KR20240013060A - 검출 장치, 리소그래피 장치 및 물품 제조 방법 - Google Patents

검출 장치, 리소그래피 장치 및 물품 제조 방법 Download PDF

Info

Publication number
KR20240013060A
KR20240013060A KR1020230093554A KR20230093554A KR20240013060A KR 20240013060 A KR20240013060 A KR 20240013060A KR 1020230093554 A KR1020230093554 A KR 1020230093554A KR 20230093554 A KR20230093554 A KR 20230093554A KR 20240013060 A KR20240013060 A KR 20240013060A
Authority
KR
South Korea
Prior art keywords
light
mark
substrate
detection
illumination
Prior art date
Application number
KR1020230093554A
Other languages
English (en)
Inventor
도시키 이와이
유이치 후지타
슌 도다
šœ 도다
야스유키 운노
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20240013060A publication Critical patent/KR20240013060A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

검출 장치는 중첩하는 제1 마크와 제2 마크 사이의 상대 위치를 검출한다. 장치는 제1 및 제2 마크를 무편광 조명광으로 조명하도록 구성되는 조명 시스템, 이미지 센서를 가지며 제1 및 제2 마크로부터의 회절광으로부터 이미지 센서의 촬상면에 상을 형성하도록 구성되는 검출 시스템을 포함한다. 제1 및 제2 마크는 제1 또는 제2 방향에서의 상대 위치를 나타내는 광학 정보를 촬상면에 형성하도록 구성된다. 검출 시스템의 퓨필면에 배치된 차광체는 검출 시스템의 광축을 제1 방향에 공액인 방향으로 가로지르는 제1 차광부 및 검출 시스템의 광축을 제2 방향에 공액인 제4 방향으로 가로지르를 제2 차광부를 포함한다.

Description

검출 장치, 리소그래피 장치 및 물품 제조 방법{DETECTION DEVICE, LITHOGRAPHY APPARATUS, AND ARTICLE MANUFACTURING METHOD}
본 발명은 검출 장치, 리소그래피 장치 및 물품 제조 방법에 관한 것이다.
임프린트 장치는, 기판 상에 배치된 임프린트재에 몰드를 접촉시키고 임프린트재를 경화시킴으로써 임프린트재의 경화물로 이루어지는 패턴을 형성한다. 이러한 임프린트 장치에서는, 기판과 몰드를 정확하게 정렬하는 것이 중요하다. 일본 특허 공개 공보 제2008-522412호는, 기판에 제공된 회절 격자로 형성되는 마크와 몰드에 제공된 회절 격자로 형성되는 마크를 사용해서 기판과 몰드를 정렬하는 기술을 기재하고 있다.
마크를 조명하는 경우, 마크와 마크 외측의 영역 사이의 경계인 에지에 의해 반사된 광이 노이즈 광으로서 이미지 센서에 입사하고, 이것이 마크의 검출 정밀도를 저하시킬 수 있다. 특히, 마크의 면적이 축소되면, 마크로부터의 위치 정보를 검출하기 위한 광에 의해 형성되는 상에 대한 노이즈 광의 영향이 커지고, 따라서 검출 정밀도의 저하가 현저해질 수 있다.
본 발명은 제1 물체와 제2 물체에 각각 제공된 제1 마크와 제2 마크 사이의 상대 위치를 높은 검출 정밀도로 검출하는 데 유리한 기술을 제공한다.
본 발명의 양태 중 하나는 서로 중첩하도록 배치되는 제1 물체와 제2 물체에 각각 제공된 제1 마크와 제2 마크 사이의 상대 위치를 검출하는 검출 장치를 제공하며, 검출 장치는 제1 마크 및 제2 마크를 무편광 광인 조명광으로 조명하도록 구성되는 조명 시스템, 및 이미지 센서를 포함하고, 조명 시스템에 의해 조명된 제1 마크 및 제2 마크로부터의 회절광으로부터 이미지 센서의 촬상면에 상을 형성하도록 구성되는 검출 시스템을 포함하고, 제1 마크 및 제2 마크는, 제1 방향 또는 제1 방향에 직교하는 제2 방향에서의 상대 위치를 나타내는 광학 정보를 촬상면에 형성하도록 구성되고, 검출 시스템의 퓨필면에는, 검출 시스템의 광축을 제3 방향에 평행한 방향으로 가로지르는 제1 차광부와 검출 시스템의 광축을 제4 방향에 평행한 방향으로 가로지르는 제2 차광부를 포함하는 차광체가 제공되며, 제3 방향은 제1 방향에 공액인 방향이며 제4 방향은 제2 방향에 공액인 방향이다.
도 1a은 제1 실시형태에 따른 검출 시스템의 퓨필면에 입사하는 광의 광 강도 분포 및 조명 시스템의 퓨필면의 출구에서의 광 강도 분포를 도시하는 도면이다.
도 1b는 제1 실시형태에 따른 검출 시스템의 퓨필면에 배치된 차광체를 도시하는 도면이다.
도 2는 리소그래피 장치의 일 예로서의 임프린트 장치의 구성을 예시하는 도면이다.
도 3은 제1 실시형태에 따른 검출 장치의 구성을 예시하는 도면이다.
도 4는 비교예를 도시하는 도면이다.
도 5a 내지 도 5d는 무아레 무늬를 발생시키는 회절 격자를 예시하는 도면이다.
도 6a 내지 도 6d는 무아레 무늬를 발생시키는 회절 격자를 예시하는 도면이다.
도 7은 시야 내의 마크 배치를 예시하는 도면이다.
도 8은 패턴 에지에 의한 산란광을 예시하는 도면이다.
도 9a는 제2 실시형태에 따른 검출 시스템의 퓨필면에 입사하는 광의 광 강도 분포 및 조명 시스템의 퓨필면의 출구에서의 광 강도 분포를 도시하는 도면이다.
도 9b는 제2 실시형태에 따른 검출 시스템의 퓨필면에 배치된 차광체를 도시하는 도면이다.
도 10은 제2 실시형태에 따른 검출 장치의 구성을 예시하는 도면이다.
도 11은 제2 실시형태의 변형예에 따른 검출 장치의 구성을 예시하는 도면이다.
도 12는 제3 실시형태에 따른 검출 장치의 구성을 예시하는 도면이다.
도 13a 내지 도 13f는 물품 제조 방법을 예시하는 도면이다.
이하, 첨부 도면을 참조하여 실시형태를 상세하게 설명한다. 이하의 실시형태는 청구된 발명의 범위를 한정하는 것은 아니라는 것에 유의한다. 실시형태에는 다수의 특징이 기재되어 있지만, 모든 이러한 특징을 필요로 하는 발명으로 제한되지 않으며, 다수의 이러한 특징은 적절히 조합될 수 있다. 또한, 첨부 도면에서는, 동일하거나 마찬가지의 구성에 동일한 참조 번호가 부여되며, 그에 대한 중복하는 설명은 생략한다.
도 2는, 원판의 패턴을 기판에 전사하는 리소그래피 장치의 일 예로서의 임프린트 장치(1)의 구성을 나타낸다. 임프린트 장치(1)는, 반도체 디바이스 등의 디바이스의 제조에 사용되며, 피처리체인 기판(8) 상의 미경화 임프린트재(9)를 몰드(7)를 사용해서 성형함으로써 임프린트재(9)의 경화물로 이루어지는 패턴을 기판(8) 상에 형성한다. 임프린트 장치(1)에 의해 기판(8) 상에 패턴을 형성하는 패턴 형성 처리는, 접촉 단계, 충전 및 정렬 단계, 경화 단계, 및 분리 단계를 포함할 수 있다. 접촉 단계에서는, 기판(8)의 샷 영역 상의 임프린트재(9)와 몰드(7)의 패턴 영역(7a)이 서로 접촉된다. 충전 및 정렬 단계에서는, 기판(8)의 샷 영역과 몰드(7)의 패턴 영역(7a)에 의해 형성되는 공간에 임프린트재(9)가 충전되며, 기판(8)의 샷 영역과 몰드(7)의 패턴 영역(7a)이 정렬된다. 샷 영역은 1회의 패턴 형성 처리에 의해 패턴이 형성되는 영역이다. 즉, 샷 영역은 1회의 패턴 형성 처리에 의해 몰드(7)의 패턴 영역(7a)이 전사되는 영역이다.
임프린트재로서는, 경화 에너지를 받는 것에 의해 경화되는 경화성 조성물(미경화 상태의 수지라고도 칭함)이 사용된다. 경화 에너지로서는, 전자기파 또는 열이 사용될 수 있다. 전자기파는, 예를 들어 10 nm(포함) 내지 1 mm(포함)의 파장 범위로부터 선택되는 광, 예를 들어 적외선, 가시광선, 또는 자외선일 수 있다. 경화성 조성물은 광 조사 또는 가열에 의해 경화되는 조성물일 수 있다. 조성물 중, 광 조사에 의해 경화되는 광경화성 조성물은, 적어도 중합성 화합물과 광중합 개시제를 함유하고, 필요에 따라 비중합성 화합물 또는 용제를 더 함유할 수 있다. 비중합성 화합물은, 증감제, 수소 공여체, 내첨형 이형제, 계면활성제, 산화방지제, 및 폴리머 성분을 포함하는 군으로부터 선택되는 적어도 하나의 재료이다. 임프린트재는 액적 형태 또는 복수의 액적이 연결되어 형성되는 섬 또는 막의 형태로 기판 상에 배치될 수 있다. 임프린트재는 스핀 코터나 슬릿 코터에 의해 기판 상에 막의 형태로 공급될 수 있다. 임프린트재의 점도(25℃에서의 점도)는, 예를 들어 1 mPa·s(포함) 내지 100 mPa·s(포함)일 수 있다. 기판의 재료로서는, 예를 들어 유리, 세라믹, 금속, 반도체(Si, GaN, SiC 등), 수지 등이 사용될 수 있다. 필요에 따라, 기판의 표면에 기판과는 다른 재료로 이루어지는 부재가 제공될 수 있다. 기판은, 예를 들어 실리콘 웨이퍼, 화합물 반도체 웨이퍼, 또는 실리카 유리이다. 이하에서는 임프린트재로서 광경화성 조성물을 채용하는 예를 설명하지만, 이것은 임프린트재의 종류를 제한하는 것을 의도한 것은 아니다.
본 명세서 및 첨부 도면에서는, 기판(8)의 표면에 평행한 방향을 X-Y 평면으로 하는 XYZ 좌표계에서 방향을 나타낸다. XYZ 좌표계의 X축, Y축, 및 Z축에 평행한 방향은 각각 X 방향, Y 방향, 및 Z 방향이다. X축 둘레의 회전, Y축 둘레의 회전, 및 Z축 둘레의 회전은 각각 θX, θY, 및 θZ이다. X축, Y축, 및 Z축에 관한 제어 또는 구동은 각각 X축에 평행한 방향, Y축에 평행한 방향, 및 Z축에 평행한 방향에 관한 제어 또는 구동을 의미한다. 또한, θX축, θY축, 및 θZ축에 관한 제어 또는 구동은, 각각 X축에 평행한 축 둘레의 회전, Y축에 평행한 축 둘레의 회전, 및 Z축에 평행한 축 둘레의 회전에 관한 제어 또는 구동을 의미한다. 또한, 위치는 X축, Y축, 및 Z축의 좌표에 기초해서 특정될 수 있는 정보이며, 자세는 θX축, θY축, 및 θZ축의 값에 의해 특정될 수 있는 정보이다. 위치결정은 위치 및/또는 자세를 제어하는 것을 의미한다. 정렬(위치결정)은, 기판(8)의 샷 영역과 몰드(7)의 패턴 영역 사이의 정렬 오차(중첩 오차)가 저감되도록 기판(8) 및 몰드(7) 중 적어도 하나의 위치 및/또는 배향을 제어하는 것을 포함할 수 있다. 또한, 정렬은, 기판(8)의 샷 영역 및 몰드(7)의 패턴 영역 중 적어도 하나의 형상을 보정하거나 변경하기 위한 제어를 포함할 수 있다. 접촉 단계 및 분리 단계는 몰드 구동 기구(4)에 의해 몰드(7)를 구동함으로써 실행될 수 있지만, 기판 구동 기구(5)에 의해 기판(8)을 구동함으로써 실행될 수 있다. 대안적으로, 접촉 단계 및 분리 단계는, 몰드 구동 기구(4)에 의해 몰드(7)를 구동하고 기판 구동 기구(5)에 의해 기판(8)을 구동함으로써 실행될 수 있다.
임프린트 장치(1)는, 경화 유닛(2), 검출 장치(3), 몰드 구동 기구(4), 기판 구동 기구(5), 및 제어 유닛(C)을 포함할 수 있다. 임프린트 장치(1)는 도포 유닛(6)을 더 포함할 수 있다. 경화 유닛(2)은, 기판(8) 상의 임프린트재(9)에 몰드(7)를 접촉시키는 접촉 단계 후에, 임프린트재(9)에 경화 에너지로서의 자외광 등의 광을 조사해서, 임프린트재(9)를 경화시킨다. 경화 유닛(2)은, 예를 들어 광원과, 광원으로부터 방출되는 광을 피조사면으로서의 몰드(7)의 패턴 영역(7a)에 미리결정된 형상으로 균일하게 조사하기 위한 복수의 광학 소자를 포함한다. 특히, 경화 유닛(2)에 의한 광의 조사 영역(조사 범위)은, 패턴 영역(7a)의 표면적과 거의 동일하거나 또는 패턴 영역(7a)의 면적보다 약간 큰 표면적을 갖는 것이 바람직하다. 이것은, 조사 영역이 최소 필요 면적을 갖게 함으로써, 조사에 의해 발생되는 열로 인해 몰드(7) 또는 기판(8)이 팽창해서, 임프린트재(9)에 전사되는 패턴의 위치 어긋남 또는 왜곡이 발생하는 상황을 방지하기 위해서이다. 또한, 이것은, 기판(8) 등에 의해 반사된 광이 도포 유닛(6)에 도달해서, 도포 유닛(6)의 토출부에 잔류하는 임프린트재(9)를 경화시키고, 따라서 도포 유닛(6)의 동작에 이상이 발생하는 상황을 방지하기 위해서이기도 하다. 광원으로서는, 예를 들어 고압 수은 램프, 각종 엑시머 램프, 엑시머 레이저 또는 발광 다이오드 등이 채용될 수 있다. 광원은 수광체인 임프린트재(9)의 특성에 따라서 적절히 선택될 수 있다.
도 3은 검출 장치(3)의 구성예를 나타낸다. 검출 장치(3)는, 몰드(제1 물체)(7)에 배치된 몰드 마크(제1 마크)(10)와 기판(제2 물체)(8)에 배치된 기판 마크(제2 마크)(11) 사이의 상대 위치를 광학적으로 검출 또는 계측하도록 구성된다. 몰드 마크(10) 및 기판 마크(11)는, X 방향(제1 방향) 또는 Y 방향(제2 방향)에서의 상대 위치를 나타내는 광학 정보를 이미지 센서(25)(후술함)의 촬상면에 형성하도록 구성된다. 검출 장치(3)는 조명 시스템(22) 및 검출 시스템(21)을 포함할 수 있다. 조명 시스템(22) 및 검출 시스템(21)은 일부 구성요소를 공유할 수 있다. 조명 시스템(22)은, 광원(23)을 포함하고, 광원(23)로부터의 광을 사용해서 조명광을 생성하며, 조명광에 의해 계측 대상물(제1 마크 및 제2 마크)을 조명한다. 이 조명광은 무편광 광일 수 있다. 무편광 광을 조명광으로서 사용함으로써, 편광 광을 사용하는 것보다 더 높은 휘도를 갖는 광학 상을 촬상면에 형성할 수 있다. 검출 시스템(21)은, 조명광으로 조명된 계측 대상물로부터의 광을 검출함으로써 계측 대상물로서의 몰드 마크(제1 마크)(10)와 기판 마크(제2 마크)(11) 사이의 상대 위치를 검출한다.
검출 장치(3)의 광축 중, 기판(8) 및 몰드(7)의 위치에서의 광축은, 기판(8)의 상면 및 몰드(7)의 하면(패턴 영역(7a))에 대하여 수직인데, 즉, Z축에 평행하다. 검출 장치(3)는, 몰드 마크(10) 및 기판 마크(11)의 위치에 따라 구동 기구(도시하지 않음)에 의해 X 방향 및 Y 방향으로 구동되도록 구성될 수 있다. 검출 장치(3)는, 몰드 마크(10) 또는 기판 마크(11)의 위치에 검출 시스템(21)의 초점을 정렬시키기 위해서 Z 방향으로 구동되도록 구성될 수 있다. 검출 장치(3)는 초점 정렬을 위한 광학 소자 또는 광학 시스템을 포함할 수 있다. 검출 장치(3)를 사용해서 검출 또는 계측된 몰드 마크(10)와 기판 마크(11) 사이의 상대 위치에 기초하여, 기판 구동 기구(5)에 의한 기판(8)의 위치결정 및 보정 기구(도시하지 않음)에 의한 패턴 영역(7a)의 형상 및 배율의 보정이 제어될 수 있다. 보정 기구는, 몰드 구동 기구(4)에 장착되고, 몰드(7)를 변형시킴으로써 몰드(7)의 패턴 영역(7a)의 형상 및 배율을 조정할 수 있다. 몰드 마크(10) 및 기판 마크(11)에 대해서는 상세히 후술한다.
몰드 구동 기구(4)는, 진공 흡인력 또는 정전기력에 의해 몰드(7)를 보유지지하는 몰드 척(도시되지 않음), 및 몰드 척을 구동함으로써 몰드(7)를 구동하는 몰드 구동 유닛(도시되지 않음)을 포함할 수 있다. 몰드 구동 기구(4)는 전술한 보정 기구를 포함할 수 있다. 몰드 구동 유닛은, 예를 들어 몰드 척 또는 몰드(7)를 Z축에 대해서 구동하도록 구성될 수 있다. 몰드 구동 유닛은 또한 몰드 척 또는 몰드(7)를 θX축, θY축, θZ축, X축 및 Y축 중 적어도 하나에 대해서 구동하도록 구성될 수 있다.
기판 구동 기구(5)는, 진공 흡인력 또는 정전기력에 의해 기판(8)을 보유지지하는 기판 척, 기판 척을 구동함으로써 기판(8)을 구동하는 기판 구동 유닛(도시되지 않음)을 포함할 수 있다. 기판 구동 유닛은, 예를 들어 기판 척 또는 기판(8)을 X축, Y축 및 θZ축에 대해서 구동하도록 구성될 수 있다. 기판 구동 유닛은 또한 기판 척 또는 기판(8)을 θX축, θY축, 및 Z축 중 적어도 하나에 대해서 구동하도록 구성될 수 있다.
도포 유닛(디스펜서)(6)은 기판(8) 상에 미경화 임프린트재(9)를 도포 또는 배치한다. 도포 유닛(6)은 임프린트 장치(1)의 하우징의 외부에 배치될 수 있다. 이 경우, 도포 유닛(6)은 임프린트 장치(1)의 구성요소가 아닌 구성요소로서 이해될 수 있다.
몰드(7)는, 패턴 영역(7a)에, 기판(8)(그 위의 임프린트재(9))에 전사해야 할 회로 패턴 등의 패턴을 포함한다. 몰드(7)는, 경화 에너지로서의 광을 투과시키는 재료, 예를 들어 석영으로 이루어질 수 있다. 기판(8)은, 예를 들어 단결정 실리콘 기판 등의 반도체 기판 또는 반도체 기판 상에 적어도 하나의 층을 포함하는 기판일 수 있다.
제어 유닛(C)은, 경화 유닛(2), 검출 장치(3), 몰드 구동 기구(4), 기판 구동 기구(5) 및 도포 유닛(6)을 제어하도록 구성될 수 있다. 제어 유닛(C)은, 예를 들어 FPGA(Field Programmable Gate Array), 프로그램이 내장된 컴퓨터, 또는 이들 구성요소의 전부 또는 일부의 조합에 의해 형성될 수 있다. FPGA는 PLD(Programmable Logic Device) 또는 ASIC(Application Specific Integrated Circuit)를 포함할 수 있다. 제어 유닛(C)은, 메모리 및 프로세서를 포함하고, 메모리에 저장(보존)된 연산식, 파라미터 및 컴퓨터 프로그램에 기초하여 동작함으로써 임프린트 장치(1)의 동작 및 기능을 정의할 수 있다. 검출 장치(3)의 기능, 예를 들어 이미지 센서(25)에 의해 촬상된 화상을 처리하는 기능의 적어도 일부는 제어 유닛(C)에 내장된 모듈에 의해 제공될 수 있다. 이 경우, 제어 유닛(C)의 모듈은 검출 장치(3)의 일부로서 이해될 수 있다.
이제, 임프린트 장치(1)에 의해 실행되는 임프린트 처리 또는 패턴 형성 처리에 대해서 설명한다. 먼저, 기판 반송 기구(도시되지 않음)에 의해 기판(8)이 기판 구동 기구(5)의 기판 척에 반송되어, 기판 척에 고정된다. 계속해서, 기판(8)의 샷 영역이 도포 유닛(6)에 의한 도포 위치로 이동하도록 기판 구동 기구(5)에 의해 기판(8)이 구동된다. 그 후, 도포 유닛(6)은 기판의 샷 영역(임프린트 영역)에 임프린트재(9)를 도포, 배치, 또는 공급한다(도포 단계).
이어서, 임프린트재(9)가 배치된 샷 영역이 몰드(7)의 패턴 영역(7a)의 바로 아래의 위치에 배치되도록 기판 구동 기구(5)에 의해 기판(8)이 구동된다. 이어서, 예를 들어, 몰드 구동 기구(4)는 몰드(7)를 강하시킴으로써 기판(8) 상의 임프린트재(9)와 몰드(7)의 패턴 영역(7a)을 서로 접촉시킨다(접촉 단계). 이에 의해, 기판(8)과 몰드(7)의 패턴 영역(7a) 사이의 공간(패턴 영역(7a)의 오목부를 포함)에 임프린트재(9)가 충전된다(충전 단계). 또한, 몰드 마크(10)와 기판 마크(11)에 의해 각각 형성되는 복수의 마크 쌍에 대해서, 검출 장치(3)를 사용해서 몰드 마크(10)와 기판 마크(11) 사이의 상대 위치를 검출 또는 계측한다. 그 결과에 기초하여, 패턴 영역(7a)과 기판(8)의 샷 영역이 정렬된다(정렬 단계). 이때, 보정 기구를 사용해서 몰드(7)의 패턴 영역(7a)의 형상을 보정할 수 있다. 또한, 가열 기구(도시되지 않음)를 사용해서 기판(8)의 샷 영역의 형상을 보정할 수 있다.
충전 및 정렬 단계의 완료시, 경화 유닛(2)이 몰드(7)를 통해서 임프린트재(9)에 광을 조사하며, 이로 인해 임프린트재(9)가 경화된다(경화 단계). 이때, 검출 장치(3)는 경화 유닛(2)의 광로를 가로막지 않도록 퇴피되도록 구동될 수 있다. 계속해서, 몰드 구동 기구(4)는 몰드(7)를 상승시킴으로써 몰드(7)를 기판(8) 상의 경화된 임프린트재(9)로부터 분리한다(분리 단계).
임프린트 장치(1)는, 검출 장치(3)를 포함하고, 검출 장치(3)로부터의 출력에 기초하여 원판(또는 패턴 영역)과 기판(또는 샷 영역)을 정렬하며, 원판의 패턴을 기판에 전사하는 리소그래피 장치의 일 예로서 이해될 수 있다. 임프린트 장치(1)는, 몰드 마크(10)(제1 마크)가 제공된 몰드(7)(제1 물체 또는 원판)와 기판 마크(11)(제2 마크)가 제공된 기판(8)(제2 물체)을 검출 장치(3)로부터의 출력에 기초해서 정렬한다.
이하, 도 3을 참조해서 검출 장치(3)의 상세를 설명한다. 전술한 바와 같이, 검출 장치(3)는 조명 시스템(22) 및 검출 시스템(21)을 포함하고, 조명 시스템(22) 및 검출 시스템(21)은 일부 구성요소를 공유할 수 있다. 조명 시스템(22)은, 프리즘(24)을 통해서 광원(23)으로부터의 광에 의해 생성되는 조명광을 공통 광축에 유도하고, 이에 의해 몰드 마크(10) 및 기판 마크(11)를 조명한다. 광원(23)은, 예를 들어 할로겐 램프, LED, 반도체 레이저(LD), 고압 수은 램프, 메탈 할라이드 램프, 슈퍼콘티늄 광원(supercontinuum light source), 및 LDLS(Laser-Driven Light Source) 중 적어도 하나를 포함할 수 있다. 광원(23)에 의해 발생되는 조명광의 파장은 임프린트재(9)를 경화시키지 않도록 선택된다.
프리즘(24)은, 조명 시스템(22) 및 검출 시스템(21)에 의해 공유되고, 조명 시스템(22)의 퓨필면(Pill) 또는 그 근방, 또는 검출 시스템(21)의 퓨필면(Pdet) 또는 그 근방에 배치될 수 있다. 몰드 마크(10) 및 기판 마크(11) 각각은 회절 격자에 의해 형성되는 마크를 포함할 수 있다. 검출 시스템(21)은, 조명 시스템(22)에 의해 조명되는 몰드 마크(10) 및 기판 마크(11)에 의해 회절된 광 사이의 간섭에 의해 발생되는 간섭 광(간섭 무늬 또는 무아레 무늬)의 광학 상을 이미지 센서(25)의 촬상면에 형성할 수 있다. 이미지 센서(25)는, 예를 들어 CCD 센서 또는 CMOS 센서에 의해 형성될 수 있다.
프리즘(24)은, 반사면(RS)으로서, 2개의 부재를 접합함으로써 획득되는 면(접합면)을 포함하고, 접합면에 반사막(24a)을 포함할 수 있다. 프리즘(24)은, 표면에 반사막(24a)을 갖는 판 형상 광학 소자로 치환될 수 있다. 프리즘(24)이 배치되어 있는 위치는, 조명 시스템(22)의 퓨필면(Pill) 또는 그 근방, 또는 검출 시스템(21)의 퓨필면(Pdet) 또는 그 근방일 필요는 없다. 조명 시스템(22)의 퓨필면(Pill)에는, 조명 구경 조리개(27)(예를 들어, 핀홀 판)가 배치될 수 있다. 검출 시스템(21)의 퓨필면(Pdet)에는, 검출 구경 조리개(26)가 배치될 수 있다. 조명 구경 조리개(27)는 조명 시스템(22)의 퓨필면(Pill)의 광 강도 분포를 규정한다. 조명 구경 조리개(27)는 임의적인 구성요소이며, 반사막(24a)의 영역을 규정함으로써 광축에 평행한 조명광이 형성될 수 있다는 것에 유의한다.
도 4는, 비교예에 따른 검출 장치(3)의 조명 시스템(22)의 퓨필면(Pill)의 광 강도 분포 및 검출 시스템(21)의 개구수(NAO)를 규정하는 검출 구경 조리개를 겹쳐서 나타내고 있다. x축 및 y축은 각각 X축 및 Y축에 공액인 축이다. 퓨필면과 몰드/기판 사이에 광축을 굽어지게 하는 미러가 존재하지 않는 경우에는, x축과 X축은 서로 평행하다. 퓨필면과 몰드/기판 사이에 광축을 굽어지게 하는 미러가 존재하는 경우에는, 미러에 의해 퓨필면에 맵핑된 X축 및 Y축이 각각 x축 및 y축과 일치한다. 조명 시스템(22)의 퓨필면(Pill)에서의 광 강도 분포는 제1 극(IL1), 제2 극(IL2), 제3 극(IL3) 및 제4 극(IL4)을 포함한다. 극(IL1 내지 IL4)을 포함하는 광 강도 분포에 의한 조명은 사입사 조명으로서 이해될 수 있다. 조명된 마크(10, 11)로부터의 광은 검출 시스템(21)의 개구수(NAO)를 규정하는 구경 조리개의 개구를 통해서 이미지 센서(25)의 촬상면에 입사한다.
도 5a 내지 도 5d는 무아레 무늬를 발생시키는 마크(회절 격자)의 일 예를 각각 도시하는 도면이다. 아래에서, 도 5a 내지 도 5d를 참조하여, 몰드 마크(10) 및 기판 마크(11)로부터의 회절광에 의한 무아레 무늬의 발생 원리 및 무아레 무늬를 사용한 몰드 마크(10)와 기판 마크(11) 사이의 상대 위치의 검출에 대해서 설명한다. 몰드 마크(10)로서 몰드(7)에 제공된 회절 격자(제1 회절 격자)(41) 및 기판 마크(11)로서 기판(8)에 제공된 회절 격자(제2 회절 격자)(42)의 계측 방향의 주기는 서로 약간 상이하다. 상이한 주기를 갖는 2개의 회절 격자를 서로 겹치면, 2개의 회절 격자로부터의 회절광 사이의 간섭으로 인해, 회절 격자 사이의 주기차를 반영한 주기를 갖는 패턴, 즉, 소위 무아레 무늬(무아레)가 나타난다. 이때, 회절 격자 사이의 상대 위치에 따라 무아레 무늬의 위상이 변화하기 때문에, 무아레 무늬를 검출함으로써 몰드 마크(10)와 기판 마크(11) 사이의 상대 위치, 즉, 몰드(7)와 기판(8) 사이의 상대 위치를 구할 수 있다.
더 구체적으로는, 약간 상이한 주기를 갖는 회절 격자(41)와 회절 격자(42)를 서로 겹치면, 회절 격자(41)와 회절 격자(42)로부터의 회절광이 서로 중첩됨으로써, 도 5c에 나타내는 바와 같이 주기차를 반영한 주기를 갖는 무아레 무늬가 발생한다. 무아레 무늬에서, 회절 격자(41)와 회절 격자(42) 사이의 상대 위치에 따라 명암부의 위치(무늬의 위상)가 변화한다. 예를 들어, 회절 격자(41, 42) 중 하나가 X 방향으로 어긋나면, 도 5c에 나타내는 무아레 무늬는 도 5d에 나타내는 무아레 무늬로 변화한다. 무아레 무늬는 회절 격자(41)와 회절 격자(42) 사이의 실제 위치 어긋남량을 확대함으로써 큰 주기를 갖는 무늬로서 발생하기 때문에, 검출 시스템(21)의 해상력이 낮아도, 회절 격자(41)와 회절 격자(42) 사이의 상대 위치를 고정밀도로 검출할 수 있다.
비교예에서, 무아레 무늬를 검출하기 위해서 회절 격자(41, 42)를 명시야에서 검출하는 경우, 검출 시스템(21)은 원치않게 회절 격자(41, 42)로부터의 0차 광도 검출한다. 회절 격자(41, 42)를 명시야에서 검출하는 경우에는, 회절 격자(41, 42)를 수직 방향으로부터 조명하고, 회절 격자(41, 42)에 의해 수직 방향으로 회절되는 회절광이 검출되는 경우를 포함할 수 있다. 0차 광은 무아레 무늬의 콘트라스트를 저하시키기 때문에, 비교예에서는, 검출 시스템(21)은 0차 광을 검출하지 않는 구성(암시야의 구성), 즉, 회절 격자(41, 42)를 사입사로 조명하는 구성을 갖는다.
도 6a 내지 도 6d는 무아레 무늬를 발생시키는 마크(회절 격자)의 다른 예를 나타내는 도면이다. 도 6a 내지 도 6d에 도시된 예에서는, 회절 격자(41, 42) 중 하나가 도 6a에 나타내는 체커보드 회절 격자이며, 다른 회절 격자는 도 6b에 나타내는 회절 격자이다. 도 6b에 나타내는 회절 격자는, 계측 방향(제1 방향)으로 주기적으로 배열된 패턴과 계측 방향에 직교하는 방향(제2 방향)으로 주기적으로 배열된 패턴을 포함한다.
도 4(비교예) 및 도 6a 및 도 6b에 도시된 구성에서는, 제1 극(IL1) 및 제2 극(IL2)으로부터의 광은 회절 격자에 조사되고, 체커보드 회절 격자에 의해 Y 방향 및 X 방향으로 회절된다. 또한, 약간 상이한 주기를 갖는 회절 격자에 의해 X 방향으로 회절된 광은, X 방향 상대 위치 정보를 갖고, 검출 시스템(21)의 퓨필면(Pdet) 상의 검출 영역(NAO)을 통과해서 이미지 센서(25)의 촬상면에 입사하며, 이미지 센서(25)에 의해 검출된다. 이것을 사용하여 2개의 회절 격자(41, 42) 사이의 상대 위치를 구할 수 있다.
도 4(비교예)의 구성과 도 6a 및 도 6b에 나타내는 회절 격자의 조합에서는, 제3 극(IL3) 및 제4 극(IL4)으로부터의 광은 회절 격자 사이의 상대 위치를 검출하는 데 사용된다. 한편, 도 6c 및 도 6d에 나타낸 회절 격자 사이의 상대 위치를 검출하는 경우에는, 제3 극(IL3) 및 제4 극(IL4)으로부터의 광은 회절 격자 사이의 상대 위치를 검출하는 데 사용되며, 제1 극(IL1) 및 제2 극(IL2)으로부터의 광은 회절 격자 사이의 상대 위치의 검출에 사용되지 않는다. 또한, 도 6a 및 도 6b에 나타내는 회절 격자의 쌍과 도 6c 및 도 6d에 나타내는 회절 격자의 쌍을 검출 시스템(21)의 동일 시야 내에 배치해서 동시에 2개의 방향의 상대 위치를 검출하는 경우에는, 도 4에 나타내는 퓨필 강도 분포가 유용하다.
이제, 1개의 시야 내에서 관찰되는 마크에 대해서 상세하게 설명한다. 도 7은 몰드(7)와 기판(8)을 서로 겹칠 때 이미지 센서(25)에 의해 검출되는 상을 개략적으로 나타내는 도면이다. 외측 프레임의 범위(73)는 검출 장치(3)에 의해 한번에 관찰될 수 있는 범위를 나타낸다. 전술한 몰드 마크(10)는, 조 검출 마크(71a-1) 및 정밀 검출 마크로서의 회절 격자(71a-2, 71a-2')를 포함하고, 전술한 기판 마크(11)는 조 검출 마크(72a-1) 및 정밀 검출 마크로서의 회절 격자(72a-2, 72a-2')를 포함한다. 조 검출 마크(71a-1)와 조 검출 마크(72a-1)의 기하학적인 중심 위치를 참조해서 검출 장치(3)의 검출 결과로부터 몰드(7)와 기판(8) 사이의 상대적인 위치 어긋남을 구할 수 있다. 계측값(D1)과 조 검출 마크(71a-1, 72a-1)의 설계값 사이의 차분이 상대적인 위치 어긋남이 된다. 이 마크에 의해 거친 정렬이 가능하게 된다.
이어서, 회절 격자(71a-2)와 회절 격자(72a-2)가 서로 겹칠 때 생성되는 무아레 무늬에 대해서 설명한다. 회절 격자(71a-2)와 회절 격자(72a-2)는, 도 6c 또는 도 6d에 나타내는 주기적인 패턴에 의해 각각 형성되며, 계측 방향에서 약간 상이한 주기를 갖는다. 따라서, 이들 회절 격자를 서로 겹치면, Y 방향에서 광 강도가 변화하는 무아레 무늬가 형성된다. 회절 격자(71a-2)와 회절 격자(72a-2) 사이의 주기차로 인해, 상대 위치가 변화했을 때의 무아레 무늬의 어긋남 방향이 상이하다. 예를 들어, 회절 격자(71a-2)의 주기가 회절 격자(72a-2)의 주기보다 약간 큰 경우, 기판(8)이 상대적으로 +Y 방향으로 어긋나면, 무아레 무늬도 +Y 방향으로 어긋난다. 한편, 회절 격자(71a-2)의 주기가 회절 격자(72a-2)의 주기보다 약간 작은 경우, 기판(8)이 상대적으로 +Y 방향으로 어긋나면, 무아레 무늬는 -Y 방향으로 어긋난다.
회절 격자(71a-2') 및 회절 격자(72a-2')는 다른 무아레 무늬를 형성한다. 회절 격자(71a-2)와 회절 격자(72a-2)의 주기 사이의 대소 관계는 회절 격자(71a-2')와 회절 격자(72a-2')의 주기 사이의 대소 관계에 대해 반대이다. 따라서, 상대 위치가 변화하면, 2개의 계측되는 무아레 무늬의 위치가 반대 방향으로 변화한다. 무아레 무늬를 발생시키는 몰드측과 기판측의 주기적인 마크가 1주기분 어긋나 있는 경우, 무아레 무늬 검출 원리상 1주기분의 어긋남을 검출할 수 없다. 따라서, 조 검출 마크(71a-1, 72a-1)를 사용해서, 몰드(7)와 기판(8) 사이에 1주기분의 상대적인 위치 어긋남이 없는 것을 확인할 수 있다. 조 검출 마크(71a-1, 72a-1)는, 몰드(7)의 회절 격자와 기판(8)의 회절 격자가 1주기분의 위치 오차를 발생시키지 않는 피치를 갖는 한 무아레 신호를 발생시키는 마크일 수 있다.
몰드(7)의 조 검출 마크(71a-1)와 기판(8)의 조 검출 마크(72a-1)의 구성 재료는 서로 상이할 수 있기 때문에, 이미지 센서(25)에 의해 검출되는 광 강도는 파장에 따라 다를 수 있다. 따라서, 조명 시스템(22)은 조명광의 파장을 변경할 수 있도록 구성되는 것이 바람직하다. 이것은, 예를 들어 대응하는 파장 범위를 갖는 광을 발생시키도록 광원(23)을 형성하고, 파장 범위 내의 임의의 파장의 광을 선택적으로 투과시키는 필터를 제공함으로써 실현될 수 있다. 대안적으로, 상이한 파장의 광을 발생시키는 복수의 광원이 제공될 수 있으며, 이들로부터 선택된 광원이 광을 방출하게 할 수 있다. 조명광의 파장을 변경할 수 있게 함으로써, 조 검출 마크(71a-1)의 상의 광 강도와 조 검출 마크(72a-1)의 상의 광 강도 사이의 비를 조정할 수 있다. 조명광의 파장이 변경가능한 경우, 이는 회절 격자(71a-2, 71a-2', 72a-2, 72a-2')에 의해 형성되는 무아레 무늬의 광 강도를 조정하는 데 효과적이다.
몰드 마크(10) 및 기판 마크(11)에 조명광을 조사할 때에, 회절 격자(71a-2, 71a-2', 72a-2, 72a-2') 각각의 에지(이하, 패턴 에지라고 칭함)에 의해 조명광이 산란될 수 있다. 예를 들어, 회절 격자(71a-2)에 대해서, 패턴 에지는 회절 격자(71a-2) 전체와 회절 격자(71a-2) 외측의 부분 사이의 경계이다. 회절 격자(71a-2, 71a-2', 72a-2, 72a-2')의 단차량 및/또는 구성 재료 등의 요인으로 인해, 무아레 무늬의 신호 강도가 약한 경우, 산란광으로 인해 검출 결과에 오차가 발생할 수 있다. 따라서, 패턴 에지에서의 산란광의 영향(즉, 이미지 센서(25)로의 산란광의 입사)을 감소시키는 것이 요망된다.
도 8은, 비교예에 따라 검출 시스템(21)의 퓨필면(Pdet)에 입사하는 광의 광 강도 분포와 조명 시스템(22)의 퓨필면(Pill)의 출구에서의 광 강도 분포를 서로 겹쳐서 나타낸다. 도 5a 내지 도 5d는 극(IL1 내지 IL4)을 나타내지만, 도 8은 간략화를 위해 극(IL1 및 IL3)만을 나타낸다는 것에 유의한다. 극(IL2 및 IL4)에 의해서도 패턴 에지에 의해 산란된 광이 발생한다. 도 8의 극(IL1)으로부터의 조명광에 의한 조명에 의해 발생할 수 있는 산란광에 대해서 설명한다. 극(IL1)으로부터의 조명광이 몰드 마크(10) 및 기판 마크(11)에 조사된다. 이에 의해 발생하는 정반사 광은 검출 시스템(21)의 검출 구경 조리개(26)의 개구(PD) 외측으로 조사되기 때문에, 이들은 검출 구경 조리개(26)에 의해 차단된다. 그러한 정반사 광은 이미지 센서(25)에 의해 검출되지 않는다. X 방향에 평행한 패턴 에지에 방출된 조명광은 패턴 에지에 의해 Y 방향으로 산란되어서, 극(IL1)으로부터의 조명광의 정반사 광(N1(0))을 기준으로 해서 1차 반사광(N1(1)) 및 2차 반사광(N1(2))을 발생시킨다. 이들 산란광이 검출 구경 조리개(26)의 개구(PD)를 통과해서 이미지 센서(25)에 입사하면, 이들은 이미지 센서(25)에 의해 검출된다. 이에 의해, 무아레 무늬의 상에 노이즈 성분이 중첩된다. 극(IL3)에 대해서도, 몰드 마크(10) 및 기판 마크(11)에 의한 정반사 광은 검출 구경 조리개(26)에 의해 차단된다. 그러나, Y 방향에 평행한 패턴 에지에 방출된 조명광은 패턴 에지에 의해 X 방향으로 산란되어서 극(IL3)으로부터의 조명광의 정반사 광(N3(0))을 기준으로 해서 1차 반사광(N3(1)) 및 2차 반사광(N3(2))을 발생시킨다. 따라서, 패턴 에지의 4개의 변 부분으로부터의 산란광으로부터 이미지 센서(25)의 촬상면에 상이 형성되고, 이것이 이미지 센서(25)에 의해 촬상되는 상에 중첩된다.
무아레 무늬의 검출에 대한 영향의 실질적인 예는 다음과 같다. 계측 방향이 X 방향인 무아레 무늬의 상에 대하여 Y 방향에 평행한 에지로부터의 광이 중첩되면, 그 광은 무아레 무늬의 상의 에지에 가까운 부분의 광량을 증가시키고, 무아레 무늬의 광량이 좌우 비대칭적으로 변화할 수 있다. 따라서, 무아레 무늬의 상의 위치를 검출할 때에 오차가 발생할 수 있다. 혹은, 계측 방향이 X 방향인 무아레 무늬에 대하여 X 방향에 평행한 에지로부터의 광이 중첩되면, 그 광은 무아레 무늬의 상에 바이어스를 가한다. 따라서, 무아레 무늬를 검출할 때 콘트라스트가 저하되고, 이에 의해 검출 재현성을 악화시킨다. 따라서, 패턴 에지로부터의 광을 검출 시스템(21)의 퓨필면(Pdet)에 의해 차단함으로써 검출 성능이 향상된다.
도 1a는, 제1 실시형태에 따라 검출 시스템(21)의 퓨필면(Pdet)에 입사하는 광의 광 강도 분포와 조명 시스템(22)의 퓨필면(Pill)의 출구에서의 광 강도 분포를 겹쳐서 나타내고 있다. 조명 시스템(22)의 퓨필면(Pill)의 출구에서의 광 강도 분포는 극(IL1, IL3)을 포함한다. 극(IL1)은 y축 상에 배치되고, 극(IL3)은 x 축 상에 배치된다. 극(IL1)으로부터의 조명광으로 몰드 마크(10)와 기판 마크(11)가 조명되면, 회절광(D1(+1), D1(-1))이 발생한다. 회절광(D1(+1), D1(-1))은 검출 시스템(21)의 퓨필면(Pdet)의 개구(PD)를 통과해서 이미지 센서(25)의 촬상면에 입사한다. 회절광(D1(+1), D1(-1))은 이미지 센서(25)의 촬상면에 무아레 무늬의 광학 상을 형성한다. 이 예에서, 몰드 마크(10)와 기판 마크(11)의 조합은 각각 도 6a 및 도 6b에 나타내는 바와 같은 체커보드 회절 격자 패턴과 1차 회절 격자 패턴의 조합일 수 있다. 마크(10, 11)를 조명하는 조명광의 회절광은 X 방향 및 Y 방향으로 회절된다. 예를 들어, P1 및 P3는 각각 도 6a에 나타낸 회절 격자 패턴의 X 및 Y 방향의 피치를 나타내며, P2는 도 6b의 X 방향의 피치를 나타낸다. 설명의 편의 위해서, P1>P2가 설정된다. 그러나, 해당 분야의 통상의 기술자는 대소 관계가 반대이어도 회절광이 얻어질 수 있다는 것을 이해할 수 있다. 이 예에서는, 몰드 마크(10)에 1차 회절 격자 패턴이 사용되며, 기판 마크(11)에 체커보드 회절 격자 패턴이 사용되며, 그 반대의 경우도 마찬가지이다. 1차 회절광의 회절각(θ)(광축에 평행한 방향에 대한 각도)을 일반적으로 이하와 같이 나타낼 수 있다.
θ×1 = arcsin(λ/P1), θ×2 = arcsin(λ/P2)
여기서, λ는 조명광의 파장이다. 회절 격자로부터의 회절광은 플러스와 마이너스 방향으로 발생한다. 따라서, 무아레 무늬를 형성하는 몰드 마크(10)와 기판 마크(11)에 의해 회절된 광은 X 방향에서 4개의 회절각(θ×1+θ×2, θ×1-θ×2, -θ×1+θ×2, 및 -θ×1-θ×2)으로 회절된다. θ×1+θ×2 및 -θ×1-θ×2의 회절각을 갖는 회절광을 사용하면, 검출 시스템(21)의 NA를 확대할 필요가 있고, 그 간섭 줄무늬의 주기가 작아진다. 따라서, 검출을 행해도, 검출 정밀도가 향상될 수 있다. 따라서, θ×1-θ×2 및 -θ×1+θ×2의 작은 회절각을 갖는 회절광이 검출된다. 회절광의 광축에 대한 X 방향의 각도는 도 1a에 나타낸 회절광(D1(+1))의 경우에는 -θ×1+θ×2로 나타낼 수 있으며, 도 1a에 도시된 회절광(D2(-1))의 경우에는 θ×1-θ×2로 나타낼 수 있다. 도 1a에 나타낸 검출 시스템(21)의 검출 구경 조리개(26)의 위치에서, X 방향의 좌표는 회절광(D1(+1))에 대해서는 f×tan(-θ×1+θ×2)로 그리고 회절광(D1(-1))에 대해서는 f×tan(θ×1-θ×2)로 나타낼 수 있으며, 여기서 f는 검출 시스템(21)의 검출 구경 조리개(26)와 회절 격자(정렬 마크) 사이에 배치된 렌즈 군의 초점 거리를 나타내다.
이어서, 광축에 대하여 Y 방향으로 회절되는 회절광에 대해서 설명한다. 도 6a에 나타내는 체커보드 회절 격자는 Y 방향으로도 주기를 갖기 때문에, 도 6a에 나타낸 회절 격자로부터의 회절광은 X 방향 및 Y 방향으로 회절된다. Y 방향의 피치가 P3이기 때문에, 회절광의 회절각은 하기의 식에 의해 주어질 수 있다.
θy=arcsin(λ/P3)
도 1a를 참조하면, 극(IL1)으로부터의 조명광의 정반사 광은 Y 방향에서 X축을 대칭축으로 해서 조명광에 대칭인 위치에서 반사된다. 즉, 극(IL1)으로부터의 조명광의 X-Y 평면에의 입사각을 θILy로 하면, 검출 구경 조리개(26)(퓨필면(Pdet)) 상에서의 조명광의 위치는 f×tan(θILy)로 표현된다. 조명광의 정반사 광의 위치는 f×tan(-θILy)로 표현된다. 체커보드 회절 격자로부터의 1차 회절광은 정반사 광에 대하여 각도(θy)로 회절된다. 즉, 도 1a에서, 극(IL1)으로부터의 조명광의 정반사 광(f×tan(-θILy))에 회절광의 각도(θy)에 대응하는 어긋남량인 f×tan(θy)을 추가함으로써, 퓨필면(Pdet)에서의 회절광의 Y 방향의 위치가 얻어진다. Y 방향의 피치(P3)를 조정함으로써, 도 1a에 나타내는 회절광(D1(+1), D1(-1))의 위치에서 광이 회절될 수 있다. 회절광(D1(+1), D1(-1))에 의해 이미지 센서(25)의 촬상면에 X 방향으로 강도가 변화하는 간섭 줄무늬(무아레 무늬)가 형성되고, 이것이 이미지 센서(25)에 의해 검출된다.
극(IL3)은 극(IL1)을 시계 방향으로 90° 회전함으로써 얻어진다. 도 6c 및 도 6d에 나타낸 회절 격자를 조명함으로써 회절광이 발생하고, 이에 의해 Y 방향으로 강도가 변화하는 무아레 무늬를 형성할 수 있다. X 방향과 Y 방향의 무아레 무늬는 동일한 피치를 가질 수 있거나 또는 마크가 배치되는 패턴의 영역을 고려해서 상이한 피치를 가질 수 있다. 도 1a에 나타낸 예에서, 조명 시스템(22)의 퓨필면(Pill)의 출구에 형성되는 광 강도 분포는 극(IL1, IL3)에 의해 형성되며, 광축에 관해서 비대칭인 광 강도 분포이다.
도 1b는 검출 시스템(21)의 퓨필면(Pdet)에 배치되는 검출 구경 조리개(26)의 예를 나타낸다. 백색부가 개구이며, 흑색부가 차광체이다. 도 8을 참고해서 설명한 바와 같이, 패턴 에지로부터의 산란광은 검출 구경 조리개(26)(퓨필면(Pdet))의 x축 및 y축 위로 분포된다. 불필요한 산란광을 차단하기 위해서, 검출 구경 조리개(26)의 x축 및 y축 위의 광을 차단하는 차광부를 포함하는 차광체(BP)가 배치된다. 이에 의해 패턴 에지로부터의 산란광을 차단할 수 있다. 차광체(BP)는, 검출 시스템(21)의 광축을 x축에 평행한 방향(제3 방향)으로 가로지르는 제1 차광부(BP1) 및 검출 시스템(21)의 광축을 y축에 평행한 방향(제4 방향)으로 가로지르는 제2 차광부(BP2)를 포함할 수 있다. 제1 차광부(BP1)는 검출 시스템(21)의 퓨필면(Pdet)의 x 방향에서의 직경에 걸쳐 연장되도록 배치될 수 있다. 제2 차광부(BP2)는 검출 시스템(21)의 퓨필면(Pdet)의 y 방향에서의 직경에 걸쳐 연장되도록 배치될 수 있다.
이 예에서, x축에 평행한 x 방향(제3 방향)은 X축에 평행한 X 방향(제1 방향)에 공액인 방향이며, y축에 평행한 y 방향(제4 방향)은 Y축에 평행한 Y 방향(제2 방향)에 공액인 방향이다. 검출 시스템(21)에서, x 방향과 X 방향이 서로 공액인 경우, 이것은 몰드(7)/기판(8)과 검출 시스템(21)의 퓨필면(Pdet) 사이에 검출 시스템(21)의 광축을 굽어지게 하는 반사면이 존재하지 않는 경우에는 x 방향과 X 방향이 서로 일치하는 것을 의미한다. 검출 시스템(21)에서, x 방향과 X 방향이 서로 공액인 경우, 이것은 몰드(7)/기판(8)과 검출 시스템(21)의 퓨필면(Pdet) 사이에 광축을 굽어지게 하는 반사면이 존재하는 경우에는 해당 반사면에 의해 퓨필면(Pdet)에 맵핑된 X 방향이 x 방향과 일치하는 것을 의미한다. 반사면이 존재하는 경우에, x 방향이 X 방향과 일치하거나 일치하지 않을 수 있다. 이는 Y 방향에 대한 y 방향의 공액에 대해서도 동일하다.
상기 설명은 조명 시스템(22)의 퓨필면(Pill)의 x 방향 및 y 방향에 대해서도 적용된다. 즉, 퓨필면(Pill)의 x축에 평행한 x 방향(제5 방향)은 X축에 평행한 X 방향(제1 방향)에 공액인 방향이며, 퓨필면(Pill)의 y축에 평행한 y 방향(제6 방향)은 Y축에 평행한 Y 방향(제2 방향)에 공액인 방향이다. 조명 시스템(22)에서, x 방향과 X 방향이 서로 공액인 경우, 이것은 몰드(7)/기판(8)과 조명 시스템(22)의 퓨필면(Pill) 사이에 조명 시스템(22)의 광축을 굽어지게 하는 반사면이 존재하지 않는 경우에는 x 방향과 X 방향이 서로 일치하는 것을 의미한다. 조명 시스템(22)에서, x 방향과 X 방향이 서로 공액인 경우, 이것은 몰드(7)/기판(8)과 조명 시스템(22)의 퓨필면(Pill) 사이에 광축을 굽어지게 하는 반사면이 존재하는 경우에는 반사면에 의해 퓨필면(Pill)에 맵핑된 X 방향이 x 방향과 일치하는 것을 의미한다. 반사면이 존재하는 경우에, x 방향이 X 방향과 일치하거나 일치하지 않을 수 있다. 이는 Y 방향에 대한 y 방향의 공액에 대해서도 동일하다.
제1 차광부(BP1)의 폭(y 방향의 폭)(NAbp1)은 극(IL1)의 폭(x 방향의 폭)(NA_IL1)과 동일하거나 그보다 큰 것이 바람직하다. 즉, NAbp1≥A_IL1인 것이 바람직하다. 이에 의해, 극(IL1) 내의 어느 위치로부터의 조명광의 산란광도 제1 차광부(BP1)에 의해 차단할 수 있다. 즉, 조명광으로 조명된 몰드 마크(10)(회절 격자)와 기판 마크(11)(회절 격자)로부터의 광 중, 마크 사이의 상대 위치를 나타내는 광학 정보를 포함하지 않는 불필요 광은 제1 차광부(BP1) 및 제2 차광부(BP2)에 의해 차단될 수 있다.
검출 시스템(21)의 퓨필면(Pdet)은 차광체(BP)가 배치되어 있지 않은 영역에 광 투과 영역(AP)을 포함한다. 조명광으로 조명된 몰드 마크(10)(회절 격자)와 기판 마크(11)(회절 격자)로부터의 회절광은 광 투과 영역(AP)을 통과하고, 이에 의해 몰드(7)와 기판(8) 사이의 상대 위치를 나타내는 광학 정보를 이미지 센서(25)의 촬상면에 형성하는 것이 바람직하다.
더 구체적으로는, 이미지 센서(25)의 촬상면에 무아레 무늬를 형성하는 회절광(D1(+1), D1(-1))이 광 투과 영역(AP)을 통과하는 것이 바람직하다. 따라서, 회절광(D1(+1), D1(-1))이 차광체(BP)에 입사하지 않도록, 차광체(BP), 몰드 마크(10)(회절 격자), 및 기판 마크(11)(회절 격자)가 설계될 수 있다. 간단화를 위해서, 회절광(D1(+1), D1(-1))이 폭을 갖지 않을 경우에 대해서 생각한다.
검출 시스템(21)의 퓨필면(Pdet)에서, 회절광(D1(+1), D1(-1))의 위치는 각각 f×tan(-θ×1+θ×2) 및 f×tan(θ×1-θ×2)으로 표현된다. 즉, x 방향에 관해서는, 회절광(D1(+1), D1(-1))이 광 투과 영역(AP)을 통과하도록, 차광체(BP), 몰드 마크(10)(회절 격자), 및 기판 마크(11)(회절 격자)가 설계될 수 있다.
|f×tan(-θ×1+θ×2)|≥NAbp1/2 ...(1)
y 방향에 관해서, 식 (2)를 충족하도록, 차광체(BP), 몰드 마크(10)(회절 격자), 및 기판 마크(11)(회절 격자)가 설계될 수 있다.
|f×tan(-θILy)+f×tan(θy)|≥NAbp3/2 ...(2)
이 예에서, |f×tan(-θILy)+f×tan(θy)|에 대해서, y 방향의 마이너스측과 플러스측의 2개의 위치에 대한 해를 갖는다. 검출 시스템(21)의 퓨필면(Pdet)에서, 극(IL1)으로부터의 조명광의 정반사 광의 부근(y 방향의 마이너스측)에 광 투과 영역(AP)이 존재하는 경우, 노이즈가 발생할 수 있다. 또한, 회절 격자의 피치가 작을수록, 미리결정된 면적 내에 들어오는 회절 격자의 피치 수가 커진다. 따라서, 회절광의 각도 분포의 확산이 작아진다. 따라서, |f×tan(-θILy)+f×tan(θy)|은 극(IL1)으로부터의 조명광의 정반사 광의 반대측, 즉 y 방향의 플러스측에 있는 것이 바람직하다.
조명광의 중심 광선에 대해서는, 식 (1) 및 (2)를 충족하는 것에 의해 무아레 무늬를 형성하는 회절광이 차광체(BP)에 의해 차단되지 않고 이미지 센서(25)에 의해 검출될 수 있다. 그러나, 극(IL1)은 폭(NA_IL1)을 갖고, 회절 격자의 피치 수는 유한하다. 이들을 고려하면, 식 (1) 및 (2)는 식 (3) 및 (4)으로 확장된다.
|f×tan(-θ×1+θ×2)|≥NAbp1/2+회절광의 폭/2 ...(3)
|f×tan(-θILy)+f×tan(θy)|≥NAbp3/2+회절광의 폭/2 ...(4)
식 (3) 및 (4)를 충족하는 것에 의해, 조명광으로 조명된 몰드 마크(10)(회절 격자)와 기판 마크(11)(회절 격자)로부터의 회절광 모두가 광 투과 영역(AP)을 통과해서 이미지 센서(25)의 촬상면에 입사한다.
도 9a는, 제1 실시형태의 변형예에 따라 검출 시스템(21)의 퓨필면(Pdet)에 입사하는 광의 광 강도 분포와 조명 시스템(22)의 퓨필면(Pill)의 출구에서의 광 강도 분포를 겹쳐서 나타낸다. 도 9a에 나타나는 바와 같이, 변형예에 따르면, 조명 시스템(22)의 퓨필면(Pill)의 출구에서의 광 강도 분포는 극(IL1, IL2, IL3, IL4)을 포함한다. 극(IL1, IL2, IL3, IL4)을 포함하는 광 강도 분포는 광축에 관해서 대칭인 광 강도 분포이다. 극(IL1, IL2)은 y축 상의 2개의 상이한 점에 위치하고, 극(IL3, IL4)은 x축 상의 2개의 상이한 점에 위치한다. 극의 개수는 4개에 한정되지 않고, 다른 개수(예를 들어, 8개)일 수 있다.
도 9b는 검출 구경 조리개(26)의 형상을 나타낸다. 백색부가 개구이며, 흑색부가 차광체이다. 도 1b에 나타낸 차광체(BP)와 마찬가지로, 도 9b에 나타낸 차광체(BP)는 각각 검출 구경 조리개(26)의 x축 및 y축 상에 각각 광을 차단하는 제1 및 제2 차광부(BP1, BP2)를 포함한다. 차광체(BP)는 패턴 에지로부터의 산란광을 차단한다.
도 1a에 나타낸 구성예에서는, 극(IL1, IL3)의 위치는 광축에 관해서 중심 대칭이 아니다. 따라서, 광축 방향에서의 촬상면의 위치 오차에 의해 검출 오차가 발생할 수 있다. 한편, 도 9a에 나타낸 구성예에서와 같이 극(IL1, IL2, IL3, IL4)을 광축 방향에 관해서 중심 대칭으로 배치하면, 광축 방향에서의 촬상면의 위치 오차에 대하여 검출 오차를 둔감하게 할 수 있다.
도 9a에 나타낸 극(IL1, IL3)으로부터의 조명광의 회절광은 도 1a에 나타낸 극(IL1, IL3)으로부터의 조명광의 회절광과 동일하다. 극(IL1, IL2)은 x축에 대해서 대칭인 위치에 위치한다. 극(IL2)로부터의 조명광으로 몰드 마크(10)(회절 격자)와 기판 마크(11)(회절 격자)를 조사할 때 마크에 의해 회절된 회절광을 D2(+1) 및 D2(-1)로 나타낸다. 극(IL1, IL2)은 x축에 대해서 대칭인 위치에 위치하기 때문에, 회절광(D1(+1), D1(-1))과 회절광(D2(+1), D2(-1))은 검출 시스템(21)의 퓨필면(Pdet)에 대하여 x축에 대해서 대칭인 위치에 입사한다. 회절광(D1(+1), D1(-1), D2(+1), D2(-1))은 X 방향으로 강도가 변화하는 무아레 무늬를 형성한다.
극(IL3, IL4)은 극(IL1, IL2)을 시계 방향으로 90° 회전시킴으로써 획득된다. 극(IL3, IL4)로부터의 조명광으로 조명된 Y 방향 계측용의 회절 격자는 회절광(D3(+1), D3(-1), D4(+1), D4(-1))(도시되지 않음)을 발생시킨다. 회절광(D3(+1), D3(-1), D4(+1), D4(-1))은 회절광(D1(+1), D1(-1), D2(+1), D2(-1))을 광축 둘레로 90°도 회전시킴으로써 획득된 위치에서 회절된다. 회절광(D3(+1), D3(-1), D4(+1), D4(-1))은 y 방향으로 강도가 변화하는 무아레 무늬를 형성한다.
이하, 도 10을 참조해서 제2 실시형태에 따른 검출 장치(3)에 대해서 설명한다. 제2 실시형태에서 언급되지 않은 사항은 제1 실시형태를 따를 수 있다는 것에 유의한다. 도 10은 제2 실시형태에 따른 검출 장치(3)의 구성을 나타낸다. 제2 실시형태에 따른 검출 장치(3)는 제1 검출 시스템(21) 및 제2 검출 시스템(50)을 포함한다. 제1 검출 시스템(21) 및 제2 검출 시스템(50)은 일부 구성요소를 공유할 수 있다. 또한, 제1 검출 시스템(21), 제2 검출 시스템(50) 및 조명 시스템(22)은 일부 구성요소를 공유할 수 있다. 제1 검출 시스템(21)은 제1 이미지 센서(25)를 포함하며, 제2 검출 시스템(50)은 제2 이미지 센서(51)를 포함한다. 제1 검출 시스템(21)은, 제1 실시형태에서 상세하게 설명한 바와 같이, 정밀 검출 마크인 회절 격자에 의해 형성되는 무아레 무늬를 검출하도록 구성된다. 제2 검출 시스템(50)은 피치 어긋남을 검출하도록, 즉, 조 검출 마크를 검출하도록 구성된다.
조명 시스템(22) 및 제1 검출 시스템(21)은 제1 실시형태와 마찬가지로 형성될 수 있다. 이에 의해, 도 6a 내지 도 6d에 예시된 회절 격자에 의해 형성되는 무아레 무늬를 고정밀도로 검출할 수 있다. 제2 검출 시스템(50)에 의해 조 검출 마크를 검출하기 위해서는, 조명 시스템(22)은, 예를 들어 도 9a에 예시되는 사중극 조명을 행하는 것이 유리하다.
고정밀도로 무아레 무늬를 검출하기 위해서는, 몰드 마크(10)/기판 마크(11)로부터 이미지 센서(25)까지의 결상 배율을 고배율로 하는 것이 바람직하다. 한편, 조 검출 마크를 검출하는 제2 검출 시스템(50)은 회절 격자 사이의 피치 어긋남을 계측할 수 있으면 충분하기 때문에, 몰드 마크(10)/기판 마크(11)로부터 이미지 센서(51)까지의 결상 배율이 낮게 설정되어도, 정밀도에 대한 영향은 작다. 몰드 마크(10)/기판 마크(11)로부터 이미지 센서(51)까지의 결상 배율을 낮게 설정함으로써, 계측 시야를 확장할 수 있다. 따라서, 몰드(7)와 기판(8)의 위치 사이에 큰 어긋남이 있는 경우에도, 넓은 범위를 관찰할 수 있기 때문에, 탐색 없이 위치를 계측하는 것이 가능하다. 상술한 바와 같이, 제2 실시형태에서는, 광로를 분기해서 제1 검출 시스템(21) 및 제2 검출 시스템(50)을 제공함으로써, 제1 검출 시스템(21)의 배율과 제2 검출 시스템(50)의 배율을 서로 다르게 할 수 있다.
변형예로서, 제1 검출 시스템(21)의 광로와 제2 검출 시스템(50)의 광로를 분기한 후에, 검출 구경 조리개를 배치할 수 있다. 이에 의해, 노이즈로서의 광을 저감시킬 수 있다. 도 11에 예시되는 바와 같이, 몰드 마크(10)/기판 마크(11)와 이미지 센서(25) 사이의 광로에 제1 검출 구경 조리개(26a)를 배치할 수 있다. 또한, 몰드 마크(10)/기판 마크(11)와 이미지 센서(51) 사이의 광로에 제2 검출 구경 조리개(26b)를 배치할 수 있다. 제1 검출 구경 조리개(26a)와 제2 검출 구경 조리개(26b)는 상이한 형상 또는 특성을 가질 수 있다.
이 변형예에서는, 제1 검출 시스템(21)는 X 방향에서 강도가 변화하는 무아레 무늬를 검출할 수 있으며, 제2 검출 시스템(50)은 Y 방향에서 강도가 변화하는 무아레 무늬를 검출할 수 있다. 이 경우, 도 1b에 나타낸 검출 구경 조리개를 개량해서 채용하는 것이 바람직하다. 도 1b에 나타낸 검출 구경 조리개에서는, X 방향에서 강도가 변화하는 무아레 무늬를 검출하기 위한 개구는 y 방향의 플러스측에만 있으며, Y 방향에서 강도가 변화하는 무아레 무늬를 검출하기 위한 개구는 x 방향의 플러스측에만 있다. 따라서, X 방향에서 강도가 변화하는 무아레 무늬를 검출하기 위한 검출 구경 조리개(26a)에 대해서는, 도 1b의 y 방향의 마이너스측의 부분이 차광부이다. Y 방향에서 강도가 변화하는 무아레 무늬를 검출하기 위한 검출 구경 조리개(26b)에 대해서는, 도 1b의 x 방향의 마이너스측의 부분이 차광부이다. 이에 의해, 노이즈로서의 광을 저감시킬 수 있다. 검출 구경 조리개의 형상은 이들로 한정되지 않는다는 것에 유의한다.
이하, 도 12를 참조해서 제3 실시형태에 따른 검출 장치(3)에 대해서 설명한다. 제3 실시형태로서 언급되지 않는 사항은 제1 또는 제2 실시형태를 따를 수 있다는 것에 유의한다. 제3 실시형태에서는, 조명 시스템(22)의 퓨필면(Pill)에 배치되는 조명 구경 조리개(27)는 핀홀을 갖는 핀홀 판이다. 따라서, 조명광은, 조명 시스템(22)의 퓨필면(Pill)에서의 조명 시스템(22)의 광축 및 그 근방만을 통과하는 광선에 의해 형성된다. 반사막(24a)은 광선을 반사해서 몰드 마크(10)/기판 마크(11)을 조명하도록 구성될 수 있다. 조명 구경 조리개(27)는 임의적인 구성요소일 수 있으며, 반사막(24a)의 영역을 규정함으로써 광축에 평행한 조명광을 형성할 수 있다는 것에 유의한다. 검출 시스템(21)의 퓨필면(Pdet)에 배치되는 검출 구경 조리개(26)는 제1 또는 제2 실시형태를 따를 수 있다.
이어서, 전술한 실시형태로 대표되는 임프린트 장치를 이용한 물품 제조 방법에 대해서 설명한다. 물품은, 예를 들어 반도체 디바이스, 디스플레이 디바이스, MEMS 등일 수 있다. 물품 제조 방법은, 리소그래피 장치 또는 임프린트 장치를 사용해서 원판의 패턴을 기판에 전사하는 전사 단계, 및 전사 단계를 거친 기판으로부터 물품이 얻어지도록 기판을 가공하는 가공 단계를 포함할 수 있다. 전사 단계는, 예를 들어 기판(8)의 샷 영역 상의 임프린트재(9)와 몰드(7)를 서로 접촉시키는 접촉 단계를 포함할 수 있다. 또한, 전사 단계는 기판(8)의 샷 영역(또는 기판 마크)와 몰드(7) 사이의 상대 위치를 계측하는 계측 단계를 포함할 수 있다. 또한, 전사 단계는 계측 단계의 결과에 기초하여 기판(8)의 샷 영역과 몰드(7)를 정렬하는 정렬 단계를 포함할 수 있다. 또한, 전사 단계는 기판(8) 상의 임프린트재(9)를 경화시키는 경화 단계와 임프린트재(9)를 몰드(7)로부터 분리하는 분리 단계를 포함할 수 있다. 이에 의해, 기판(8) 상에 임프린트재(9)의 경화물로 이루어지는 패턴이 형성 또는 전사된다. 가공 단계는, 예를 들어 에칭, 레지스트 박리, 다이싱, 본딩, 및 패키징을 포함할 수 있다.
임프린트 장치를 사용해서 형성한 경화물의 패턴은 각종 물품의 적어도 일부에 영구적으로 또는 각종 물품을 제조할 때에 일시적으로 사용된다. 물품은 전기 회로 소자, 광학 소자, MEMS, 기록 소자, 센서, 몰드 등이다. 전기 회로 소자의 예는, DRAM, SRAM, 플래시 메모리, 및 MRAM과 같은 휘발성 또는 비휘발성 반도체 메모리와, LSI, CCD, 이미지 센서, 및 FPGA와 같은 반도체 소자이다. 몰드의 예는 임프린트용 몰드이다.
경화물의 패턴은, 전술한 물품의 적어도 일부의 구성 부재로서 그대로 사용되거나 또는 레지스트 마스크로서 일시적으로 사용된다. 기판 가공 단계에서 에칭 또는 이온 주입이 행해진 후, 레지스트 마스크는 제거된다.
이어서, 임프린트 장치가 기판에 패턴을 형성하고, 패턴이 형성된 기판을 처리하고, 처리된 기판으로부터 물품을 제조하는 물품 제조 방법에 대해서 설명한다. 도 13a에 나타내는 바와 같이, 절연체 등의 피가공재(2z)가 표면에 형성된 실리콘 웨이퍼 등의 기판(1z)을 준비한다. 이어서, 잉크젯법 등에 의해 피가공재(2z)의 표면에 임프린트재(3z)를 부여한다. 여기에서는, 임프린트재(3z)가 복수의 액적으로서 기판 상에 부여된 상태를 나타낸다.
도 13b에 나타내는 바와 같이, 임프린트용 몰드(4z)의, 오목-볼록 패턴이 형성된 측을 기판 상의 임프린트재(3z)를 향해 대향시킨다. 도 13c에 나타내는 바와 같이, 임프린트재(3z)가 부여된 기판(1z)을 몰드(4z)에 접촉시키고, 압력을 가한다. 임프린트재(3z)는 몰드(4z)와 피가공재(2z) 사이의 간극에 충전된다. 이 상태에서, 경화 에너지로서의 광을 몰드(4z)를 통해서 임프린트재(3z)에 조사하면, 임프린트재(3z)는 경화된다.
도 13d에 나타내는 바와 같이, 임프린트재(3z)를 경화시킨 후, 몰드(4z)가 기판(1z)으로부터 분리되고, 기판(1z) 위에 임프린트재(3z)의 경화물의 패턴이 형성된다. 경화물의 패턴에서, 몰드의 오목부는 경화물의 볼록부에 대응하며, 몰드의 볼록부는 경화물의 오목부에 대응한다. 즉, 임프린트재(3z)에 몰드(4z)의 오목-볼록 패턴이 전사된다.
도 13e에 나타내는 바와 같이, 경화물의 패턴을 내 에칭 마스크로서 사용해서 에칭을 행하면, 피가공재(2z)의 표면 중 경화물이 존재하지 않거나 또는 얇게 잔존하는 부분이 제거되어 홈(5z)이 형성된다. 도 13f에 나타내는 바와 같이, 경화물의 패턴을 제거하면, 피가공재(2z)의 표면에 홈(5z)이 형성된 물품을 얻을 수 있다. 여기에서는, 경화물의 패턴을 제거한다. 그러나, 처리 후에 경화물의 패턴을 제거하는 대신에, 이것을 예를 들어 반도체 소자 등에 포함되는 층간 절연막, 즉 물품의 구성 부재로서 사용할 수 있다.
본 발명을 예시적인 실시형태를 참고해서 설명했지만, 본 발명은 개시된 예시적인 실시형태로 한정되지 않는다는 것을 이해해야 한다. 이하의 청구항의 범위는 이러한 모든 변형과 동등한 구조 및 기능을 포함하도록 최광의로 해석되어야 한다.

Claims (18)

  1. 서로 중첩하도록 배치되는 제1 물체와 제2 물체에 각각 제공된 제1 마크와 제2 마크 사이의 상대 위치를 검출하는 검출 장치이며,
    상기 제1 마크 및 상기 제2 마크를 무편광 광인 조명광으로 조명하도록 구성되는 조명 시스템; 및
    이미지 센서를 포함하고, 상기 조명 시스템에 의해 조명된 상기 제1 마크 및 상기 제2 마크로부터의 회절광으로부터 상기 이미지 센서의 촬상면에 상을 형성하도록 구성되는 검출 시스템을 포함하고,
    상기 제1 마크 및 상기 제2 마크는, 제1 방향 또는 상기 제1 방향에 직교하는 제2 방향에서의 상기 상대 위치를 나타내는 광학 정보를 상기 촬상면에 형성하도록 구성되고,
    상기 검출 시스템의 퓨필면에는, 상기 검출 시스템의 광축을 제3 방향에 평행한 방향으로 가로지르는 제1 차광부와 상기 검출 시스템의 상기 광축을 제4 방향에 평행한 방향으로 가로지르는 제2 차광부를 포함하는 차광체가 제공되며,
    상기 제3 방향은 상기 제1 방향에 공액인 방향이며 상기 제4 방향은 상기 제2 방향에 공액인 방향인 검출 장치.
  2. 제1항에 있어서,
    상기 조명광으로 조명된 상기 제1 마크 및 상기 제2 마크로부터의 광 중, 상기 상대 위치를 나타내는 정보를 포함하지 않는 불필요한 광은 상기 제1 차광부 및 상기 제2 차광부의 양쪽 모두에 의해 차단되는 검출 장치.
  3. 제1항에 있어서,
    상기 조명 시스템은 상기 제1 마크 및 상기 제2 마크에 대해 상기 조명광으로 사입사 조명을 행하도록 구성되는 검출 장치.
  4. 제3항에 있어서,
    상기 조명 시스템의 퓨필면의 출구에서의 광 강도 분포는 상기 조명 시스템의 광축에 관해서 비대칭인 검출 장치.
  5. 제3항에 있어서,
    상기 조명 시스템의 퓨필면의 출구에서의 광 강도 분포는 상기 조명 시스템의 광축에 관해서 대칭인 검출 장치.
  6. 제1항에 있어서,
    상기 조명 시스템 및 상기 검출 시스템은 프리즘을 공유하며,
    상기 조명 시스템의 퓨필면은 광원과 상기 프리즘 사이에 배치되고, 상기 조명광은 상기 제1 마크 및 상기 제2 마크를 조명하도록 상기 프리즘에 의해 반사되는 검출 장치.
  7. 제6항에 있어서,
    상기 제1 마크 및 상기 제2 마크로부터의 상기 회절광은 상기 프리즘을 통과해서 상기 촬상면에 입사하며,
    상기 검출 시스템의 상기 퓨필면은 상기 프리즘과 상기 촬상면 사이에 배치되는 검출 장치.
  8. 제1항에 있어서,
    상기 제1 차광부는 상기 검출 시스템의 상기 퓨필면의 상기 제3 방향에서의 직경에 걸쳐 연장되며,
    상기 제2 차광부는 상기 검출 시스템의 상기 퓨필면의 상기 제4 방향에서의 직경에 걸쳐 연장되는 검출 장치.
  9. 제1항에 있어서,
    상기 검출 시스템의 상기 퓨필면은 상기 차광체가 배치되어 있지 않은 영역에 광 투과 영역을 포함하며,
    상기 조명광으로 조명된 상기 제1 마크 및 상기 제2 마크로부터의 상기 회절광은 상기 광 투과 영역을 통과하여, 상기 상대 위치를 나타내는 상기 광학 정보를 상기 촬상면에 형성하는 검출 장치.
  10. 제9항에 있어서,
    상기 조명광으로 조명된 상기 제1 마크 및 상기 제2 마크로부터의 1차 회절광은 상기 광 투과 영역을 통과하여, 상기 상대 위치를 나타내는 상기 광학 정보를 상기 촬상면에 형성하는 검출 장치.
  11. 제1항에 있어서,
    제2 촬상면을 갖는 제2 이미지 센서를 포함하는 제2 검출 시스템을 더 포함하고,
    상기 제1 물체에는 제3 마크가 더 제공되고, 상기 제2 물체에는 제4 마크가 더 제공되며,
    상기 제2 검출 시스템은, 상기 조명 시스템에 의해 조명된 상기 제3 마크 및 상기 제4 마크로부터의 광을 상기 제2 이미지 센서의 상기 제2 촬상면에 형성하는 검출 장치.
  12. 제11항에 있어서,
    상기 검출 시스템 및 상기 제2 검출 시스템은 일부 구성요소를 공유하는 검출 장치.
  13. 제11항에 있어서,
    상기 검출 시스템의 배율은 상기 제2 검출 시스템의 배율과 상이한 검출 장치.
  14. 제11항에 있어서,
    상기 검출 시스템의 상기 퓨필면에 제1 구경 조리개가 배치되며, 상기 제2 검출 시스템의 퓨필면에 제2 구경 조리개가 배치되어 있는 검출 장치.
  15. 제1항에 있어서,
    상기 조명 시스템은 상기 조명광의 파장을 변경할 수 있는 검출 장치.
  16. 원판의 패턴을 기판에 전사하는 리소그래피 장치이며,
    제1항 내지 제15항 중 어느 한 항에 규정된 검출 장치를 포함하며,
    제1 마크가 제공된 제1 물체로서의 상기 원판과 제2 마크가 제공된 제2 물체로서의 상기 기판을 상기 검출 장치로부터의 출력에 기초하여 정렬하도록 구성되는 리소그래피 장치.
  17. 제16항에 있어서,
    상기 리소그래피 장치는 임프린트 장치로서 형성되어 있는 리소그래피 장치.
  18. 물품 제조 방법이며,
    제17항에 규정된 리소그래피 장치를 사용해서 원판의 패턴을 기판에 전사하는 전사 단계; 및
    상기 전사 단계를 거친 상기 기판으로부터 물품을 얻도록 상기 기판을 가공하는 가공 단계를 포함하는 물품 제조 방법.
KR1020230093554A 2022-07-21 2023-07-19 검출 장치, 리소그래피 장치 및 물품 제조 방법 KR20240013060A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2022-116574 2022-07-21
JP2022116574A JP2024014030A (ja) 2022-07-21 2022-07-21 検出装置、リソグラフィー装置および物品製造方法

Publications (1)

Publication Number Publication Date
KR20240013060A true KR20240013060A (ko) 2024-01-30

Family

ID=89577325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230093554A KR20240013060A (ko) 2022-07-21 2023-07-19 검출 장치, 리소그래피 장치 및 물품 제조 방법

Country Status (3)

Country Link
US (1) US20240027921A1 (ko)
JP (1) JP2024014030A (ko)
KR (1) KR20240013060A (ko)

Also Published As

Publication number Publication date
US20240027921A1 (en) 2024-01-25
JP2024014030A (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
TWI654422B (zh) 測量裝置、壓印設備、製造產品的方法、光量確定方法及光量調整方法
KR101390624B1 (ko) 위치 검출 장치, 임프린트 장치 및 위치 검출 방법
KR102266264B1 (ko) 정렬 장치, 정렬 방법, 리소그래피 장치, 및 물품 제조 방법
KR101894167B1 (ko) 임프린트 장치 및 물품 제조 방법
US20130100459A1 (en) Detector, imprint apparatus, and article manufacturing method
KR101573572B1 (ko) 임프린트 장치, 물품 제조 방법 및 패턴 전사 방법
KR20210106903A (ko) 위치 계측 장치, 중첩 검사 장치, 위치 계측 방법, 임프린트 장치, 및 물품 제조 방법
JP7152877B2 (ja) 検出装置、リソグラフィー装置および物品製造方法
KR20240013060A (ko) 검출 장치, 리소그래피 장치 및 물품 제조 방법
KR102478974B1 (ko) 위치 검출 장치, 위치 검출 방법, 임프린트 장치 및 물품의 제조 방법
TW202411769A (zh) 檢測裝置、微影蝕刻設備及物品製造方法
US20240027926A1 (en) Detection device, lithography apparatus, and article manufacturing method
US20230031701A1 (en) Position detection apparatus, imprint apparatus, and article manufacturing method
JP2024030557A (ja) 検出装置、リソグラフィー装置および物品製造方法
US20230294351A1 (en) Object alignment method, imprint method, article manufacturing method, detection apparatus, imprint apparatus, mold, and substrate
US20210372776A1 (en) Detector, imprint apparatus, and method of manufacturing article
US20230194980A1 (en) Detection apparatus, lithography apparatus, and article manufacturing method
KR20220107951A (ko) 검출 장치, 리소그래피 장치 및 물품 제조 방법
JP2024037437A (ja) マークの相対位置の計測方法、計測装置及び物品の製造方法
JP2022128225A (ja) 計測装置、リソグラフィ装置、および物品の製造方法
KR20230161363A (ko) 검출 장치, 리소그래피 장치, 및 물품 제조 방법
JP2020038164A (ja) 位置検出装置、位置検出方法、型、インプリント装置および、物品の製造方法