폭적으로 저하시킬 수가 있는 것이다.Compared with the conventional two-stage oxidation method, in the present invention, even if the quality of terephthalic acid in the main oxidation step is greatly improved, two-stage additional oxidation finally yields a high quality terephthalic acid. In this case, the residence time in oxidation can be shortened, and therefore, the combustion loss of the acetic acid solvent in the main oxidation fixation can be significantly reduced.

이 초산용매의 손실의 차이는, 테레프탈산의 대규모적인 공업적 제조법에 있어서, 경제적으로 커다란 의의를 갖는 것이다.The difference in the loss of acetic acid solvent is of great economic significance in the large scale industrial production of terephthalic acid.

다음에 본 발명을 실시예에 의하여 더 상세하게 설명하겠으나, 본 발명은 그 요지를 넘지 않는한 이하의 실시예에 한정되는 것은 아니다.Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

[실시예 1]Example 1

상부에 환류냉각장치, 하부에 공기공급장치, 외부에 가열장치 및 교반장치를 설치한 10ℓ 티탄제 오오토크레이브에 초산코발트(4수화물) 4.44g, 초산망간(4수화물) 4.68g 및 취화수소산(47% 수용액) 6.70g을 함유한 함수초산(수분 5wt%)를 3000g을 버무려 넣고, 반응온도 210℃ 압력 25kg/kg/cm2G의 조건으로서 원료 파라키실렌 1300g/hr의 비율로 공급하고, 한편, 공기를 반응기 배가스중의 O2농도가 4∼5용량%로 되도록 불어넣고 48분간 반응을 행하였다.A 10 liter titanium autoclave equipped with a reflux cooling device at the top, an air supply device at the bottom, a heating device and an agitation device at the bottom, 4.44 g of cobalt acetate (tetrahydrate), 4.68 g of manganese acetate (tetrahydrate), and hydrochloric acid ( 47 g of aqueous solution) was mixed with 3000 g of hydrous acetic acid (5 wt% of water) containing 6.70 g, and fed at a rate of 1300 g / hr of raw paracyylene under conditions of a reaction temperature of 210 ° C. and a pressure of 25 kg / kg / cm 2 G, On the other hand, air was blown in such a manner that the O 2 concentration in the reactor flue gas was 4-5% by volume, and the reaction was carried out for 48 minutes.

반응후, 직시 반응슬러리를 같은 추가산화를 위한 오오토크레이브에 뽑아내고, 온도 190℃ 압력 18kg/kg/cm2G의 조건으로서 30분간 희석공기에 의하여 추가산화를 행하였다.Immediately after the reaction, the reaction slurry was taken out in the same autoclave for further oxidation, and further oxidized by dilution air for 30 minutes under conditions of a temperature of 190 ° C. and a pressure of 18 kg / kg / cm 2 G.

다음에, 반응슬러리를 잇따라서 승온하고, 온도 250℃ 압력 37kg/kg/cm2G로서 30분간 희석공기에 의하여 재추가산화를 행하였다.Subsequently, the reaction slurry was successively heated, and re-oxidized by dilution air for 30 minutes at a temperature of 250 ° C. and a pressure of 37 kg / kg / cm 2 G.

이와같이 하여 얻은 반응액을 냉각정석하여 테레프탈산의 결정을 석출시키고, 이어서, 원심분리에 의하여 테레프탈산 결정을 회수하였다. 회수한 테레프탈산을 초산으로 세정하고 건조한 다음, 테레프탈산중의 4CBA함유량 및 투과율을 측정하고 제1표에 나타낸 결과를 얻었다.The reaction solution thus obtained was cooled and crystallized to precipitate crystals of terephthalic acid, and then the terephthalic acid crystals were recovered by centrifugation. The recovered terephthalic acid was washed with acetic acid and dried, and then the 4CBA content and transmittance in terephthalic acid were measured and the results shown in Table 1 were obtained.

[실시예 2-4]Example 2-4

실시예 1의 방법에 있어서, 산화온도, 추가산화온도 및 재추가산화의 온도, 압력, 시간을 제1표에 나타낸 바와 같이 바꾸어서 같은 반응을 행하고, 얻어진 테레프탈산에 대하여 분석을 행하였다.In the method of Example 1, the reaction was performed by changing the oxidation temperature, the additional oxidation temperature, and the temperature, pressure, and time of the re-addition oxidation as shown in the first table, and the obtained terephthalic acid was analyzed.

[비교예 1]Comparative Example 1

실시예 1에 있어서, 제3공정이 추가산화를 생략하고, 제2공정의 추가산화로서 얻은 테레프탈산을 분석하였다.In Example 1, terephthalic acid obtained as the additional oxidation of the second step was analyzed by omitting additional oxidation.

[비교예 2]Comparative Example 2

실시예 1에 있어서, 제1공정에서 얻은 슬러리를 제2공정의 추가산화를 함이없이, 그대로 승온시킨 다음 제3공정의 재추가산화조건으로 산화를 행하여 꼭같은 분석을 행하였다.In Example 1, the slurry obtained in the first step was heated up without further oxidation in the second step, and then oxidized under the re-addition oxidation condition in the third step to perform the same analysis.

[비교예 3]Comparative Example 3

실시예 1에 있어서, 제3공정의 재추가산화의 온도를 제1표에 나타낸 온도로 하고 꼭같이 반응을 하여 분석을 행하였다.In Example 1, the reaction of the third step was carried out in the same manner as the temperature shown in the first table, and the analysis was carried out.

[제1표][Table 1]

Figure kpo00001
Figure kpo00001

* 투과율(T340)은, 테레프탈산 7.5g을 2N-수산화칼륨 수용액 50cc에 용해하고, 분광 광도계로서 340nm, 광로길이 1cm로서 측정하였다.* The transmittance | permeability (T340) melt | dissolved 7.5 g of terephthalic acid in 50 cc of 2N- potassium hydroxide aqueous solution, and measured it as 340 nm and optical path length 1cm as a spectrophotometer.

[실시예 5]Example 5

실시예 1에 있어서, 제1∼3공정의 산화의 체류시간을 제2표에 나타낸 조건으로 하고, 중간순도의 테레프탈산의 제조를 행하고, 제조중의 초산용매의 연소손실량 및 얻어진 테레프탈산의 품질을 측정하고, 제2표에 나타낸 바와 같은 결과를 얻었다.In Example 1, with the residence time of oxidation in the first to third steps as the conditions shown in the second table, the production of intermediate purity terephthalic acid was carried out, and the amount of combustion loss of the acetic acid solvent during production and the quality of the obtained terephthalic acid were measured. And the result as shown in the 2nd table | surface was obtained.

[비교예 4][Comparative Example 4]

비교예 1에 있어서, 제1∼2공정의 산화의 체류시간을 제2표에 나타낸 조건으로 하고, 실시예 5와 같은 정도의 품질의 테레프탈산의 제조를 행하고, 제조중의 초산용매의 연소손실 및 얻어진 테레프탈산의 품질을 측정하고, 제2표에 나타낸 바와 같은 결과를 얻었다.In Comparative Example 1, terephthalic acid having the same quality as in Example 5 was produced under the conditions shown in the second table with the residence time of oxidation in the first to second steps, and the combustion loss and The quality of the obtained terephthalic acid was measured and the result as shown in a 2nd table | surface was obtained.

[제2표][Table 2]

Figure kpo00002
Figure kpo00002

* 초산연소량은, 산화폐가스중의 CO, CO2농도를 측정하고, 이 양에 의거하여 계산하고, 실시예 5의 초산연소량을 100으로 하여, 비교하였다.* The amount of combustion of acetic acid was measured based on the amount of CO and CO 2 in the waste gas, calculated on the basis of this amount, and the amount of combustion of acetic acid of Example 5 was set to 100 and compared.

Claims (1)

파라키실렌을 초산용매중 중금속 및 취소를 함유하는 촉매의 존재하에 분자상 산소와 반응시켜서 테레프탈산을 제조하는 방법에 있어서, 180∼230℃로 유지한 제1반응대역에서 파라키실렌과 분자상 산소를 공급하여 파라키실렌의 적어도 95중량%를 테레프탈산으로 산화시키고, 제1반응대역에서 생성한 반응혼합물을 제1반응대역의 온도보다도 2∼30℃ 낮은 온도로 유지한 제2반응대역에서 파라키실렌을 공급함이 없이 분자상 산소에 의하여 추가 산화처리하고, 제2반응대역에서 얻어진 반응혼합물을, 이어서 235℃∼300℃ 온도로 유지한 제3반응대역에서 파라키실렌을 공급함이 없이 분자상 산소에 의하여 다시 추가 산화처리하고 이 반응혼합물을 석출시킨 후 고액분리하여 테레프탈산을 얻는 것을 특징으로 하는 고순도 테레프탈산의 제조법.1. A process for preparing terephthalic acid by reacting paraxylene with molecular oxygen in the presence of a catalyst containing heavy metals and cancellation in acetic acid solvent, wherein the paraquixylene and molecular oxygen are maintained in a first reaction zone maintained at 180 to 230 캜. Was supplied to oxidize at least 95% by weight of paraxylene to terephthalic acid, and the reaction mixture produced in the first reaction zone was kept at a temperature of 2-30 ° C. lower than the temperature of the first reaction zone. Further oxidation treatment was carried out by molecular oxygen without supplying silane, and the reaction mixture obtained in the second reaction zone was then supplied with molecular oxygen without supplying parakisylene in the third reaction zone maintained at a temperature of 235 ° C to 300 ° C. And further oxidation treatment to precipitate the reaction mixture, followed by solid-liquid separation to obtain terephthalic acid.
KR7903548A 1979-10-16 1979-10-16 Process for preparation of terephthalic acid KR820000847B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7903548A KR820000847B1 (en) 1979-10-16 1979-10-16 Process for preparation of terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR7903548A KR820000847B1 (en) 1979-10-16 1979-10-16 Process for preparation of terephthalic acid

Publications (1)

Publication Number Publication Date
KR820000847B1 true KR820000847B1 (en) 1982-05-17

Family

ID=19213211

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7903548A KR820000847B1 (en) 1979-10-16 1979-10-16 Process for preparation of terephthalic acid

Country Status (1)

Country Link
KR (1) KR820000847B1 (en)

Similar Documents

Publication Publication Date Title
US4286101A (en) Process for preparing terephthalic acid
EP0135341B1 (en) Process for preparing terephthalic acid from para-xylene
JP2504461B2 (en) Manufacturing method of high quality terephthalic acid
US5679847A (en) Process for producing terephthalic acid
US4357475A (en) Process for the production and the recovery of terephthalic acid
US5132450A (en) Process for producing high purity isophthalic acid
EP0562105B1 (en) Process for preparing 2,6-naphthalenedicarboxylic acid
JPH0451539B2 (en)
JPH0259820B2 (en)
GB1589310A (en) Continuous process for producing terephthalic acid
EP1971566A1 (en) A process for preparing high purity terephthalic acid
JPH0257528B2 (en)
EP1860092B1 (en) Method for producing naphthalenedicarboxylic acid
KR820000847B1 (en) Process for preparation of terephthalic acid
US4824992A (en) Process for producing pyromellitic acid
JPH0531535B2 (en)
CA1042014A (en) Process for producing a non-blackened phthalic acid from the corresponding tolualdehyde
JPH0257529B2 (en)
KR800000714B1 (en) Process for the preparation of high grade terephthalic acid
US4317924A (en) Process for producing purified terephthalic acid
JP2504545B2 (en) Manufacturing method of terephthalic acid
KR20070068752A (en) Catalyst compositions for crude terephthalic acid production and manufacturing method of purified crude tereph thalic acid using the same
JPH1192416A (en) Production of trimellitic acid
JPH0662495B2 (en) Manufacturing method of high-purity terephthalic acid
JPH09104653A (en) Purification of monocyclic aromatic carboxylic acid