KR20240027058A - 전자기 제어 물품 - Google Patents

전자기 제어 물품 Download PDF

Info

Publication number
KR20240027058A
KR20240027058A KR1020247003028A KR20247003028A KR20240027058A KR 20240027058 A KR20240027058 A KR 20240027058A KR 1020247003028 A KR1020247003028 A KR 1020247003028A KR 20247003028 A KR20247003028 A KR 20247003028A KR 20240027058 A KR20240027058 A KR 20240027058A
Authority
KR
South Korea
Prior art keywords
carrier layer
dielectric carrier
metal
resonant elements
layer
Prior art date
Application number
KR1020247003028A
Other languages
English (en)
Inventor
세르게이 에이 마누일로프
이반 레메쉬
재원 김
조셉 비 에켈
마이클 에스 그래프
Original Assignee
쓰리엠 이노베이티브 프로퍼티즈 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쓰리엠 이노베이티브 프로퍼티즈 캄파니 filed Critical 쓰리엠 이노베이티브 프로퍼티즈 캄파니
Publication of KR20240027058A publication Critical patent/KR20240027058A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/002Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

1 ㎓ 내지 100 ㎓의 범위의 전자기(EM) 방사선을 제어하는 물품 및 이의 제조 및 사용 방법들이 제공된다. EM 제어 시트 구조체는 유전체 캐리어 층, 및 이 유전체 캐리어 층에 의해 지지되어 비-랜덤 패턴(non-random pattern)으로 EM 메타물질(metamaterial) 구조체를 형성하는 금속 공진(resonant) 요소들의 어레이를 포함한다. 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.

Description

전자기 제어 물품
센티미터파 또는 cmWave(예컨대, WiFi, 4세대 기술 표준 또는 4G) 및 밀리미터파 또는 mmWave(예컨대, 5세대 기술 표준 또는 5G) 주파수 범위에서 제한된 세트의 자연 발생 전자기(EM) 제어 재료들이 존재한다. 전자기(EM) 메타물질(metamaterial), 특히 다작용성을 가능하게 하는 엔지니어링 재료는 잘 알려진 복합재 및 세라믹 EM 제어 재료에 대한 대안적인 해결책으로서 적극적으로 탐구되어 왔다. EM 메타물질은 흡수기, 빔 스티어링(beam steering) 응용, 안테나 등에 사용되어 왔다.
본 발명은 금속 공진(resonant) 요소들의 어레이를 포함하는 전자기(EM) 메타물질 디바이스, 및 이를 제조 및 사용하는 방법을 제공한다. 일 태양에서, 본 발명은 1 ㎓ 내지 100 ㎓ 범위의 전자기(EM) 방사선을 제어하는 시트 구조체를 제조하는 방법을 제공한다. 본 방법은, 주 표면 상에 포켓들의 어레이를 포함하는 전사 도구를 제공하는 단계; 전사 도구의 포켓들의 어레이 내에 복수의 금속 공진 요소들을 배치하는 단계; 유전체 캐리어 층의 접착 표면을 전사 도구의 주 표면 상의 포켓들의 어레이 내의 복수의 금속 공진 요소들에 접촉시키는 단계; 및 복수의 금속 공진 요소들과 함께 유전체 캐리어 층을 전사 도구의 주 표면으로부터 제거하는 단계를 포함한다. 복수의 금속 공진 요소들은 비-랜덤 패턴(non-random pattern)으로 유전체 캐리어 층 상에 배치되고, 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
다른 태양에서, 본 발명은 접착 표면을 포함하는 유전체 캐리어 층; 및 유전체 캐리어 층의 접착 표면에 부착되어 비-랜덤 패턴으로 EM 메타물질 구조체를 형성하는 복수의 금속 공진 요소들을 포함하는 전자기(EM) 제어 시트 구조체를 제공한다. 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
다른 태양에서, 본 발명은 1 ㎓ 내지 100 ㎓ 범위의 전자기(EM) 방사선을 제어하는 시트 구조체를 제조하는 방법을 제공한다. 본 방법은, 주 표면 상에 포켓들의 어레이를 포함하는 전사 도구를 제공하는 단계; 전사 도구 상에 유전체 캐리어 층을 배치하는 단계로서, 유전체 캐리어 층은 전사 도구의 포켓들과 정렬된 관통 구멍들의 어레이를 포함하는, 상기 단계; 전사 도구의 포켓들의 어레이를 통해, 복수의 금속 공진 요소들을 유전체 캐리어 층의 관통 구멍들의 어레이 내로 전사하는 단계; 복수의 공진 요소들과 함께 유전체 캐리어 층을 지지하기 위해 지지 층을 제공하는 단계; 유전체 캐리어 층의 관통 구멍들 내부에 적어도 부분적으로 공진 요소들을 고정시키기 위해 커버 층을 제공하는 단계; 및 유전체 캐리어 층으로부터 전사 도구를 제거하는 단계를 포함한다. 복수의 금속 공진 요소들은 비-랜덤 패턴으로 유전체 캐리어 층의 관통 구멍들의 어레이 내에 배치되고, 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
다른 태양에서, 본 발명은 관통 구멍들의 어레이를 포함하는 유전체 캐리어 층; 유전체 캐리어 층의 관통 구멍들에 의해 수용되어 비-랜덤 패턴으로 EM 메타물질 구조체를 형성하는 복수의 금속 공진 요소들; 및 유전체 캐리어 층 상에 배치되어 관통 구멍들 내에 금속 공진 요소들을 고정시키는 고정 층을 포함하는 전자기(EM) 제어 시트 구조체를 제공한다. 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
도 1a는 일 실시 형태에 따른 물품의 평면도이다.
도 1b는 일 실시 형태에 따른 도 1a의 물품의 단면도이다.
도 2는 다른 실시 형태에 따른 물품의 단면도이다.
도 3은 일 실시 형태에 따른 나선형 요소의 측면 사시도이다.
도 4a는 일 실시 형태에 따른 금속 공진 요소의 패턴의 개략도이다.
도 4b는 다른 실시 형태에 따른 금속 공진 요소의 개략도이다.
도 4c는 일 실시 형태에 따른 금속 공진 요소의 패턴의 개략도이다.
도 4d는 다른 실시 형태에 따른 금속 공진 요소의 패턴의 개략도이다.
도 5a는 일 실시 형태에 따른, 도 1a 및 도 1b의 물품을 제조하는 공정의 개략 다이어그램이다.
도 5b는 다른 실시 형태에 따른, 도 1a 및 도 1b의 물품을 제조하는 공정의 개략 다이어그램이다.
도 5c는 다른 실시 형태에 따른, 진공 공급원을 사용하여 물품을 제조하는 공정의 개략 다이어그램이다.
도 6은 다른 실시 형태에 따른, 도 1a 및 도 1b의 물품을 제조하는 공정의 개략 다이어그램이다.
도 7은 일 실시 형태에 따른, 도 1a 및 도 1b의 물품에 기초하여 물품을 제조하는 공정의 개략 다이어그램이다.
도 8은 일 실시 형태에 따른, 도 1a 및 도 1b의 물품에 기초하여 물품을 제조하는 공정의 개략 다이어그램이다.
도 9a는 일 실시 형태에 따른, 물품을 제조하는 공정의 개략 다이어그램이다.
도 9b는 다른 실시 형태에 따른, 물품을 제조하는 공정의 개략 다이어그램이다.
도 10a는 일 실시 형태에 따른, 물품을 제조하는 공정의 개략 다이어그램이다.
도 10b는 다른 실시 형태에 따른, 물품을 제조하는 공정의 개략 다이어그램이다.
도 11은 실시예 1에 대한 반사 손실(return loss) 대 주파수의 플롯이다.
도 12는 실시예들에 대한 삽입 손실(insertion loss) 대 주파수의 플롯이다.
도 13은 실시예들에 대한 전력 손실(power loss) 대 주파수의 플롯이다.
예시된 실시 형태의 하기의 설명에서, 본 발명이 실시될 수 있는 다양한 실시 형태가 예시로서 도시된 첨부 도면을 참조한다. 그 실시 형태가 이용될 수 있고, 본 발명의 범주로부터 벗어남이 없이 구조적 변화가 이루어질 수 있음이 이해되어야 한다. 도면들은 반드시 일정한 축척으로 작성된 것은 아니다. 도면들에서 사용되는 유사한 도면 부호들은 유사한 구성요소들을 지칭한다. 그러나, 주어진 도면에서 구성요소를 지칭하기 위한 도면 부호의 사용은 동일한 도면 부호로 표지된 다른 도면의 그 구성요소를 제한하도록 의도되지 않음이 이해될 것이다.
본 명세서에 사용되는 바와 같이, 용어" 공진 요소"는 전자기(EM) 파에 대한 공진 응답을 갖는 3차원(3D) 금속 요소를 지칭한다.
본 명세서에 사용되는 바와 같이, 용어 "메타물질" 또는 "메타물질 구조체"는 원하는 EM 기능을 수행하기 위해, 예를 들어 EM 파를 흡수, 조향, 반사, 또는 방사하기 위해, 특히 공간에 배열된 "공진 요소들"로 제조된 구조체를 지칭한다.
본 명세서에 사용되는 바와 같이, 용어 "중합체"는 단일중합체, 공중합체 또는 삼원공중합체 등인 중합체성 재료를 지칭한다. 본 명세서에 사용되는 바와 같이, 용어 "단일중합체"는 단일 단량체의 반응 생성물인 중합체성 재료를 지칭한다. 본 명세서에 사용되는 바와 같이, 용어 "공중합체"는 2개의 상이한 단량체의 반응 생성물인 중합체성 재료를 지칭하며, 용어 "삼원공중합체"는 3개의 상이한 단량체의 반응 생성물인 중합체성 재료를 지칭한다.
도 1a는 일 실시 형태에 따른 전자기(EM) 메타물질 물품(10)의 평면도이다. 도 1b는 도 1a의 물품(10)의 단면도이다. 물품(10)은 입사 전자기(EM) 파를 제어하도록 구성된 시트 구조체를 갖는다. 시트 구조체(10)는 일 면에 접착 표면(14)을 포함하는 유전체 캐리어 층(12)을 포함한다. 금속 공진 요소들(16)의 어레이가 유전체 캐리어 층(12)의 접착 표면(14)에 부착되어 비-랜덤 패턴으로 EM 메타물질 구조체를 형성한다. 금속 공진 요소들(16)의 어레이는 각각 그의 축을 따라 연장되고, 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층(12)의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
도 2에 도시된 실시 형태에서, 물품은 금속 공진 요소들(16)의 패턴을 덮도록 유전체 캐리어 층(12)에 부착된 커버 층(18)을 추가로 포함한다. 일부 실시 형태들에서, 커버 층(18)은 유전체 캐리어 층(12)의 접착 표면(14)에 부착된 중합체 필름(182)을 포함할 수 있다. 이 중합체 필름은 유전체 캐리어 층(12)의 접착 표면(14)에 접착식으로 접합하기 위한 접착제 재료(184)를 포함할 수 있다. 커버 층(18)이 임의의 적합한 비전도성 가요성 재료로 제조될 수 있음이 이해되어야 한다.
물품(10)의 EM 제어 시트 구조체는 예컨대 1 ㎓ 내지 50 ㎓의 범위의 EM 방사선을 흡수하도록 구성된다. 이 구조체의 작동의 주요 원리는 예컨대 금속 공진 요소들(16)의 공진 특성, 및 금속 공진 요소들(16) 사이의 상호 결합에 기초할 수 있다. 양호한 근사치로서, 공진 요소의 공진 주파수는 정상파(standing wave) 관계식, k*l = n*π (상기 식에서, n은 고유 모드 번호이고, l은 공진 요소의 전도성 길이이고, k는 EM 파에 대한 전파 인자임)을 사용하여 발견될 수 있다. 이는 요소들이 cmWave 및 mmWave 주파수 범위 내에 있을 수 있는 EM 파의 약 λ/2가 되게 한다. 일반적으로, cmWave 및 mmWave 주파수 범위 내의 EM 파에 대한 공진 요소들은 약 λ/100 내지 λ의 범위의 측방향 크기(예를 들어, 길이, 폭, 직경)를 가질 수 있다.
물품(10)의 EM 제어 시트 구조체는 원하는 응용에 따라 임의의 적합한 측방향 크기를 가질 수 있다. 일부 실시 형태들에서, 시트 구조체(10)는 예를 들어 공진 요소의 측방향 크기의 약 10배 내지 약 1000배인 측방향 크기(예를 들어, 길이 또는 폭)를 가질 수 있다. 시트 구조체, 예컨대 유전체 캐리어 층 및 지지된 공진 요소들은 예를 들어 약 0.005 mm 내지 약 10 mm의 범위의 두께를 가질 수 있다.
본 명세서에 기술된 금속 공진 요소는 EM 파에 대한 공진 응답을 갖는 임의의 적합한 3D 금속 요소들일 수 있다. 적합한 3D 금속 요소들은 예를 들어 전도성 나선형 요소, 금속 회전타원체(spheroid) 또는 비드(bead), 중심에 구멍을 갖거나 갖지 않는 금속 코팅된 플라스틱 또는 세라믹 회전타원체, 전도성 원통형 요소 등을 포함할 수 있다. 예시적인 금속 공진 요소는 나선형 요소이다. 나선형 요소는 전도성 와이어, 전도성 층으로 코팅된 중합체 재료의 스트랜드(strand), 또는 전도성 층으로 코팅된 생체재료(biomaterial) 중 적어도 하나를 포함할 수 있다. 전도성 층은 작동 주파수에서 그 표피 깊이(skin depth)보다 더 큰 두께를 가질 수 있다. 도 3은 일 실시 형태에 따른 예시적인 나선형 요소(16)의 측면 사시도이다. 나선형 요소들은 각각 전도성 길이, 예를 들어 약 λ/2, 일반적으로, λ/4 이상, 및 10λ 이하일 수 있으며, 여기서 λ는 최소 작동 주파수의 자유-공간 파장(free-space wavelength)이다. 나선형 요소의 전도성 길이는 전도성 와이어의 길이일 수 있다. 나선형 요소의 기하학적 형상(geometry)은 높이, 피치(pitch), 외경(OD), 내경(ID), 축(162)에 대한 나선각(helix angle) 등에 의해 정의될 수 있다.
금속 공진 요소들(16)은 최소 반복 단위, 단위 셀을 갖는 비-랜덤 패턴으로 배열될 수 있다. 비-랜덤 패턴의 단위 셀은 길이 x 폭의 평면내(in-plane) 치수를 가질 수 있다. 길이는 금속 공진 요소의 축을 따라 측정될 수 있고, 폭은 직교 방향을 따라 측정될 수 있다. 구조체의 패턴 또는 단위 셀 기하학적 형상 및 관련 치수들은 특정 응용에 의해 정의될 수 있음을 이해해야 한다. 일부 실시 형태들에서, 공진 요소들을 λ/2(여기서, λ는 최소 작동 주파수의 자유-공간 파장임) 이하의 거리에 의해 분리하는 것이 전형적이다. 비-랜덤 패턴은, 예를 들어, 홀로그래픽 또는 변조된 메타표면 안테나(metasurface antenna)에 사용되는 것과 같은 전통적인 2D 레이턴시(latency) 및 복소(complex) 패턴들을 포함하는 전자기 기능을 정의하는 특정 순서로 공간에 배열된 임의의 적합한 비-랜덤 수단을 지칭할 수 있음을 이해해야 한다.
금속 공진 요소들(16)의 비-랜덤 패턴은 단순 직사각형(SR) 패턴, 중심설정된 직사각형(CR) 패턴, 경사 패턴, 육각형 정사각형 패턴, 벌집형 패턴 등 중 적어도 하나를 포함한다. 도 4a는 중심설정된 직사각형 단위 셀(42)을 갖는 금속 공진 요소들(16)의 패턴을 예시한다. 일 예에서, 단위 셀(42)은 a1 x b1 = (4 x 나선 OD) x (나선 높이 + OD)의 평면내 치수를 갖는다. 도 4b는 단순 직사각형 단위 셀(44)을 갖는 금속 공진 요소들(16)의 패턴을 예시한다. 다른 예에서, 단위 셀(44)은 a1 x b1 = (2 x 나선 OD) x (나선 높이 + OD)의 평면내 치수를 갖는다. 도 4c 및 도 4d는 경사 패턴 단위 셀(46 또는 48)을 갖는 금속 공진 요소들(16)의 패턴을 예시한다.
유전체 캐리어 층(12)은 예컨대 폴리카르보네이트, PET, 아크릴, 테플론, 비닐 등과 같은 중합체 재료, 예컨대 알루미나, 유리, 스트론튬 티타네이트 등과 같은 세라믹 재료, 예컨대 중합체 및 고체 금속 재료, 중합체 및 고체 세라믹 재료, 혼합된 세라믹 및 금속 재료 등을 포함하는 복합재를 예를 들어 포함하는 임의의 적합한 실질적으로 비전도성인 재료를 포함한다. 유전체 캐리어 층(12)의 접착 표면(14)은 예컨대 감압 접착제, 핫 멜트, 구조용 접착제, 용매계(수계 포함) 접착제, (열, UV, 전자 빔 노출을 통한) 경화성 접착제와 같은 다양한 접착제 유형들의 임의의 적합한 접착제 재료를 포함할 수 있다. 접착성 화학물질 계열(adhesive chemical family)은 예를 들어 에폭시, 폴리우레탄, 개질된 아크릴, 시아노아크릴레이트, 혐기성 물질(anaerobics), 실리콘, 페놀성 물질(phenolics), 이미다졸, 에틸렌/비닐 아세테이트 공중합체, 폴리올레핀, 블록 공중합체, 폴리아미드, 폴리에스테르, 폴리비닐 아세탈, 폴리비닐 부티랄, 폴리부텐, 열가소성 탄성중합체, 천연 및 합성 고무 유도체, 폴리아크릴레이트, 셀룰로오스 물질(cellulosics), 폴리비닐 아세테이트, 우레아 포름알데하이드, 멜라민 포름알데하이드, 페놀 포름알데하이드, 스티렌-부타디엔 고무, 폴리클로로프렌, 니트릴 물질(nitriles), 아크릴산 에스테르, 폴리에테르, 에폭시 아크릴레이트, 우레탄 아크릴레이트를 포함한다.
본 발명에서, 예컨대 유전체 캐리어 층 및 금속 공진 요소들을 유전체 캐리어 층에 고정시키는 임의의 고정 재료와 같은, 금속 공진 요소들과 직접 접촉하는 재료들은 실질적으로 비전도성이다. 금속 공진 요소들과 접촉하는 재료들은, 예를 들어, 관심 주파수에서 0.0001 내지 0.1의 범위의 유전 손실 탄젠트를 가질 수 있다.
전자기(EM) 제어 물품(예컨대, 도 1a 및 도 1b에 도시된 바와 같은 시트 구조체(10))이 다양한 공정들에 의해 제조될 수 있다. 도 5a에 도시된 실시 형태에서, 전자기(EM) 제어 시트 구조체를 제조하는 방법이 제공된다. 전사 도구(510)는 그의 주 표면(511)에 포켓들(512)의 어레이를 포함하도록 제공된다. 금속 공진 요소들(16)은 사전결정된 패턴을 형성하기 위해 전사 도구(510)의 포켓들(512)의 어레이 내에 존재하도록 제공된다. 금속 공진 요소들(16)은 먼저 주 표면(511)에 배치되고, 이어서 예를 들어 진동(shaking), 브러시를 사용한 문지름(rubbing) 등과 같은 임의의 적합한 방법에 의해 포켓들(512) 내로 충전될 수 있다. 포켓들의 측방향 크기(예를 들어, 길이 및 폭)는 공진 요소들이 포켓들로부터 쉽게 이탈하지 않고 포켓들에 의해 수용되는 바와 같이 느슨한 끼움(loose fit)을 갖도록 결정될 수 있다. 포켓들은 공진 요소들의 높이에 필적하는 깊이를 가질 수 있다. 포켓들의 깊이는 예를 들어 약 0.1 mm 내지 10 mm의 범위일 수 있다. 도 5a의 실시 형태에서, 공진 요소들(16)은 각각 상부 부분이 포켓들(512)로로부터 돌출되도록 포켓들의 깊이보다 더 큰 높이를 갖는다. 일부 실시 형태들에서, 공진 요소들의 높이는 예를 들어 포켓들의 깊이보다 10% 내지 90% 더 클 수 있다. 공진 요소들(16)이 정 위치에 있는 상태에서, 유전체 캐리어 층(12)은 그 접착 표면(14)이 전사 도구(510)의 주 표면(511)을 덮어 공진 요소들(16)의 상부 부분과 접촉하도록 위치된다. 이어서, 유전체 캐리어 층(12)은 전사 도구(510)의 주 표면(511)으로부터 공진 요소들(16)과 함께 제거되어 물품(10)을 형성한다.
도 5b에 도시된 실시 형태에서, 전자기(EM) 제어 시트 구조체(10)를 제조하는 다른 방법이 제공된다. 전사 도구(510)는 그의 주 표면(511)에 포켓들(512)의 어레이를 포함하도록 제공된다. 금속 공진 요소들(16)은 사전결정된 패턴을 형성하기 위해 전사 도구(510)의 포켓들(512)의 어레이 내에 존재하도록 제공된다. 금속 공진 요소들(16)은 먼저 주 표면(511)에 배치되고, 이어서 예를 들어 진동, 브러시를 사용한 문지름 등과 같은 임의의 적합한 방법에 의해 포켓들(512) 내로 충전될 수 있다. 도 5b의 실시 형태에서, 금속 공진 요소들(16)은 각각 포켓들에 의해 수용될 때 공진 요소들의 상부에 공간이 있도록 포켓들의 깊이보다 더 작은 높이를 갖는다. 일부 실시 형태들에서, 공진 요소들의 높이는 예를 들어 포켓들의 깊이보다 100% 내지 110% 더 작을 수 있다. 포켓의 크기는 포켓들에 의해 수용된 공진 요소들이 힘이 가해질 때 접착 표면(14)을 향해 이동하고 유전체 캐리어 층(12)의 접착 표면(14)과 접촉할 수 있다. 공진 요소들(16)은 예를 들어 자기력, 중력 등과 같은 힘에 따라 이동할 수 있다. 공진 요소들(16)이 접착 표면(14) 상의 정 위치에 고정될 때, 전사 도구(510)는 유전체 캐리어 층(12)으로부터 제거되어 물품(10)을 형성할 수 있다.
일부 실시 형태들에서, 공진 요소들(16)의 전사를 제어하기 위해 진공 공급원이 전사 도구(510)에 제공될 수 있다. 도 5c의 도시된 실시 형태에서, 전사 도구(510)는 각각의 포켓(512)의 바닥에 있는 구멍들(514)을 포함하며, 이는 다른 면(513)까지 관통한다. 요소들(16)은 포켓(512) 내에 배치될 수 있고, 이어서 진공 공급원(52)은 포켓들(512) 내에 요소를 고정시키기 위해 도구(510)의 면(513)에 제공될 수 있다. 진공을 작동시킴으로써, 도구(510)는 접착 표면(14)과 접촉하지 않고도 접착 표면(14) 위로 배치되도록 도치될 수 있다. 진공이 작동 중지될 수 있고, 따라서 요소들(16)은 도구(510) 밖으로 떨어져서 접착 표면(14) 상으로 부착될 수 있다. 진공 공급원은 다양한 실시 형태들에서 다양한 전사 도구들에 가해 질 수 있음을 이해해야 한다.
도 6에 도시된 실시 형태에서, 전자기(EM) 제어 시트 구조체(10)를 제조하는 다른 방법이 제공된다. 전사 도구(510')는 관통 구멍들인 포켓들(512')의 어레이를 포함하도록 제공된다. 전사 도구(510')는 유전체 캐리어 층(12)의 접착 표면(14)에 배치된다. 금속 공진 요소들(16)이 예를 들어 진동, 브러시를 사용한 문지름과 같은 임의의 적합한 방법에 의해 전사 도구(510')의 포켓들(512')의 어레이를 통과하도록 제공된다. 도 6의 실시 형태에서, 금속 공진 요소들(16)은 각각 포켓들에 의해 수용될 때 공진 요소들의 상부에 공간이 있도록 포켓들의 깊이보다 더 작은 높이를 갖는다. 포켓의 크기는 공진 요소들이 포켓들을 통과할 수 있도록 결정되고, 접착 표면(14)을 향해 이동하고, 유전체 캐리어 층(12)의 접착 표면(14)과 접촉할 수 있다. 공진 요소들(16)이 접착 표면(14) 상의 정 위치에 고정될 때, 전사 도구(510')는 유전체 캐리어 층(12)으로부터 제거되어 물품(10)을 형성할 수 있다.
공진 요소들의 패턴은 다양한 방법들에 의해 추가로 고정될 수 있다. 도 7 및 도 8의 실시 형태들에서, 수지 재료(22 또는 24)가 물품(10)의 주 표면 상에 적용되어, 공진 요소들(16)을 접착 표면(14)에 적어도 부분적으로 매립한다. 수지 재료(22 또는 24)는 예를 들어 용해된 상태에서 용매로 코팅하고 이어서 용매를 증발시키는 것, 가열된 열가소성 상태에서 코팅하고 이어서 냉각하는 것, 열가소성 건조 필름을 열간 롤 라미네이팅하는 것, 열, UV 또는 전자 빔 방사선을 가함으로써 수지를 경화시키는 것, 액체 또는 분말 형태로 분무 코팅하는 것과 같은 다양한 방법들에 의해 적용될 수 있다. 수지 재료는 예를 들어 감압 접착제, 핫 멜트, 구조용 접착제, 용매계(수계 포함) 접착제, (열, UV, 전자 빔 노출을 통한) 경화성 접착제와 같은 다양한 접착제 유형의 임의의 적합한 접착제 재료를 포함할 수 있다. 접착성 화학물질 계열은 예를 들어 에폭시, 폴리우레탄, 개질된 아크릴, 시아노아크릴레이트, 혐기성 물질, 실리콘, 페놀성 물질, 이미다졸, 에틸렌/비닐 아세테이트 공중합체, 폴리올레핀, 블록 공중합체, 폴리아미드, 폴리에스테르, 폴리비닐 아세탈, 폴리비닐 부티랄, 폴리부텐, 열가소성 탄성중합체, 천연 및 합성 고무 유도체, 폴리아크릴레이트, 셀룰로오스 물질, 폴리비닐 아세테이트, 우레아 포름알데하이드, 멜라민 포름알데하이드, 페놀 포름알데하이드, 스티렌-부타디엔 고무, 폴리클로로프렌, 니트릴 물질, 아크릴산 에스테르, 폴리에테르, 에폭시 아크릴레이트, 우레탄 아크릴레이트를 포함한다. 일부 실시 형태들에서, 유동성 수지 재료가 접착 표면(14)에 적용될 수 있으며, 이는 건조 또는 경화되어 공진 요소들(16)을 봉지하기 위한 고체 층을 형성할 수 있다. 적합한 수지 재료는 예를 들어 감압 접착제, 핫 멜트, 구조용 접착제, 용매계(수계 포함) 접착제, (열, UV, 전자 빔 노출을 통한) 경화성 접착제를 포함할 수 있다. 접착성 화학물질 계열은 예를 들어 에폭시, 폴리우레탄, 개질된 아크릴, 시아노아크릴레이트, 혐기성 물질, 실리콘, 페놀성 물질, 이미다졸, 에틸렌/비닐 아세테이트 공중합체, 폴리올레핀, 블록 공중합체, 폴리아미드, 폴리에스테르, 폴리비닐 아세탈, 폴리비닐 부티랄, 폴리부텐, 열가소성 탄성중합체, 천연 및 합성 고무 유도체, 폴리아크릴레이트, 셀룰로오스 물질, 폴리비닐 아세테이트, 우레아 포름알데하이드, 멜라민 포름알데하이드, 페놀 포름알데하이드, 스티렌-부타디엔 고무, 폴리클로로프렌, 니트릴 물질, 아크릴산 에스테르, 폴리에테르, 에폭시 아크릴레이트, 우레탄 아크릴레이트를 포함한다.
도 7의 실시 형태에서, 수지 재료(22)는 실질적으로 평평한 상부 표면(22a) 및 실질적으로 평평한 바닥 표면(22b)을 갖는다. 도 8의 실시 형태에서, 수지 재료(24)는 접착 표면(14)에 부착된 공진 요소들(16)과 실질적으로 정합되는 상부 표면(24a)을 갖는다. 바닥 표면(22b, 24b)은 접착 표면(14)과 접촉된다. 접착 표면(14)과 함께 지지 층(12)이 제거될 때, 수지 층(22, 24)의 바닥 표면(22b, 24b)이 드러난다. 일부 실시 형태들에서, 제2 수지 층(23)은 공진 요소들(16)이 제1 수지 층(22, 24)과 제2 수지 층(23)에 의해 봉지되도록 바닥 표면(22b, 24b)을 덮기 위해 제공될 수 있다.
도 9a는 일 실시 형태에 따른, 물품(20)을 제조하는 공정의 개략 다이어그램이다. 공진 요소들(16)의 패턴은 전사 도구(510)의 포켓들(512)에 의해 수용된다. 공진 요소들(16)은 각각 포켓들(512)에 의해 수용될 때 공진 요소들의 상부에 공간이 있도록 포켓들의 깊이보다 더 작은 높이를 갖는다. 유전체 캐리어 층(30)은 전사 도구(510)의 주 표면(511)에 제공된다. 유전체 캐리어 층(30)은 전사 도구(510)의 포켓들(512)의 개구들과 정렬되는 관통 구멍들(32)의 패턴을 갖는다. 관통 구멍들(32)은 전사 도구(510)가 뒤집히는 경우 공진 요소들(16)이 통과하는 데 적합한 측방향 크기를 갖는다. 유전체 캐리어 층(30)의 관통 구멍들(32)에 의해 수용되는 공진 요소들(16)을 지지하기 위해 지지 층(40)이 제공된다. 이어서, 전사 도구(510)는 지지 층(40)으로부터 제거되어 물품(20)을 형성하며, 여기서 공진 요소들(16)의 패턴은 지지 층(40)에 의해 지지되는 유전체 캐리어 층(30)의 관통 구멍들(32)에 의해 수용된다. 공진 요소들(16)은 각각 공진 요소들(16)의 상부 부분이 유전체 캐리어 층(30)의 면(31) 상에서 유전체 캐리어 층(30)으로부터 돌출되도록 관통 구멍들(32)의 깊이보다 더 큰 높이를 갖는다. 일부 실시 형태들에서, 면(31)으로부터 돌출되는 상부 부분은 공진 요소들의 높이의 약 5% 내지 약 100% 일 수 있다.
도 9b는 다른 실시 형태에 따른, 물품(20)을 제조하는 다른 공정의 개략 다이어그램이다. 전사 도구(510')는 관통 구멍들인 포켓들(512')의 어레이를 포함하도록 제공된다. 전사 도구(510')는 유전체 캐리어 층(30) 상에 배치되며, 여기서 전사 도구(510')의 관통 구멍들(512')은 유전체 캐리어 층(30)의 관통 구멍들(32)과 정렬된다. 금속 공진 요소들(16)은 예를 들어 진동, 브러시를 사용하는 문지름 등과 같은 임의의 적합한 방법에 의해 포켓들(512')의 어레이를 통과하도록 전사 도구(510)의 표면(511') 상에 제공된다. 관통 구멍들(512', 32)의 크기는 공진 요소들(16)이 관통 구멍들을 통과, 즉 지지 층(40) 아래를 향해 이동할 수 있도록 결정된다. 이어서, 전사 도구(510')는 지지 층(40)으로부터 제거되어 물품(20)을 형성하며, 여기서 공진 요소들(16)의 패턴은 지지 층(40)에 의해 지지되는 유전체 캐리어 층(30)의 관통 구멍들(32)에 의해 수용된다.
물품(20)은 다양한 물품들을 형성하도록 수정될 수 있다. 도 10a의 실시 형태에서, 수지 재료(34)는 유전체 캐리어 층(30)의 면(31) 상으로 적용되어 유전체 캐리어 층(30)에 공진 요소들(16)을 고정시킨다. 수지 재료(34)는 저점도 수지일 수 있고, 이는 유전체 캐리어 층(30)의 관통 구멍들의 측벽과 관통 구멍들 내에 수용된 공진 요소들(16) 사이의 간극 내로 유동하여 공진 요소들(16)을 제자리에 추가로 고정시킬 수 있다. 도 10b의 실시 형태, 접착 테이프(34')가 유전체 캐리어 층(30)에 부착되어 금속 공진 요소들(16)의 패턴을 덮는다. 공진 요소들(16)이 유전체 캐리어 층(30)의 관통 구멍들(32)에 고정된 후, 지지 층(40)은 면(31) 반대편의 유전체 캐리어 층(30)의 면(33)을 드러내기 위해 제거될 수 있다. 제2 수지 층 또는 접착 테이프(36)가 유전체 캐리어 층(30)의 면(33) 상에 적용되어 유전체 캐리어 층(30)의 관통 구멍들(32) 내에 공진 요소들(16)을 추가로 고정시킨다.
비-랜덤 패턴으로 유전체 캐리어 층에 의해 지지되는 금속 공진 요소들의 어레이를 포함하는 본 명세서에 기술된 물품들이 다양한 응용들에서 사용될 수 있다. 일 실시 형태에서, 1 ㎓ 내지 100 ㎓의 범위의 전자기(EM) 방사선을 흡수하도록 구성된 전자기 간섭(EMI) 흡수기를 형성하기 위해 유전체 캐리어 층 상에 금속 층이 제공될 수 있다. 일 실시 형태에서, EM 안테나는, 연속적이거나 또는 특별히 설계된 개구들(금속이 없는 부분들)을 갖는, 유전체 내후 층 상에 형성된 금속 층에 의해 형성될 수 있다. 일 실시 형태에서, 반사 어레이는 상이한 공진 주파수를 갖는 적어도 2개의 공진 요소들에 의해 형성되고, 연속적인 금속성 층으로 배킹된 유전체 층을 제공한다.
반사 어레이 필름, 반사 어레이 필름의 부분, 반사 어레이 필름의 적어도 일부를 제조하는 방법, 및 반사 어레이 필름을 사용하는 방법인 다양한 실시 형태가 제공된다.
실시 형태 1은 1 ㎓ 내지 100 ㎓ 범위의 전자기(EM) 방사선을 제어하는 시트 구조체를 제조하는 방법으로서, 본 방법은
주 표면 상에 포켓들의 어레이를 포함하는 전사 도구를 제공하는 단계;
전사 도구의 포켓들의 어레이 내에 복수의 금속 공진 요소들을 배치하는 단계;
유전체 캐리어 층의 접착 표면을 전사 도구의 주 표면 상의 포켓들의 어레이 내의 복수의 금속 공진 요소들에 접촉시키는 단계; 및
복수의 금속 공진 요소들과 함께 유전체 캐리어 층을 전사 도구의 주 표면으로부터 제거하는 단계를 포함하고,
복수의 금속 공진 요소들은 비-랜덤 패턴으로 유전체 캐리어 층 상에 배치되고, 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 상기 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
실시 형태 2는, 금속 공진 요소들이 하나 이상의 나선형 요소들을 포함하는, 실시 형태 1의 방법이다.
실시 형태 3은, 포켓들의 어레이가 각각 하나의 금속 공진 요소를 수용하도록 구성되는, 실시 형태 1 또는 실시 형태 2의 방법이다.
실시 형태 4는, 전사 도구의 주 표면이 비접착 표면인, 실시 형태 1 내지 실시 형태 3 중 어느 한 실시 형태의 방법이다.
실시 형태 5는, 유전체 캐리어 층이 1 ㎓ 내지 100 ㎓ 범위의 주파수에 대해 0.0001 내지 0.1 내의 유전 손실 탄젠트를 갖는 하나 이상의 실질적으로 비전도성인 재료들을 포함하는, 실시 형태 1 내지 실시 형태 4 중 어느 한 실시 형태의 방법이다.
실시 형태 6은, 비-랜덤 패턴이 단순 직사각형(SR) 패턴, 중심설정된 직사각형(CR) 패턴, 경사 패턴, 육각형 정사각형 패턴, 또는 벌집형 패턴 중 적어도 하나를 포함하는, 실시 형태 1 내지 실시 형태 5 중 어느 한 실시 형태의 방법이다.
실시 형태 7은, 금속 공진 요소들이 전도성 와이어, 전도성 층으로 코팅된 중합체 재료의 스트랜드, 또는 전도성 층으로 코팅된 생체재료 중 적어도 하나를 포함하는, 실시 형태 1 내지 실시 형태 6 중 어느 한 실시 형태의 방법이다.
실시 형태 8은, 금속 공진 요소들이 각각 약 λ/4 내지 약 10λ의 범위의 전도성 길이를 갖고 λ는 최소 작동 주파수의 자유-공간 파장인, 실시 형태 1 내지 실시 형태 7 중 어느 한 실시 형태의 방법이다.
실시 형태 9는, 유전체 캐리어 층 상에 금속 공진 요소들을 봉지하기 위한 수지 재료를 제공하는 단계를 더 포함하는, 실시 형태 1 내지 실시 형태 8 중 어느 한 실시 형태의 방법이다.
실시 형태 10은, 접착 층의 반대편 쪽에서 유전체 캐리어 층 상에 금속 층을 제공하는 단계를 더 포함하는, 실시 형태 1 내지 실시 형태 9 중 어느 한 실시 형태의 방법이다.
실시 형태 11은 전자기(EM) 제어 시트 구조체로서,
접착 표면을 포함하는 유전체 캐리어 층; 및
유전체 캐리어 층의 접착 표면에 부착되어 비-랜덤 패턴으로 EM 메타물질 구조체를 형성하는 복수의 금속 공진 요소들을 포함하고,
복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
실시 형태 12는, 금속 공진 요소들이 하나 이상의 나선형 요소들을 포함하는, 실시 형태 11의 EM 제어 시트 구조체이다.
실시 형태 13은, 접착 표면을 갖는 유전체 캐리어 층이 1 ㎓ 내지 100 ㎓ 범위의 주파수에 대해 0.0001 내지 0.1 내의 유전 손실 탄젠트를 갖는 하나 이상의 실질적으로 비전도성인 재료들을 포함하는, 실시 형태 11 또는 실시 형태 12의 EM 제어 시트 구조체이다.
실시 형태 14는, 비-랜덤 패턴이 단순 직사각형(SR) 패턴, 중심설정된 직사각형(CR) 패턴, 경사 패턴, 육각형 정사각형 패턴, 또는 벌집형 패턴 중 적어도 하나를 포함하는, 실시 형태 11 내지 실시 형태 13 중 어느 한 실시 형태의 EM 제어 시트 구조체이다.
실시 형태 15는, 금속 공진 요소들이 전도성 층을 포함하는 전도성 와이어, 전도성 층으로 코팅된 중합체 재료의 스트랜드, 또는 전도성 층으로 코팅된 생체재료 중 적어도 하나를 포함하는, 실시 형태 11 내지 실시 형태 14 중 어느 한 실시 형태의 EM 제어 시트 구조체이다.
실시 형태 16은, 전도성 층이 작동 주파수에서 그 표피 깊이보다 더 큰 두께를 갖는, 실시 형태 15의 EM 제어 시트 구조체이다.
실시 형태 17은, 전도성 층이 Cu, Al, Ag, W, Ti, Cr, Fe, 또는 이들의 합금 중 적어도 하나를 포함하는, 실시 형태 15 또는 실시 형태 16의 EM 제어 시트 구조체이다.
실시 형태 18은, 금속 공진 요소들이 각각 약 λ/4 내지 약 10λ의 범위의 전도성 길이를 갖고 λ는 최소 작동 주파수의 자유-공간 파장인, 실시 형태 11 내지 실시 형태 17 중 어느 한 실시 형태의 EM 제어 시트 구조체이다.
실시 형태 19는, 유전체 캐리어 층 상에 금속 공진 요소들을 봉지하기 위한 수지 재료를 더 포함하는, 실시 형태 11 내지 실시 형태 18 중 어느 한 실시 형태의 EM 제어 시트 구조체이다.
실시 형태 20은, 금속 공진 요소들이 전도성 나선형 요소, 금속 회전타원체 또는 비드, 구멍을 갖거나 또는 갖지 않는 금속 코팅된 플라스틱 또는 세라믹 회전타원체, 또는 전도성 원통형 요소 중 적어도 하나를 포함하는, 실시 형태 11 내지 실시 형태 19 중 어느 한 실시 형태의 EM 제어 시트 구조체이다.
실시 형태 21은 1 ㎓ 내지 100 ㎓ 범위의 전자기(EM) 방사선을 제어하는 시트 구조체를 제조하는 방법으로서, 본 방법은
주 표면 상에 포켓들의 어레이를 포함하는 전사 도구를 제공하는 단계;
전사 도구 상에 유전체 캐리어 층을 배치하는 단계로서, 유전체 캐리어 층은 전사 도구의 포켓들과 정렬된 관통 구멍들의 어레이를 포함하는, 상기 단계;
전사 도구의 포켓들의 어레이를 통해, 복수의 금속 공진 요소들을 유전체 캐리어 층의 관통 구멍들의 어레이 내로 전사하는 단계;
복수의 공진 요소들과 함께 유전체 캐리어 층을 지지하기 위해 지지 층을 제공하는 단계;
유전체 캐리어 층의 관통 구멍들 내부에 적어도 부분적으로 공진 요소들을 고정시키기 위해 커버 층을 제공하는 단계; 및
유전체 캐리어 층으로부터 전사 도구를 제거하는 단계를 포함하고,
복수의 금속 공진 요소들은 비-랜덤 패턴으로 유전체 캐리어 층의 관통 구멍들의 어레이 내에 배치되고, 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
실시 형태 22는 전자기(EM) 제어 시트 구조체로서,
관통 구멍들의 어레이를 포함하는 유전체 캐리어 층;
유전체 캐리어 층의 관통 구멍들에 의해 수용되어 비-랜덤 패턴으로 EM 메타물질 구조체를 형성하는 복수의 금속 공진 요소들; 및
유전체 캐리어 층 상에 배치되어 관통 구멍들 내에 금속 공진 요소들을 고정시키는 고정 층을 포함하고,
복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향된다.
실시 형태 23은, 고정 층이 접착 테이프 또는 중합체 필름 중 적어도 하나를 포함하는, 실시 형태 22의 시트 구조체이다.
실시예
이들 실시예는 단지 예시적인 목적을 위한 것이며 첨부된 청구범위의 범주에 대해 제한하는 것으로 여겨지지 않는다.
실시예
실시예 1
리 스프링(Lee Spring)(미국 뉴욕주 브루클린 소재), 부품 번호 CB0040A-03-E(추가 상세 사항에 대해서는 표 1 참조)로부터 구매가능한 스프링들을 사용하여 샘플을 구축하였다. 포켓들(510)이 스프링들로 충전될 때까지 도구(510)를 진동시키면서 (예를 들어, 도 5a, 도 5b 또는 도 5c에 도시된 바와 같이) 스프링들을 도구의 상부에 분산시켰다. 도구의 표면 상의 과량의 스프링들을 브러시로 제거하였다. 이어서, 테이프의 접착 면이 포켓 내의 스프링들을 향하도록 2 인치 폭의 3M 비닐 테이프 471(오렌지 색)을 도구 위에 적용하였다. 이러한 테이프는 또한 캐리어로서 역할도 하였다. 스프링들을 테이프에 전사하기 위해, 도구를 회전시키고, 평평한 표면 상에 위치시키고, 이어서 톡톡 두드렸고, 이는 스프링들이 포켓들로부터 비닐 테이프의 접착 층 상으로 떨어지는 것을 도왔다. 이 후에, 테이프로부터 도구를 제거하여, 배열된 나선들의 층을 테이프의 표면 상에 남겼다. 스프링들을 도 4a에 나타낸 패턴으로 배열하였다.
도 4a에 나타낸 패턴(인접 포켓들 사이의 거리 0.58 mm)으로 포켓들(길이 2.8 mm, 폭 0.75 mm, 깊이 0.8 mm)을 갖는 패턴화된 도구(180 mm x 180 mm x 4 mm)를 스테레오리소그래피 3D 프린터(프로젯(ProJet) 7000HD, 3D 시스템즈(Systems), 미국 콜로라도주 리틀톤 소재) 기계를 통해 아큐라(Accura) 25 수지(3D 시스템즈, 미국 콜로라도주 리틀톤 소재)로 인쇄하였다. 과량의 작은 스프링들(CB0040A-03-E, 리 스프링, 미국 뉴욕주 브룩클린 소재)을 도구의 표면 상에 놓고, 중심에서 40 mm x 40 mm 면적 내의 모든 포켓들이 스프링을 포함할 때까지 그 표면에 걸쳐 펼쳤다. 나머지 스프링들을 그 표면 상에서 브러시로 부드럽게 제거하였다. 비닐 테이프(15.2 cm 폭, 제품 번호 471, 쓰리엠(3M) 컴퍼니, 미국 미네소타주 세인트 폴 소재)를 충전된 도구의 상부 위로 가압하여, 테이프 접착제를 스프링들에 접촉시켰다. 이어서, 테이프를 도구로부터 벗겨 제거하였고 스프링들을 테이프에 부착된 상태로 유지하였다.
[표 1]
실시예 2 내지 실시예 4
캐리어로서 125 um 두께의 PET를 사용하여 실시예 2 및 실시예 3을 제조하였으며, 여기서 스프링들을 끼워맞추도록 포켓들을 레이저 절단하였다. 포켓들은 그 폭이 스프링 외경과 동일한 직사각형 형상이었고, 그 깊이는 스프링 높이보다 약 10% 초과였다. 스프링들을 도 4a에 따른 중심설정된 직사각형 패턴으로 배열하였다. 미국 미주리주 세인트 루이스 소재의 시그마-알드리치 코포레이션(Sigma-Aldrich Corp.)으로부터 상표명 "폴리비닐 부티랄"로 구매가능한 수지 재료를 사용하여 스프링을 제자리에 로킹하였다. 사용된 스프링에 대한 세부사항은 표 1을 참조한다.
실시예 5 내지 실시예 7
캐리어로서 125 um 두께의 PET를 사용하여 실시예 5 내지 실시예 7을 제조하였으며, 여기서 스프링들을 끼워맞추도록 포켓들을 레이저 절단하였다. 포켓들은 그 폭이 스프링 외경과 동일한 직사각형 형상이었고, 그 깊이는 스프링 높이보다 약 10% 초과였다. 스프링들을 도 4b에 따른 단순 직사각형 패턴으로 배열하였다. 미국 미주리주 세인트 루이스 소재의 시그마-알드리치 코포레이션으로부터 상표명 "폴리비닐 부티랄"로 구매가능한 수지 재료를 사용하여 스프링을 제자리에 로킹하였다. 사용된 스프링에 대한 세부사항은 표 1을 참조한다.
시험 방법
전자기 노이즈 억제 시험
종래의 FR4 기판(board)으로 제조된 50 옴(Ohm) 마이크로스트라이프(microstripe) 라인(1.57 mm 두께 및 3.3 mm의 RF 신호 라인 폭)을 사용하여 샘플들의 노이즈 억제 성능을 시험하였다. 샘플들을 0.9 x 0.4 인치 직사각형들로 절단하고, 샘플의 기하학적 중심이 마이크로스트라이프 라인의 기하학적 중심에 대응하도록 마이크로스트라이프 라인의 상부에 위치시키고, 샘플의 가장 긴 변은 마이크로스트라이프 라인에 평행하다. RF 케이블들을 사용하여 마이크로스트라이프 라인을 벡터 네트워크 분석기(Rohde & Schwarz ZNB20)에 연결하였다. VNA는 전체 4 포트 S 파라미터들(S11, S22, S21, S12)을 측정하도록 설정하였고 VNA 제조업자의 매뉴얼에 따라 보정하였다. 측정된 S-파라미터들을 사용하여 삽입 손실 및 전력 손실과 같은 유동 노이즈 억제 특성들을 계산하였다. 삽입 손실은 IL = S21[있는 그대로의 마이크로스트라이프 라인] - S21[샘플을 구비한 마이크로스트라이프 라인]로서 dB 척도로 정의된다. 여기서, 더 높은 IL은 더 양호한 노이즈 억제에 대응한다. 전력 손실은 PL = 1 - |S11|2 - |S21|2로서 정의되는데, 여기서 손실이 덜한 경우가 PL = 0이고 최대 손실이 있는 경우가 PL = 1이다.
자유-공간 측정
나선들이 집속 빔 안테나(미국 조지아주 알파레타 소재의 콤파스 테크(Compass Tech)로부터, 모델 번호 TT- 2015-02)에 의해 생성된 유입 EM 파를 향하게 하면서 비닐이 알루미늄과 직접 접촉하게 하도록, 실시예 4로부터의 샘플을 12 x 12 인치 알루미늄 플레이트에 대해 위치시킨다. 제조업자 매뉴얼에 따라 보정된 VNA ZNB20을 사용하여, Al 플레이트에 대한 샘플 및 플레이트 그 자체의 반사 파라미터들(S11)을 기록하였다. 반사 손실은 RL = S21[Al 플레이트] - S21(Al 플레이트에 대한 샘플)로서 dB 척도로 계산하였다. 각각의 측정된 S11 파라미터는 주변 요소들로부터 원치 않는 반사를 제거하도록 타임 게이팅하였다(time gated). 본 발명자들은 파이톤(Python) 프로그래밍 언어(버전 3.7.3)을 위한 RF 엔지니어링 라이브러리 Scikit-rf(버전 0.14.9)를 사용하였다. 기록된 S11 파라미터들을 표준 VNA 파일 포맷 s1p에 저장하였다. 이어서, 이들 파라미터를 Scikit-rf 라이브러리로부터의 네트워크('s1p file') 함수를 사용하여 RF 네트워크로서 로딩하고, 게이팅 중심 및 스팬(span)이 각각 2.5 ns 및 1.2 ns로 설정된 파라미터들을 갖는 Network.s21.time_gate (중심 = 2.5, 스팬 = 1.25) 함수를 사용하여 타임 게이팅하였다. 이어서, 게이팅된 S11 파라미터들을 사용하여, RL = S11[Al 플레이트] - S11(Al 플레이트에 대한 샘플)로서 dB 척도로 정의되는 반사 손실을 계산하였다.
시험 결과
도 11은 실시예 1에 대한 반사 손실 대 주파수의 플롯이다. 도 11은 반사된 EM 파에 대한 약 7.5 dB 손실을 도시하는데, 이는 양호한 흡수기 성능을 나타낸다. 응답은 2.9 ㎓의 3 dB 대역과 함께 약 9.5 ㎓에서 명확한 피크를 가지며, 이는 흡수기의 주파수 선택도를 보여준다.
도 12는 실시예들에 대한 삽입 손실 대 주파수의 플롯이다. 도 13은 실시예들에 대한 전력 손실 대 주파수의 플롯이다. 도 12 및 도 13에 대한 샘플 정보는 하기의 표 2에 요약되어 있다. 도 12 및 도 13은 상이한 크기 및 상이한 배열의 나선들을 갖는 구성들의 삽입 손실을 예시하는 전자기 노이즈 억제 시험 결과들을 도시한다.
[표 2]
도 12는 모든 실시예들에 대한 현저한 노이즈 억제 수준을 보여주지만, EM E-필드(field)가 나선 축과 정렬된 경우, 즉 도 12의 곡선 1 및 곡선 3에서만 그러하다. E-필드가 나선 축에 수직인 경우에 대해, 시험 기구(fixture) 내에서 전파되는 EM 파에 대한 효과가 거의 없거나 전혀 없다(도 12에서 IL의 수준이 낮음). 응답은 또한 별개의 주파수 선택도를 갖는다. IL 최대치는 나선 배열 및 나선 길이에 좌우된다. 더 짧은 나선들을 갖는 실시예 2 및 실시예 5는 더 높은 주파수에서 IL 최대치를 초래하는 반면, 더 긴 나선들을 갖는 실시예들은 IL 최대치를 더 낮은 주파수로 이동시킨다. 중간 길이 나선들은 IL 최대치가 2개의 후자의 경우들 사이에 있게 된다. 이러한 길이 의존성은 앞서 언급한 공진 조건 k*l = n*π와 양호하게 일치하게 된다.

Claims (20)

1 ㎓ 내지 100 ㎓ 범위의 전자기(EM) 방사선을 제어하는 시트 구조체를 제조하는 방법으로서,
주 표면 상에 포켓들의 어레이를 포함하는 전사 도구를 제공하는 단계;
상기 전사 도구의 상기 포켓들의 어레이 내에 복수의 금속 공진(resonant) 요소들을 배치하는 단계;
유전체 캐리어 층의 접착 표면을 상기 전사 도구의 주 표면 상의 상기 포켓들의 어레이 내의 상기 복수의 금속 공진 요소들에 접촉시키는 단계; 및
상기 복수의 금속 공진 요소들과 함께 상기 유전체 캐리어 층을 상기 전사 도구의 주 표면으로부터 제거하는 단계
를 포함하고,
상기 복수의 금속 공진 요소들은 비-랜덤 패턴(non-random pattern)으로 상기 유전체 캐리어 층 상에 배치되고, 상기 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 상기 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향되는, 방법.
제1항에 있어서, 상기 금속 공진 요소들은 전도성 나선형 요소, 금속 회전타원체(spheroid) 또는 비드(bead), 구멍을 갖거나 또는 갖지 않는 금속 코팅된 플라스틱 또는 세라믹 회전타원체, 또는 전도성 원통형 요소 중 적어도 하나를 포함하는, 방법.
제2항에 있어서, 상기 전도성 나선형 요소는 전도성 와이어, 전도성 층으로 코팅된 중합체 재료의 스트랜드(strand), 또는 전도성 층으로 코팅된 생체재료(biomaterial) 중 적어도 하나를 포함하는, 방법.
제1항에 있어서, 상기 포켓들의 어레이는 각각 하나의 금속 공진 요소를 수용하도록 구성되는, 방법.
제1항에 있어서, 상기 전사 도구의 주 표면은 비접착 표면인, 방법.
제1항에 있어서, 상기 유전체 캐리어 층은 1 ㎓ 내지 100 ㎓ 범위의 주파수에 대해 0.0001 내지 0.1 이내의 유전 손실 탄젠트를 갖는 하나 이상의 실질적으로 비전도성인 재료들을 포함하는, 방법.
제1항에 있어서, 상기 비-랜덤 패턴은 단순 직사각형(SR) 패턴, 중심설정된 직사각형(CR) 패턴, 경사 패턴, 육각형 정사각형 패턴, 또는 벌집형 패턴 중 적어도 하나를 포함하는, 방법.
제1항에 있어서, 상기 금속 공진 요소들은 각각 약 λ/4 내지 약 10λ의 범위의 전도성 길이를 갖고, λ는 최소 작동 주파수의 자유-공간 파장(free-space wavelength)인, 방법.
제1항에 있어서, 상기 유전체 캐리어 층 상에 상기 금속 공진 요소들을 봉지하기 위한 수지 재료를 제공하는 단계를 더 포함하는, 방법.
제1항에 있어서, 접착 층의 반대편 쪽에서 상기 유전체 캐리어 층 상에 금속 층을 제공하는 단계를 더 포함하는, 방법.
전자기(EM) 제어 시트 구조체로서,
접착 표면을 포함하는 유전체 캐리어 층; 및
상기 유전체 캐리어 층의 접착 표면에 부착되어 비-랜덤 패턴으로 EM 메타물질(metamaterial) 구조체를 형성하는 복수의 금속 공진 요소들
을 포함하고,
상기 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 상기 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향되는, EM 제어 시트 구조체.
제11항에 있어서, 상기 금속 공진 요소들은 전도성 나선형 요소, 금속 회전타원체 또는 비드, 구멍을 갖거나 또는 갖지 않는 금속 코팅된 플라스틱 또는 세라믹 회전타원체, 또는 전도성 원통형 요소 중 적어도 하나를 포함하는, EM 제어 시트 구조체.
제11항에 있어서, 상기 금속 공진 요소들은 전도성 층을 포함하는 전도성 와이어, 전도성 층으로 코팅된 중합체 재료의 스트랜드, 또는 전도성 층으로 코팅된 생체재료 중 적어도 하나를 포함하는, EM 제어 시트 구조체.
제11항에 있어서, 상기 접착 표면을 갖는 상기 유전체 캐리어 층은 1 ㎓ 내지 100 ㎓ 범위의 주파수에 대해 0.0001 내지 0.1 이내의 유전 손실 탄젠트를 갖는 하나 이상의 실질적으로 비전도성인 재료들을 포함하는, EM 제어 시트 구조체.
제11항에 있어서, 상기 비-랜덤 패턴은 단순 직사각형(SR) 패턴, 중심설정된 직사각형(CR) 패턴, 경사 패턴, 육각형 정사각형 패턴, 또는 벌집형 패턴 중 적어도 하나를 포함하는, EM 제어 시트 구조체.
제11항에 있어서, 상기 금속 공진 요소들은 각각 약 λ/4 내지 약 10λ의 범위의 전도성 길이를 갖고, λ는 최소 작동 주파수의 자유-공간 파장인, EM 제어 시트 구조체.
제11항에 있어서, 상기 유전체 캐리어 층 상에 상기 금속 공진 요소들을 봉지하기 위한 수지 재료를 더 포함하는, EM 제어 시트 구조체.
1 ㎓ 내지 100 ㎓ 범위의 전자기(EM) 방사선을 제어하는 시트 구조체를 제조하는 방법으로서,
주 표면 상에 포켓들의 어레이를 포함하는 전사 도구를 제공하는 단계;
상기 전사 도구 상에 유전체 캐리어 층을 배치하는 단계로서, 상기 유전체 캐리어 층은 상기 전사 도구의 포켓들과 정렬된 관통 구멍들의 어레이를 포함하는, 상기 단계;
상기 전사 도구의 상기 포켓들의 어레이를 통해, 복수의 금속 공진 요소들을 상기 유전체 캐리어 층의 상기 관통 구멍들의 어레이 내로 전사하는 단계;
상기 복수의 공진 요소들과 함께 상기 유전체 캐리어 층을 지지하기 위해 지지 층을 제공하는 단계;
상기 유전체 캐리어 층의 상기 관통 구멍들 내부에 적어도 부분적으로 상기 공진 요소들을 고정시키기 위해 커버 층을 제공하는 단계; 및
상기 유전체 캐리어 층으로부터 상기 전사 도구를 제거하는 단계
를 포함하고,
상기 복수의 금속 공진 요소들은 비-랜덤 패턴으로 상기 유전체 캐리어 층의 상기 관통 구멍들의 어레이 내에 배치되고, 상기 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 상기 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향되는, 방법.
전자기(EM) 제어 시트 구조체로서,
관통 구멍들의 어레이를 포함하는 유전체 캐리어 층;
상기 유전체 캐리어 층의 관통 구멍들에 의해 수용되어 비-랜덤 패턴으로 EM 메타물질 구조체를 형성하는 복수의 금속 공진 요소들; 및
상기 유전체 캐리어 층 상에 배치되어 상기 관통 구멍들 내에 상기 금속 공진 요소들을 고정시키는 고정 층
을 포함하고,
상기 복수의 금속 공진 요소들은 각각의 금속 공진 요소가 서로 실질적으로 평행하고 상기 유전체 캐리어 층의 주 평면에 실질적으로 평행한 축을 갖도록 배향되는, EM 제어 시트 구조체.
제19항에 있어서, 상기 고정 층은 접착 테이프 또는 중합체 필름 중 적어도 하나를 포함하는, EM 제어 시트 구조체.
KR1020247003028A 2021-06-30 2022-06-28 전자기 제어 물품 KR20240027058A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163202926P 2021-06-30 2021-06-30
US63/202,926 2021-06-30
PCT/IB2022/056005 WO2023275750A1 (en) 2021-06-30 2022-06-28 Electromagnetic control articles

Publications (1)

Publication Number Publication Date
KR20240027058A true KR20240027058A (ko) 2024-02-29

Family

ID=84692559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020247003028A KR20240027058A (ko) 2021-06-30 2022-06-28 전자기 제어 물품

Country Status (2)

Country Link
KR (1) KR20240027058A (ko)
WO (1) WO2023275750A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900763B2 (en) * 2002-07-11 2005-05-31 Harris Corporation Antenna system with spatial filtering surface
US8104165B1 (en) * 2004-03-02 2012-01-31 Motion Computing Inc. Method of forming an apparatus used for reducing electromagnetic interference
US7973696B2 (en) * 2005-12-12 2011-07-05 Nomadics, Inc. Thin film emitter-absorber apparatus and methods
CN110519975B (zh) * 2018-06-28 2021-01-19 秦振山 一种电磁波谐振控制材料和吸波材料
CN112928492B (zh) * 2021-01-25 2022-10-11 中国科学院上海光学精密机械研究所 一种基于水层的可调谐光学透明宽带超材料吸波器

Also Published As

Publication number Publication date
WO2023275750A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US10716247B2 (en) Electromagnetic absorber
US8013775B2 (en) Radio frequency absorber
EP3478046A1 (en) Electric wave absorption sheet
EP3432422B1 (en) Antenna
KR102147185B1 (ko) 전자파 흡수 복합 시트
CN105789912A (zh) 吸波超材料、天线罩和天线***
JP2001223493A (ja) 電波吸収体
US3187331A (en) Micro-wave absorber
KR20160062013A (ko) 차폐 수용체, 프린트 회로판, 및 전자 기기
JP2023067902A (ja) 電磁波吸収体用組成物、および、電磁波吸収体
JP2009182043A (ja) 構造化表面を有する感圧接着層を含む電磁干渉抑制シート
KR20240027058A (ko) 전자기 제어 물품
JP2018056492A (ja) 電波吸収シート
CN112864615A (zh) 一种天线和无线电设备
US11426950B2 (en) Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials
CA2124459C (en) Compact broadband microstrip antenna
Jeong et al. Frequency-tunable electromagnetic absorber by mechanically controlling substrate thickness
JP2000348916A (ja) 磁気シートの製造方法
US20230059388A1 (en) Magnetic film
Varadan et al. Three-dimensional polymeric and ceramic MEMS and their applications
Syahmi et al. Radiation Cross Section Characteristics for Isosceles Slotted Triangle on Hollow Pyramidal Absorber
CN211630732U (zh) 一种复合型吸波屏蔽材料
EP2237195B1 (en) A material for packaging electronic components
CN215816401U (zh) 一种天线和无线电设备
RU2716882C1 (ru) Щелевая антенна с поглощающим покрытием, содержащим наноструктурированные проводящие нити из полуметаллов