KR20230163181A - Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof - Google Patents

Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof Download PDF

Info

Publication number
KR20230163181A
KR20230163181A KR1020220062950A KR20220062950A KR20230163181A KR 20230163181 A KR20230163181 A KR 20230163181A KR 1020220062950 A KR1020220062950 A KR 1020220062950A KR 20220062950 A KR20220062950 A KR 20220062950A KR 20230163181 A KR20230163181 A KR 20230163181A
Authority
KR
South Korea
Prior art keywords
mimicking
solid lipid
density lipoprotein
cholesterol
low
Prior art date
Application number
KR1020220062950A
Other languages
Korean (ko)
Inventor
임덕수
Original Assignee
임덕수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임덕수 filed Critical 임덕수
Priority to KR1020220062950A priority Critical patent/KR20230163181A/en
Publication of KR20230163181A publication Critical patent/KR20230163181A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 구성으로 하는 코어-쉘 구조의 저밀도 지단백(LDL) 모방 고형 지질 나노입자에 관한 것이다.
본 발명에 따른 저밀도 지단백(LDL) 모방 고형 지질 나노입자는 생체이용률이 우수하고 우수한 약물 봉입 효율을 가지므로, 약물전달체로 제공될 수 있다.
The present invention relates to low-density lipoprotein (LDL)-mimicking solid lipid nanoparticles with a core-shell structure composed of cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid.
The low-density lipoprotein (LDL)-mimicking solid lipid nanoparticle according to the present invention has excellent bioavailability and excellent drug encapsulation efficiency, so it can be provided as a drug delivery vehicle.

Description

약물 전달을 위한 저밀도 지단백 모방 고형 지질 나노입자 및 이의 용도{Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof}Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof}

본 발명은 약물 전달을 위한 저밀도 지단백 모방 고형 지질 나노입자 및 이의 약물 전달체로서의 용도에 관한 것이다.The present invention relates to low-density lipoprotein-mimicking solid lipid nanoparticles for drug delivery and their use as drug carriers.

K-ras 유전자(KRAS)는 여러 암종에서 흔히 돌연변이되는 ras 유전자 중 하나로, KRAS 유전자의 코돈 12 및 13에서의 돌연변이는 이 유전자의 산물인 p21-ras 단백질의 기능적 변화를 초래하게 되고, 그 결과 세포핵에 성장 신호를 필요 이상으로 전달함으로써 세포의 성장과 분열을 촉진하여 발암과정에 관여한다. KRAS의 돌연변이는 췌장암의 약 90%, 대장암의 약 50%, 비소세포폐암의 약 30%에서 나타나 사람의 암에서 매우 흔하게 발견되고 이들 돌연변이들의 대부분은 코돈 12 및 13에 집중되어 있음이 돌연변이 프로파일에서 확인되었다(비특허문헌 1). The K-ras gene (KRAS) is one of the ras genes commonly mutated in several carcinomas. Mutations in codons 12 and 13 of the KRAS gene result in functional changes in the p21-ras protein, the product of this gene, resulting in cell nuclear damage. It participates in the carcinogenesis process by promoting cell growth and division by transmitting growth signals more than necessary. Mutations in KRAS are very common in human cancer, occurring in approximately 90% of pancreatic cancers, approximately 50% of colorectal cancers, and approximately 30% of non-small cell lung cancers, and most of these mutations are concentrated in codons 12 and 13. Mutation profile It was confirmed in (Non-patent Document 1).

이에, 여러 방법으로 KRAS와 관련된 항암제의 개발에 관한 연구가 수십년간 시도되어 왔으나, 임상으로까지 이어진 항암제는 없었기 때문에, KRAS는 “치료제로 발굴할 수 없는(undruggable)” 타겟으로 간주되어 왔다. KRAS는 GTP(guanosine triphosphate)와 결합하면 활성화하는데, GTP와 결합력이 아주 높고 표면에 결합할만한 포켓이 거의 없어서 이를 표적으로 신약 개발하기가 매우 어렵다. 또한, KRAS는 세포 내 단백질이기 때문에 분자량이 큰 항체를 사용할 수도 없는 문제가 있다.Accordingly, research on the development of anticancer drugs related to KRAS has been attempted for several decades through various methods, but because no anticancer drugs have reached clinical use, KRAS has been considered an “undruggable” target. KRAS is activated when it binds to GTP (guanosine triphosphate), but its binding affinity to GTP is very high and there are almost no pockets on the surface to bind to, making it very difficult to develop new drugs targeting it. Additionally, because KRAS is an intracellular protein, there is a problem in that antibodies with large molecular weight cannot be used.

또한 알부민의 다양한 결합능을 활용한 알부민 융합(Albumin-fusion) 기술을 응용하여 항암제인 파클리탁셀을 알부민에 부착한 약제인 나노입자 파클리탁셀, 상품명 아브락산(Abraxane)은 파클리탁셀의 종양 반응을 개선하는 것으로 나타났지만, 아브락산의 약동학적 특성과 생체내 분포(biodistribution)는 탁솔(Taxol) 제형의 것보다 효과가 낮은 문제가 있다. In addition, nanoparticle paclitaxel (brand name Abraxane), a drug that attaches the anticancer drug paclitaxel to albumin by applying albumin-fusion technology that utilizes the various binding abilities of albumin, has been shown to improve the tumor response of paclitaxel. , the pharmacokinetic properties and biodistribution of Abraxane are less effective than those of the Taxol formulation.

따라서, 생체적합적이고 고효율의 약물 전달 효율을 가지면서도, KRAS를 직접적으로 표적하는 약물 전달체의 개발이 필요한 실정이다.Therefore, there is a need to develop a drug delivery system that is biocompatible, has high drug delivery efficiency, and directly targets KRAS.

1. Samowitz WS, et al., Cancer Epidemiol. Biomarkers Prev. 9: 1193-7, 20001. Samowitz WS, et al., Cancer Epidemiol. Biomarkers Prev. 9:1193-7, 2000

본 발명의 목적은 생체이용률이 우수하고 고효율의 약물 전달 효과를 갖는 저밀도 지단백 모방 고형 지질 나노입자 및 이의 용도를 제공하는데 있다.The purpose of the present invention is to provide low-density lipoprotein-mimicking solid lipid nanoparticles with excellent bioavailability and highly efficient drug delivery effect, and uses thereof.

본 발명자들은 천연 지단백과 유사한 조성의 고형 지질 나노입자를 제조하면 약물을 고효율로 봉입할 수 있으면서도 생체이용률이 우수하여, 약물전달체로 활용 가능함을 확인하고 본 발명을 완성하였다. The present inventors completed the present invention after confirming that manufacturing solid lipid nanoparticles with a composition similar to natural lipoproteins can encapsulate drugs with high efficiency and have excellent bioavailability, making them usable as drug delivery systems.

따라서, 본 발명은 생체적합적이고 고효율로 약물을 전달하기 위한 저밀도 지단백(low density lipoprotein, LDL) 모방 고형 지질 나노입자(solid lipid nanoparticle, SLN) 및 이의 용도에 관한 것이다.Accordingly, the present invention relates to low density lipoprotein (LDL)-mimicking solid lipid nanoparticles (SLN) and their use for biocompatible and highly efficient drug delivery.

본 발명에 따르면, 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 구성으로 하는 코어-쉘 구조의 저밀도 지단백(LDL) 모방 고형 지질 나노입자를 제조함으로써, 입자간의 응집을 막고 구조적 안정성을 확보할 수 있다. 또한, 생체이용률이 우수하고 약물 봉입 효율이 향상된 약물전달체를 제공할 수 있다.According to the present invention, by preparing low-density lipoprotein (LDL)-mimicking solid lipid nanoparticles with a core-shell structure composed of cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid, It can prevent agglomeration between particles and ensure structural stability. In addition, it is possible to provide a drug delivery system with excellent bioavailability and improved drug encapsulation efficiency.

도 1은 본 발명에 따른 저밀도 지단백 모방 고형 지질 나노입자의 제조 및 약물 전달체로서의 형태를 도식화한 것이다.
도 2는 저밀도 지단백 모방 고형 지질 나노입자의 구성성분들의 함량에 따른 상기 저밀도 지단백 모방 고형 지질 나노입자의 Z-평균 값을 나타낸 것이다.
도 3은 저밀도 지단백 모방 고형 지질 나노입자의 TEM 사진을 나타낸 것이다.
도 4는 모노머 siRNA를 환원가능한 다이머 siRNA로 합성하는 과정을 도식화한 것이다.
도 5는 환원가능한 다이머 siRNA의 환원성을 확인한 결과이다.
도 6은 siRNA/SLN 복합체의 세포 내 흡수를 유세포분석으로 확인한 결과이다.
도 7은 siRNA/SLN 복합체의 유전자 침묵 효과를 확인하기 위해, 역전사 효소-중합효소 연쇄반응(RT-PCR)을 통해 Kras mRNA 수준을 확인한 결과이다.
도 8은 siRNA/SLN 복합체의 유전자 침묵 효과를 확인하기 위해, Kras mRNA 수준을 정량화한 결과이다.
도 9는 동물 모델에서 siRNA/SLN 복합체의 유전자 침묵 효과를 확인하기 위해, 역전사 효소-중합효소 연쇄반응(RT-PCR)을 통해 Kras mRNA 수준을 확인한 결과이다.
도 10은 동물 모델에서 siRNA/SLN 복합체의 유전자 침묵 효과를 확인하기 위해, Kras mRNA 수준을 정량화한 결과이다.
도 11은 마우스 모델에서 다이머 siRNA에 의해 형성된 siRNA/SLN 복합체의 혈액 제거율을 확인한 결과이다.
도 12는 마우스 모델에서 다이머 siRNA에 의해 형성된 siRNA/SLN 복합체의 생체 분포를 확인한 결과이다.
Figure 1 schematically illustrates the preparation of low-density lipoprotein-mimicking solid lipid nanoparticles and their form as drug carriers according to the present invention.
Figure 2 shows the Z-average value of the low-density lipoprotein-mimetic solid lipid nanoparticles according to the content of the components of the low-density lipoprotein-mimetic solid lipid nanoparticles.
Figure 3 shows a TEM image of low-density lipoprotein-mimicking solid lipid nanoparticles.
Figure 4 schematically illustrates the process of synthesizing monomeric siRNA into reducible dimeric siRNA.
Figure 5 shows the results confirming the reducibility of reducible dimer siRNA.
Figure 6 shows the results of confirming the cellular uptake of the siRNA/SLN complex by flow cytometry.
Figure 7 shows the results of confirming Kras mRNA levels through reverse transcriptase-polymerase chain reaction (RT-PCR) to confirm the gene silencing effect of the siRNA/SLN complex.
Figure 8 shows the results of quantifying Kras mRNA levels to confirm the gene silencing effect of the siRNA/SLN complex.
Figure 9 shows the results of confirming Kras mRNA levels through reverse transcriptase-polymerase chain reaction (RT-PCR) to confirm the gene silencing effect of the siRNA/SLN complex in an animal model.
Figure 10 shows the results of quantifying Kras mRNA levels to confirm the gene silencing effect of the siRNA/SLN complex in an animal model.
Figure 11 shows the results of confirming the blood clearance rate of siRNA/SLN complex formed by dimeric siRNA in a mouse model.
Figure 12 shows the results of confirming the biodistribution of the siRNA/SLN complex formed by dimeric siRNA in a mouse model.

이하, 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.

본 발명에서 수치의 한정은 별도의 기재가 없으면 이상 또는 이하를 나타낸다.In the present invention, numerical limitations refer to more or less than or equal to or more than 100% unless otherwise specified.

본 발명은 콜레스테릴 에스테르 및 트리글리세라이드를 포함하는 코어; 및The present invention provides a core comprising cholesteryl ester and triglyceride; and

알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 포함하는 쉘을 포함하는 저밀도 지단백 모방 고형 지질 나노입자를 제공한다.Provided is a low-density lipoprotein-mimicking solid lipid nanoparticle comprising a shell containing albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid.

본 발명에 있어서, “고형 지질 나노입자(solid lipid nanoparticle, SLN)”는 형태적인 측면에서 나노미터(nm) 단위의 크기를 가지며, 리포좀(liposome)이나 에멀젼(emulsion) 제형과는 달리 고형 매트릭스 형태로 존재하는 입자를 의미한다. 본 발명의 고형 지질 나노입자는 코어-쉘 구조를 가지며, 예를 들어, 구조적으로 중심부(코어) 혹은 표면부(쉘)에 비수용성 약물 및/또는 핵산을 포집하는 형태로 구성될 수 있다. 본 발명에 따른 고형 지질 나노입자는 비수용성 약물 및/또는 핵산을 포집함으로써 상기 비수용성 약물 및/또는 핵산의 생체 내 전달 효율을 크게 증가시킬 수 있다. 상기 고형 지질 나노입자는 통상적인 방법으로 제조될 수 있고, 필요에 따라 그 방법을 적절히 변형하여 수행할 수 있다. In the present invention, “solid lipid nanoparticle (SLN)” has a size in the nanometer (nm) unit in terms of form and, unlike liposome or emulsion formulations, is in the form of a solid matrix. refers to particles that exist as The solid lipid nanoparticles of the present invention have a core-shell structure and, for example, may be structurally configured to trap water-insoluble drugs and/or nucleic acids in the central portion (core) or surface portion (shell). The solid lipid nanoparticle according to the present invention can greatly increase the in vivo delivery efficiency of the water-insoluble drug and/or nucleic acid by trapping the water-insoluble drug and/or nucleic acid. The solid lipid nanoparticles can be manufactured by conventional methods, and the method can be appropriately modified as needed.

천연 저밀도 지단백(LDL)은 두 개의 지질상, 즉, 극성 구성분(인지질 및 아포지질 단백질) 및 콜레스테롤 에스테르와 트리글리세라이드로 사전 구성된 비극성 중성 지질로 이루어지며, 크기는 약 18 내지 25 nm이고, 제타전위는 -11.4 ± 1.9 mV이다. 구체적으로, 코어부(core)는 콜레스테롤 에스테르 45% 및 트리글리세라이드 3%로 구성되고, 표면부(surface)는 콜레스테롤 10%, 인지질 22% 및 아포지질단백질(apoplipoprotein) B-100 20%로 구성된다. Natural low-density lipoproteins (LDL) are composed of two lipid phases: a polar component (phospholipids and apolipoproteins) and a non-polar neutral lipid precomposed of cholesterol esters and triglycerides, are about 18 to 25 nm in size, and have a zeta The potential is -11.4 ± 1.9 mV. Specifically, the core is composed of 45% cholesterol esters and 3% triglycerides, and the surface is composed of 10% cholesterol, 22% phospholipids, and 20% apoplipoprotein B-100. .

본 발명에 따른 고형 지질 나노입자는 저밀도 지단백(LDL) 모방 고형 지질 나노입자(SLN)이다. 천연 저밀도 지단백과 달리, 본 발명에 따른 저밀도 지단백 모방 고형 지질 나노입자는 아포지단백을 실질적으로 미포함할 수 있다. 또한, 아포지단백을 포함하는 천연 저밀도 지단백과는 달리, 본 발명에 따른 저밀도 지단백 모방 고형 지질 나노입자는 인지질 및 아포지단백을 대체하여 융합 유도성 지질, 양이온성 지질을 포함할 수 있다. 상기 양이온성 지질에 의해 고형 지질 나노입자의 표면에 양이온성을 부여함으로써 약물과 결합되어 약물 전달체로서 활용될 수 있다.The solid lipid nanoparticle according to the present invention is a low-density lipoprotein (LDL)-mimicking solid lipid nanoparticle (SLN). Unlike natural low-density lipoproteins, the low-density lipoprotein-mimicking solid lipid nanoparticles according to the present invention may be substantially free of apolipoproteins. Additionally, unlike natural low-density lipoproteins containing apolipoproteins, the low-density lipoprotein-mimicking solid lipid nanoparticles according to the present invention may contain fusion-inducing lipids and cationic lipids in place of phospholipids and apolipoproteins. By imparting cationic properties to the surface of solid lipid nanoparticles using the cationic lipid, they can be combined with drugs and used as drug carriers.

또한, 본 발명의 저밀도 지단백 모방 고형 지질 나노입자는 천연 저밀도 지단백과는 달리, 유리 콜레스테롤을 알부민과 접합된 콜레스테롤 형태로 대체하여 포함할 수 있다.Additionally, unlike natural low-density lipoprotein, the low-density lipoprotein-mimicking solid lipid nanoparticles of the present invention may contain free cholesterol in the form of cholesterol conjugated to albumin.

상기와 같이 알부민이 접합된 콜레스테롤을 포함시킴으로써 상기 저밀도 지단백 모방 고형 지질 나노입자가 약물 전달체로 활용될 때 암 세포 표적능을 가지게 할 수 있다. 또한 비극성 지질을 유화시켜 표면의 안정성을 제공하여, 입자 간 응집을 막고 구조적으로 안정된 나노입자를 형성할 수 있다.By including albumin-conjugated cholesterol as described above, the low-density lipoprotein-mimicking solid lipid nanoparticles can have cancer cell targeting ability when used as a drug carrier. In addition, it provides surface stability by emulsifying non-polar lipids, preventing agglomeration between particles and forming structurally stable nanoparticles.

이러한 암 세포 표적능 및 투과력은 콜레스테롤에 접합된 알부민에 의한 것이며, 알부민에 의해 암 세포 표적능을 발휘하기 위해서는 입자 크기가 세포막을 통과할 수 있는 수준이 되야 한다. 즉 EPR (Enhanced permeability and retention) 효과로 종양조직의 신생혈관이 불완전하여 200 nm 정도로 틈새가 벌어져 200 nm 이내 입자는 정상조직에 들어가지 않고 종혈관을 침투할 수 있으며 (Enhanced permeability) 또는 종양조직은 림프계가 발달하지 않아 누출된 물질은 체류하기가 쉽다. 이에, 본 발명에 따른 고형 지질 나노입자의 크기는 60 내지 200 nm 로 EPR 효과로 암조직등에 약물을 안정적으로 운반 할 수 있다. This cancer cell targeting ability and penetration power is due to albumin conjugated to cholesterol, and in order for albumin to exert cancer cell targeting ability, the particle size must be at a level that can pass through the cell membrane. In other words, due to the EPR (Enhanced permeability and retention) effect, the new blood vessels in the tumor tissue are incomplete and the gap opens to about 200 nm, so particles within 200 nm can penetrate the longitudinal blood vessels without entering the normal tissue (Enhanced permeability) or tumor tissue. Because the lymphatic system is not developed, leaked substances are likely to remain. Accordingly, the size of the solid lipid nanoparticles according to the present invention is 60 to 200 nm, and the drug can be stably transported to cancer tissues, etc. through the EPR effect.

본 발명에 있어서, 상기 저밀도 지단백 모방 고형 지질 나노입자는 양이온성 고형 지질 나노입자 형태의 지단백 모방 양이온성 고형 지질 나노입자일 수 있다. 상기 나노입자는 천연 저밀도 지단백의 구성성분을 모방하여 재구성된 것으로, 단백질, 펩타이드, 앱타머 또는 siRNA와 같은 핵산 치료제는 물리 화학적 특성으로 인하여 순환계로의 흡수율이 매우 낮다. 또한, 고형 지질 나노입자는 단백질분해효소, 펩타이드분해효소, 또는 핵산분해효소 등에 의하여 분해되어 세망내피계 (Reticuleoendothelial system, RES) 등을 통하여 제거된 후 신장을 통하여 빠르게 배출되기 때문에 이를 개선한 천연 저밀도 지단백 모방 나노입자에 약물을 봉입하여 효소에 의한 분해를 저해하며, 표적 장기나 세포에 흡수를 촉진하고 세망내피계 (Reticuleoendothelial system, RES)에 의해 분해되는 것을 저해하고 혈중 체류시간을 연장시킬 수 있으며, 생체 내 천연 저밀도 지단백을 모방했다는 점에서 생체 내 안정성 및 생체이용률이 우수하며, 고효율로 약물을 봉입하여 전달할 수 있다는 이점이 있다.In the present invention, the low-density lipoprotein-mimicking solid lipid nanoparticle may be a lipoprotein-mimicking cationic solid lipid nanoparticle in the form of a cationic solid lipid nanoparticle. The nanoparticles are reconstituted to mimic the components of natural low-density lipoproteins, and nucleic acid therapeutics such as proteins, peptides, aptamers, or siRNA have a very low absorption rate into the circulatory system due to their physical and chemical properties. In addition, solid lipid nanoparticles are decomposed by proteolytic enzymes, peptidase, or nucleolytic enzymes, removed through the reticuleoendothelial system (RES), etc., and then quickly excreted through the kidneys, so an improved natural low-density nanoparticle is used. Encapsulating drugs in lipoprotein-mimicking nanoparticles inhibits decomposition by enzymes, promotes absorption into target organs or cells, inhibits decomposition by the reticuleoendothelial system (RES), and prolongs residence time in the blood. , It has excellent in vivo stability and bioavailability in that it mimics natural low-density lipoprotein in vivo, and has the advantage of being able to encapsulate and deliver drugs with high efficiency.

하기 실시예에서는, 저밀도 지단백(LDL) 모방 고형 지질 나노입자가 약 100 nm의 크기를 가지면서 우수한 약물 봉입률을 가짐을 확인할 수 있다.In the following examples, it can be confirmed that low-density lipoprotein (LDL)-mimicking solid lipid nanoparticles have a size of about 100 nm and have an excellent drug encapsulation rate.

본 발명에서는 저밀도 지단백 모방 고형 지질 나노입자를 고형 지질 나노입자로 언급할 수 있다.In the present invention, low-density lipoprotein-mimicking solid lipid nanoparticles may be referred to as solid lipid nanoparticles.

본 발명에 있어서, 고형 지질 나노입자의 코어는 상온 및 체온에서 고형 상태로 코어 내부에 비수용성 약물 및/또는 핵산 유전자의 소수성 상호작용을 통해 약물을 포집할 수 있다. 상기 고형 지질 나노입자의 코어는 콜레스테릴 에스테르 및 트리글리세라이드를 포함한다.In the present invention, the core of the solid lipid nanoparticle can capture the drug through hydrophobic interaction of the water-insoluble drug and/or nucleic acid gene inside the core in a solid state at room temperature and body temperature. The core of the solid lipid nanoparticle contains cholesteryl ester and triglyceride.

상기 고형 지질 나노입자의 코어를 이루는 성분 중 하나인 콜레스테릴 에스테르는 콜레스테롤에 탄소수 10 내지 24개의 포화 또는 불포화 지방산이 에스테르 결합된 것으로, 올레인산과 같은 탄소수 16 내지 18개의 불포화 지방산의 에스테르일 수 있다. 본 발명에 따른 고형 지질 나노입자는 단일 또는 여러 종류의 콜레스테릴 에스테르를 포함할 수 있다.Cholesteryl ester, one of the components forming the core of the solid lipid nanoparticle, is an ester bond of a saturated or unsaturated fatty acid with 10 to 24 carbon atoms to cholesterol, and may be an ester of an unsaturated fatty acid with 16 to 18 carbon atoms, such as oleic acid. . Solid lipid nanoparticles according to the present invention may contain a single or several types of cholesteryl ester.

한 구체예에서, 상기 콜레스테릴 에스테르는 콜레스테릴스테아레이트, 콜레스테릴팔미테이트, 콜레스테롤하이드록시스테아레이트, 소이빈스테롤로 이루어지는 군으로부터 선택되는 1종 이상 또는 그 유도체일 수 있으며, 바람직하게는 콜레스테릴 올레이트일 수 있다.In one embodiment, the cholesteryl ester may be one or more selected from the group consisting of cholesteryl stearate, cholesteryl palmitate, cholesterol hydroxystearate, and soyvinsterol, or a derivative thereof, preferably may be cholesteryl oleate.

상기 콜레스테릴 에스테르는, 전체 고형 지질 나노입자 100 중량부를 기준으로, 30 내지 60 중량부, 30 중량부 초과 내지 50 중량부 이하, 40 내지 50 중량부로 포함될 수 있다. 콜레스테릴 에스테르가 상기와 같은 범위로 고형 지질 나노입자의 코어를 구성할 때, 많은 양의 약물을 봉입하면서도 세포막을 통과할 수 있어 세포 내 약물 전달 효율이 우수한 고형 지질 나노입자를 제조할 수 있다. 또한, 상기 함량의 콜레스테릴 에스테르를 포함함으로써, 천연 지단백과 유사한 고형 지질 나노입자를 제조할 수 있다.The cholesteryl ester may be included in an amount of 30 to 60 parts by weight, more than 30 parts by weight to 50 parts by weight or less, and 40 to 50 parts by weight, based on 100 parts by weight of the total solid lipid nanoparticles. When cholesteryl ester constitutes the core of a solid lipid nanoparticle in the above range, it is possible to manufacture solid lipid nanoparticles with excellent intracellular drug delivery efficiency as they can pass through the cell membrane while encapsulating a large amount of drug. . In addition, by including the above amount of cholesteryl ester, solid lipid nanoparticles similar to natural lipoproteins can be produced.

또한, 트리글리세라이드는 다양한 지방산의 조성을 가지는 정제 트리글리세라이드, 또는 다수의 지방산으로 구성된 트리글리세라이드를 주성분으로 하는 식물유일 수 있다. 예를 들어, 상기 트리글리세라이드는 동물성 또는 식물성 기름일 수 있으며, 대두유, 올리브유, 면실유, 참깨유 및 간유 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다. 보다 구체적으로, 상기 트리글리세라이드는 글리세롤 1 분자에 탄소수 10 내지 24의 포화 또는 불포화 지방산 3 분자가 에스테르 결합된 것일 수 있다.In addition, the triglyceride may be refined triglyceride having a composition of various fatty acids, or vegetable oil containing triglyceride composed of multiple fatty acids as a main component. For example, the triglyceride may be animal or vegetable oil, and may be one or more selected from the group consisting of soybean oil, olive oil, cottonseed oil, sesame oil, and cod liver oil, but is not limited thereto. More specifically, the triglyceride may be an ester bond of three molecules of saturated or unsaturated fatty acid having 10 to 24 carbon atoms to one molecule of glycerol.

한 구체예에서, 상기 트리글리세라이드는 트리헵타노인, 트리미리스틴, 트리팔미틴, 트리스테아린, 트리리놀레인, 이루어지는 군으로부터 선택되는 1종 이상 또는 그 유도체일 수 있으며, 바람직하게는 트리올레인일 수 있다.In one embodiment, the triglyceride may be one or more selected from the group consisting of triheptanoin, trimyristin, tripalmitin, tristearin, trilinolein, or a derivative thereof, preferably triolein. there is.

상기 트리글리세라이드는, 전체 고형 지질 나노입자 100 중량부를 기준으로, 0.01 내지 5 중량부, 0.05 내지 3.5 중량부, 0.1 내지 2.5 중량부, 0.5 내지 1.5 중량부로 포함될 수 있다. 트리글리세라이드가 상기와 같은 범위로 고형 지질 나노입자의 코어를 구성할 때, 상기 트리글리세라이드가 콜레스테릴 에스테르와 소수성 결합하여 세포막을 통과할 수 있는 크기를 가지는 나노입자를 형성할 수 있다. The triglyceride may be included in an amount of 0.01 to 5 parts by weight, 0.05 to 3.5 parts by weight, 0.1 to 2.5 parts by weight, and 0.5 to 1.5 parts by weight, based on 100 parts by weight of total solid lipid nanoparticles. When triglyceride constitutes the core of a solid lipid nanoparticle in the above range, the triglyceride can form a hydrophobic bond with cholesteryl ester to form nanoparticles with a size that can pass through the cell membrane.

상기 콜레스테릴 에스테르 및 트리글리세라이드는 소수성 결합을 통해 저밀도 지단백 모방 고형 지질 나노입자의 코어를 형성할 수 있다. The cholesteryl ester and triglyceride can form the core of low-density lipoprotein-mimicking solid lipid nanoparticles through hydrophobic bonds.

본 발명에 있어서, 고형 지질 나노입자의 쉘은 코어의 상층면에 소수성 상호반응에 의해 결합되어 있으며, 쉘에는 약물, 특히 비수용성 약물 및/또는 핵산 유전자와 정전기적 상호 작용을 할 수 있는 양이온성 지질이 노출되어 있다. 본 발명에 따른 고형 지질 나노입자는 상기와 같은 쉘에 노출된 양이온성 지질을 통해 약물, 특히 비수용성 약물 및/또는 핵산 유전자와 정전기적 상호 작용에 의해 결합되어 복합체를 형성할 수 있으며, 약물, 특히 비수용성 약물 및/또는 핵산 유전자를 세포 내로 안정적으로 전달할 수 있다. 상기 나노입자의 쉘은 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 포함한다. In the present invention, the shell of the solid lipid nanoparticle is bound to the upper surface of the core by hydrophobic interaction, and the shell contains a cationic drug that can electrostatically interact with drugs, especially water-insoluble drugs and/or nucleic acid genes. The lipids are exposed. The solid lipid nanoparticle according to the present invention can form a complex by being bound to a drug, especially a water-insoluble drug and/or a nucleic acid gene, by electrostatic interaction through the cationic lipid exposed to the shell as described above. In particular, water-insoluble drugs and/or nucleic acid genes can be stably delivered into cells. The shell of the nanoparticle contains albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid.

본 발명에 있어서, 알부민이 접합된 콜레스테롤은 소수성을 갖는 모이어티로서 천연 지질인 콜레스테롤에 친수성 단백질인 알부민을 접합시켜 제조할 수 있다. 특히 본 발명은 콜레스테롤에 알부민을 공유결합시킴으로써 콜레스테롤과 알부민이 견고하게 결합시킬 수 있다. 이를 통해, 두 성분이 단순 혼합되어 상호작용에 의해 비특이적으로 결합한 복합체와는 달리 콜레스테롤에 알부민이 일정한 비율로 견고하게 결합된 콜레스테롤-알부민을 제공할 수 있다. 본 발명에 있어서, 상기 알부민이 접합된 콜레스테롤은 용어 “콜레스테롤-알부민”과 상호교환적으로 사용될 수 있다.In the present invention, albumin-conjugated cholesterol is a hydrophobic moiety and can be produced by conjugating albumin, a hydrophilic protein, to cholesterol, a natural lipid. In particular, the present invention can firmly bind cholesterol and albumin by covalently binding albumin to cholesterol. Through this, unlike a complex in which the two components are simply mixed and non-specifically bound through interaction, it is possible to provide cholesterol-albumin in which cholesterol and albumin are firmly bound at a constant ratio. In the present invention, the albumin-conjugated cholesterol may be used interchangeably with the term “cholesterol-albumin”.

본 발명의 알부민이 접합된 콜레스테롤은 당업계에 공지된 다양한 방법에 의해 제조 가능하다. 이에 제한되는 것은 아니나, 본 발명의 한 구체예에서, 상기 알부민이 접합된 콜레스테롤은 콜레스테롤 클로로포메이트와 알부민이 반응하여 형성된 것일 수 있다. 이는 콜레스테롤 클로로포메이트의 클로로포메이트기와 알부민의 아민기가 반응하여 결합된 것일 수 있다. The albumin-conjugated cholesterol of the present invention can be produced by various methods known in the art. Although not limited thereto, in one embodiment of the present invention, the albumin-conjugated cholesterol may be formed by the reaction of cholesterol chloroformate and albumin. This may be a combination of the chloroformate group of cholesterol chloroformate and the amine group of albumin reacting.

상기 “알부민”은 세포의 기본 물질을 구성하는 단백질의 하나로, 자연 상태에서 존재하는 단순 단백질 중 가장 분자량이 작은 단백질이다. 알부민은 수가용성(water-soluble)으로 혈장에서 흔히 발견되는 주된 단백질로, 물, 칼슘, 나트륨, 칼륨 등의 양이온, 지방산, 호르몬, 빌리루빈(bilirubin), 약물 등 다양한 리간드와 결합하여 혈액의 콜로이드 삼투압을 조절 및 전달하는 역할을 하기도 한다. 특히 약물과 알부민의 결합은 약물의 약효 발현에 크게 기여하기도 한다. 상기 알부민은 난백(egg white, 오브알부민; ovalbumin), 소혈청 또는 인간 혈청으로부터 상당량 수득할 수 있으며, 대두, 우유 및 곡물로부터도 추출할 수 있다. 또는 자연적으로 존재하는 알부민과 동일한 아미노산 서열을 갖는 폴리펩타이드를 발현하도록 제조된 형질전환체로부터 수득한 재조합 알부민을 이용할 수도 있다. The “albumin” is one of the proteins that constitute the basic material of cells, and is the protein with the lowest molecular weight among the simple proteins that exist in nature. Albumin is a major water-soluble protein commonly found in plasma. It binds to various ligands such as cations such as water, calcium, sodium, and potassium, fatty acids, hormones, bilirubin, and drugs, thereby increasing the colloidal osmotic pressure of blood. It also plays a role in regulating and transmitting. In particular, the combination of a drug and albumin greatly contributes to the drug's effectiveness. The albumin can be obtained in significant amounts from egg white (ovalbumin), bovine serum, or human serum, and can also be extracted from soybeans, milk, and grains. Alternatively, recombinant albumin obtained from a transformant prepared to express a polypeptide having the same amino acid sequence as naturally occurring albumin may be used.

또한, 상기 “콜레스테롤”은 스테로이드와 알코올의 조합인 스테롤의 일종으로, 모든 동물세포의 세포막에 존재하는 지질이며, 혈액을 통해 운반되는 유기분자이다. 콜레스테롤은 음식을 통해 흡수되거나 체내에서 합성되고, 세포막이 많은 기관에 고농도로 존재하며, 세포에 적절한 막 투과성 및 유동성을 부여한다. 분자 내에 복수의 융합된 고리 구조를 포함하므로 고리 구조를 포함하는 물질과 향상된 상호작용을 나타낼 수 있다. In addition, “cholesterol” is a type of sterol, a combination of steroids and alcohol, a lipid present in the cell membrane of all animal cells, and is an organic molecule transported through blood. Cholesterol is absorbed through food or synthesized in the body, exists in high concentrations in many organs with cell membranes, and provides appropriate membrane permeability and fluidity to cells. Since it contains a plurality of fused ring structures within the molecule, it can exhibit improved interaction with materials containing ring structures.

앞서 설명한 바와 같이, 본 발명은 천연 저밀도 지단백의 유리 콜레스테롤 대신 알부민이 접합된 콜레스테롤을 그 구성성분으로 포함할 수 있다.As described above, the present invention may include albumin-conjugated cholesterol as a component instead of the free cholesterol of natural low-density lipoprotein.

상기 알부민이 접합된 콜레스테롤은, 전체 고형 지질 나노입자 100 중량부를 기준으로, 1 내지 20 중량부, 3 내지 15 중량부, 5 내지 12 중량부, 9 내지 11 중량부로 포함될 수 있다. 알부민이 접합된 콜레스테롤이 상기와 같은 범위로 고형 지질 나노입자를 구성할 때, 저밀도 지단백을 모방하면서도 약물 봉입율이 우수한 고형 지질 나노입자를 형성할 수 있다. 상기와 같은 고형 지질 나노입자에서 많은 양의 약물을 봉입하면서도 대식작용(Phagocytosis)에 의한 나노입자의 분해를 방지하여 표적 부위로의 약물 전달 효율을 극대화시킬 수 있다. 더욱이, 알부민이 접합된 콜레스테롤을 상기 함량으로 포함시킴으로써, 알부민이 접합된 콜레스테롤에 의해 고형 지질 나노입자의 쉘이 견고하게 형성될 수 있고, 유전자 전달을 위한 유전자 형질 감염의 효율이 향상될 수 있으며, 후술되는 양이온성 지질의 세포 독성이 감소되는 이점이 있고, 대식작용(Phargocytosis)이 억제되어 고형 지질 나노입자의 약물 전달 효율이 향상될 수 있다. The albumin-conjugated cholesterol may be included in an amount of 1 to 20 parts by weight, 3 to 15 parts by weight, 5 to 12 parts by weight, and 9 to 11 parts by weight, based on 100 parts by weight of the total solid lipid nanoparticles. When albumin-conjugated cholesterol forms solid lipid nanoparticles in the above range, solid lipid nanoparticles that mimic low-density lipoproteins and have excellent drug encapsulation rates can be formed. While encapsulating a large amount of drug in the solid lipid nanoparticles described above, it is possible to maximize drug delivery efficiency to the target site by preventing decomposition of the nanoparticles due to phagocytosis. Moreover, by including the albumin-conjugated cholesterol in the above content, the shell of the solid lipid nanoparticle can be firmly formed by the albumin-conjugated cholesterol, and the efficiency of gene transfection for gene delivery can be improved. There is an advantage that the cytotoxicity of cationic lipids, which will be described later, is reduced, and phagocytosis is inhibited, thereby improving the drug delivery efficiency of solid lipid nanoparticles.

알부민은 엔도좀-리소좀 구획에서 나노입자의 방출을 촉진할 수 있는 엔도좀 용해 활성을 가지므로, 약물 전달 효율 향상에 기여할 수 있다. 예를 들어, 하기 실시예에서는 이러한 엔도좀 용해 활성에 의해 고형 지질 나노입자와 siRNA의 복합체(albumin_SLN/siRNA 복합체)가 생체 내 유전자 전달(침묵) 효율 향상에 기여함을 보여준다. 또한, 상기 나노입자는 혈관 순환 중에도 나노 구조를 유지할 수 있기 때문에, 종양 조직에 우선적으로 분포되어 부작용을 최소화하면서 약물의 치료 효능을 극대화할 수 있는 이점이 있다.Albumin has endosomal lytic activity that can promote the release of nanoparticles from the endosome-lysosomal compartment, so it can contribute to improving drug delivery efficiency. For example, the following examples show that the complex of solid lipid nanoparticles and siRNA (albumin_SLN/siRNA complex) contributes to improving in vivo gene transfer (silencing) efficiency through this endosomal lytic activity. In addition, since the nanoparticles can maintain their nanostructure even during vascular circulation, they have the advantage of being preferentially distributed to tumor tissue, minimizing side effects and maximizing the therapeutic efficacy of the drug.

상기 융합 유도성 지질은 고형 지질 나노입자를 형성할 수 있는 모든 종류의 중성, 양이온성, 또는 음이온성 지질일 수 있으며, 단일 또는 2종 이상의 인지질의 혼합물일 수 있으나, 이에 제한되는 것은 아니다. 상기 융합 유도성 지질로는 융합 유도 가능한 모든 종류의 인지질을 사용할 수 있으며, 예를 들어, 1,2-디올레일-sn-글리세로-3-포스파티딜에탄올아민(1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, DOPE), 팔미토일올레오일포스파티딜콜린(palmitoyloleoylphosphatidylethanolamine, POPC), 에그 포스파티딜콜린(egg phosphatidylcholine, EPC), 디스테아로일포스파티딜콜린(distearoylphosphatidylcholine, DSPC), 디올레오일포스파티딜콜린(dioleoylphosphatidylcholine, DOPC), 디팔미토일포스파티딜콜린(dipalmitoylphosphatidylcholine, DPPC), 디올레오일포스파티딜글리세롤(dioleoylphosphatidylglycerol, DOPG), 디팔미토일포스파티딜글리세롤(dipalmitorylphosphatidylglycerol, DPPG), 디스테아로일포스파티딜에탄올아민(distearoylphosphatidylethanolamine, DSPE), 포스파티딜에탄올아민(phosphatidylethanolamine, PE), 디팔미토일포스파티딜에탄올아민(dipalmitoylphosphatidylethanolamine), 1-팔미토일-2-올레일-sn-글리세로-3-포스포에탄올아민(POPE), 1-팔미토일-2-올레일-sn-글리세로-3-포스포콜린(POPC), 1,2-디올레일-sn-글리세로-3-[포스포-L-세린](DOPS), 및 1,2-디올레일-sn-글리세로-3-[포스포-L-세린]으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다. The fusion-inducing lipid may be any type of neutral, cationic, or anionic lipid capable of forming solid lipid nanoparticles, and may be single or a mixture of two or more phospholipids, but is not limited thereto. As the fusion-inducing lipid, all types of phospholipids capable of inducing fusion can be used, for example, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (1,2-dioleoyl-sn-glycero -3-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylethanolamine (POPC), egg phosphatidylcholine (EPC), distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (dioleoylphosphatidylcholine) line, DOPC), D Dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitorylphosphatidylglycerol (DPPG), distearoylphosphatidylethanolamine (DSPE), Phosphatidylethanolamine (phosphatidylethanolamine, PE), dipalmitoylphosphatidylethanolamine, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleyl-sn- Glycero-3-phosphocholine (POPC), 1,2-dioleyl-sn-glycero-3-[phospho-L-serine] (DOPS), and 1,2-dioleyl-sn-glycero It may be one or more selected from the group consisting of -3-[phospho-L-serine], but is not limited thereto.

한 구체예에서, 상기 융합 유도성 지질은 1,2-디올레일-sn-글리세로-3-포스파티딜에탄올아민(DOPE)일 수 있다.In one embodiment, the fusion-inducing lipid may be 1,2-dioleyl-sn-glycero-3-phosphatidylethanolamine (DOPE).

상기 융합 유도성 지질은, 전체 고형 지질 나노입자 중량을 기준으로, 5 내지 40 중량부, 15 내지 40 중량부, 20 내지 35 중량부, 20 내지 30 중량부로 포함될 수 있다. 융합 유도성 지질이 상기와 같은 범위로 고형 지질 나노입자를 구성할 때, 유전자 형질감염의 효율을 향상시키고, 후술되는 양이온성 지질의 세포독성을 감소시키는 이점이 있다. 또한, 융합 유도성 지질은 고형 지질 나노입자의 세포막 통과 및 엔도좀 탈출(endosomal escape)을 도와 세포 내 약물 전달이 용이하도록 한다.The fusion-inducing lipid may be included in an amount of 5 to 40 parts by weight, 15 to 40 parts by weight, 20 to 35 parts by weight, and 20 to 30 parts by weight, based on the total weight of the solid lipid nanoparticles. When fusion-inducing lipids constitute solid lipid nanoparticles in the above range, there is an advantage in improving the efficiency of gene transfection and reducing the cytotoxicity of cationic lipids, which will be described later. In addition, fusion-inducing lipids facilitate the passage of solid lipid nanoparticles through the cell membrane and endosomal escape, thereby facilitating intracellular drug delivery.

상기 양이온성 지질은 생리학적 pH와 같이 특정 pH에서 순 음전하를 띠는 양이온성 지질을 포함할 수 있다. 예를 들어, 상기 양이온성 지질은 3-베타[N-(N',N'-디메틸아미노에탄)카바모일]콜레스테롤(DC-콜레스테롤), 3베타-[N-(N',N',N'-트리메틸아미노에탄)카바모일]콜레스테롤 (TC-콜레스테롤), 3베타[N-(N'-모노메틸아미노에탄)카바모일]콜레스테롤 (MC-콜레스테롤), 3베타[N- (아미노에탄)카바모일]콜레스테롤 (AC-콜레스테롤), N-(N'-아미노에탄)카바모일프로파노익 토코페롤 (AC-토코페롤), N-(N'-메틸아미노에탄)카바모일프로파노익 토코페롤 (MC-토코페롤), N,N-디올레일-N,N-디메틸암모늄클로라이드 (DODAC), N,N-디스테아릴-N,N-디메틸암모늄브로마이드 (DDAB), N-(1-(2,3-디올레오일옥시)프로필-N,N,N-트리메틸암모늄클로라이드 (DOTAP), N,N-디메틸-(2,3-디올레오일옥시)프로필아민 (DODMA), N-(1-(2,3-디올레일)프로필)-N,N,N-트리메틸암모늄 클로라이드 (DOTMA), 1,2-디올레일-3-디메틸암모늄-프로판 (DODAP), 1,2-디올레일카바밀-3-디메틸암모늄-프로판 (DOCDAP), 1,2-디리네오일-3-디메틸암모늄프로판(Dilineoyl-3-Dimethylammonium-propane, DLINDAP), 디올레오일옥시-N-[2-스퍼민카복사미도)에틸}-N,N-디메틸-1-프로판아미늄트리플루오로아세테이트(DOSPA), 디옥타데실아미도글리실 스퍼민 (DOGS), 1,2-디미리스트릴옥시프로필-3-디메틸-하이드록시에틸 암모늄 브로마이드 (DMRIE), 3-디메틸아미노-2-(콜레스트-5-엔-3-베타-옥시부탄-4-옥시)-1-(시스,시스-9,12-옥타데카디에녹시)프로판 (CLinDMA), 2-[5'-(콜레스트-5-엔-3-베타-옥시)-3'-옥사펜톡시]-3-다메틸-1-(시스,시스-9',12'-옥타데카디에녹시)프로판 (CpLinDMA), N,N-디메틸-3,4-디올레일옥시벤질아민 (DMOBA), 1,2-N,N'-디올레일카바밀-3-디메틸아미노프로판 (DOcarbDAP), 1,2-디아실-3-트리메틸암모늄-프로판(TAP), 1,2-디아실-3-디메틸암모늄-프로판(DAP), 1,2-디-O-옥타데세일-3-트리메틸암모늄프로판, 및 1,2-디올레일-3-트리메틸암모늄 프로판으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다. The cationic lipid may include a cationic lipid that has a net negative charge at a specific pH, such as physiological pH. For example, the cationic lipid is 3-beta[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-cholesterol), 3beta-[N-(N',N',N '-trimethylaminoethane)carbamoyl]cholesterol (TC-cholesterol), 3beta[N-(N'-monomethylaminoethane)carbamoyl]cholesterol (MC-cholesterol), 3beta[N-(aminoethane)carba Moyl] cholesterol (AC-cholesterol), N-(N'-aminoethane)carbamoylpropanoic tocopherol (AC-tocopherol), N-(N'-methylaminoethane)carbamoylpropanoic tocopherol (MC-tocopherol) ), N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1-(2,3-diol Leoyloxy)propyl-N,N,N-trimethylammonium chloride (DOTAP), N,N-dimethyl-(2,3-dioleoyloxy)propylamine (DODMA), N-(1-(2,3) -Dioleyl)propyl)-N,N,N-trimethylammonium chloride (DOTMA), 1,2-dioleyl-3-dimethylammonium-propane (DODAP), 1,2-dioleylcarbamyl-3-dimethylammonium -Propane (DOCDAP), 1,2-dilineoyl-3-dimethylammonium-propane (DLINDAP), dioleoyloxy-N-[2-sperminecarboxamido)ethyl}-N ,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), dioctadecylamidoglycyl spermine (DOGS), 1,2-dimyristriloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide ( DMRIE), 3-dimethylamino-2-(cholest-5-en-3-beta-oxybutane-4-oxy)-1-(cis,cis-9,12-octadecadienoxy)propane (CLinDMA ), 2-[5'-(cholest-5-en-3-beta-oxy)-3'-oxapentoxy]-3-damethyl-1-(cis,cis-9',12'-octa Decadienoxy)propane (CpLinDMA), N,N-dimethyl-3,4-dioleyloxybenzylamine (DMOBA), 1,2-N,N'-dioleylcarbamyl-3-dimethylaminopropane (DOcarbDAP) ), 1,2-diacyl-3-trimethylammonium-propane (TAP), 1,2-diacyl-3-dimethylammonium-propane (DAP), 1,2-di-O-octadecyl-3- It may be one or more selected from the group consisting of trimethylammonium propane and 1,2-dioleyl-3-trimethylammonium propane, but is not limited thereto.

한 구체예에서, 상기 양이온성 지질은 3-베타[N-(N',N'-디메틸아미노에탄)카바모일]콜레스테롤(DC-콜레스테롤)일 수 있다. 상기 DC-콜레스테롤은 다른 양이온성 지질보다 그 독성이 약하며, DC-콜레스테롤 계열의 유전자 담체가 흑색종, 낭포성 섬유종, 자궁경부암, 유방암 또는 난소암 등 여러 질환의 임상 치료에 사용 승인을 받았다는 점에서 특히 바람직할 수 있다.In one embodiment, the cationic lipid may be 3-beta[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-cholesterol). The DC-cholesterol is less toxic than other cationic lipids, and DC-cholesterol gene carriers have been approved for use in the clinical treatment of various diseases such as melanoma, cystic fibrosis, cervical cancer, breast cancer, or ovarian cancer. This may be particularly desirable.

상기 양이온성 지질은, 전체 고형 지질 나노입자 100 중량부를 기준으로, 10 내지 40 중량부, 10내지 30 중량부, 12 내지 28 중량부로 포함될 수 있다. 양이온성 지질이 상기와 같은 함량 범위로 고형 지질 나노입자의 쉘을 구성할 때, 고형 지질 나노입자가 많은 양의 약물을 봉입하면서도 세포막을 통과할 수 있는 크기로 형성되어 효율적으로 약물을 전달할 수 있다.The cationic lipid may be included in an amount of 10 to 40 parts by weight, 10 to 30 parts by weight, and 12 to 28 parts by weight, based on 100 parts by weight of total solid lipid nanoparticles. When cationic lipids form the shell of solid lipid nanoparticles in the above content range, the solid lipid nanoparticles are formed to a size that can pass through the cell membrane while encapsulating a large amount of drug, enabling efficient drug delivery. .

본 발명에 있어서, 상기 쉘은 알부민이 접합된 콜레스테롤을 포함함으로써 쉘의 표면에 알부민이 노출되도록 하여 세포 내 약물 전달 효율을 극대화시킬 수 있다. 또한, 상기 쉘은 아포지단백을 실질적으로 포함하지 않는 것일 수 있다. 본 발명에 따른 고형 지질 나노입자는 종래의 고형 지질 나노입자와 달리 아포지단백을 대체하여 양이온성 지질을 고형 지질 나노입자의 구성으로 포함함으로써, 상기 양이온성 지질에 의해 고형 지질 나노입자의 표면부(쉘)에 양이온 특성이 부여되어 약물을 결합시킬 수 있고, 세포막을 통과할 수 있는 크기로 고형 지질 나노입자를 형성할 수 있다.In the present invention, the shell contains cholesterol conjugated with albumin, thereby exposing albumin to the surface of the shell, thereby maximizing intracellular drug delivery efficiency. Additionally, the shell may be substantially free of apolipoprotein. The solid lipid nanoparticles according to the present invention, unlike conventional solid lipid nanoparticles, replace apolipoprotein and include cationic lipids as a component of the solid lipid nanoparticles, thereby forming the surface portion of the solid lipid nanoparticles by the cationic lipids ( Cationic properties are given to the shell), allowing it to bind drugs and form solid lipid nanoparticles of a size that can pass through cell membranes.

본 발명에 있어서, 상기 “실질적으로 포함하지 않는다”는 것은 고형 지질 나노입자의 전체 100 중량부를 기준으로 3 중량부 미만, 1 중량부 미만으로 포함되는 것을 의미한다.In the present invention, “substantially not included” means included in less than 3 parts by weight or less than 1 part by weight based on 100 parts by weight of the total solid lipid nanoparticles.

또한, 상기 고형 지질 나노입자는 평균 입자 직경이 60 내지 200 nm, 60 내지 150 nm, 25 내지 40 nm, 20 내지 40 nm인 것일 수 있다. 또한, 상기 고형 지질 나노입자는 균일한 입도 분포를 가질 수 있다. 상기와 같은 범위의 직경 및 균일한 입도 분포를 갖는 고형 지질 나노입자는 전신약물전달(systemic drug delivery)에 유용하게 활용될 수 있다. Additionally, the solid lipid nanoparticles may have an average particle diameter of 60 to 200 nm, 60 to 150 nm, 25 to 40 nm, or 20 to 40 nm. Additionally, the solid lipid nanoparticles may have a uniform particle size distribution. Solid lipid nanoparticles with a diameter in the above range and a uniform particle size distribution can be useful for systemic drug delivery.

본 발명에서 저밀도 지단백 모방 고형 지질 나노입자는 전체 저밀도 지단백 모방 고형 지질 나노입자 100 중량부를 기준으로, In the present invention, the low-density lipoprotein-mimicking solid lipid nanoparticles are based on 100 parts by weight of the total low-density lipoprotein-mimicking solid lipid nanoparticles,

콜레스테릴 에스테르 30 내지 60 중량부, 트리글리세라이드 0.01 내지 5 중량부, 알부민이 접합된 콜레스테롤 1 내지 20 중량부, 융합 유도성 지질 5 내지 40 중량부 및 양이온성 지질 10 내지 40 중량부를 포함할 수 있다.It may include 30 to 60 parts by weight of cholesteryl ester, 0.01 to 5 parts by weight of triglyceride, 1 to 20 parts by weight of albumin-conjugated cholesterol, 5 to 40 parts by weight of fusion-inducing lipid, and 10 to 40 parts by weight of cationic lipid. there is.

또한, 본 발명은 저밀도 지단백 모방 고형 지질 나노입자의 제조방법을 제공한다.Additionally, the present invention provides a method for producing low-density lipoprotein-mimicking solid lipid nanoparticles.

상기 제조방법은 유기용매에서 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 혼합하여 저밀도 지단백 모방 고형 지질 나노입자가 분산된 수성 분산액을 제조하는 단계를 포함한다. The manufacturing method includes preparing an aqueous dispersion in which low-density lipoprotein-mimicking solid lipid nanoparticles are dispersed by mixing cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid in an organic solvent. do.

또한, 상기 제조방법은 알부민이 접합된 콜레스테롤을 제조하는 단계; 및/또는 상기 수성 분산액을 투석하여 정제하고 농축시키는 단계를 추가로 포함할 수 있다. In addition, the production method includes preparing albumin-conjugated cholesterol; And/or it may further include the step of purifying and concentrating the aqueous dispersion by dialysis.

상기 제조방법에 있어서, 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질 및 상기 저밀도 지단백 모방 고형 지질 나노입자의 모든 설명은 앞서 기술한 모든 내용을 그대로 적용할 수 있다. In the above production method, all descriptions of cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid and cationic lipid, and the low-density lipoprotein-mimicking solid lipid nanoparticles can be applied as is. You can.

보다 구체적으로, 상기 제조방법은,More specifically, the manufacturing method is,

i) 알부민이 접합된 콜레스테롤을 제조하는 단계;i) preparing albumin-conjugated cholesterol;

ii) 유기용매에 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 혼합하여 고형 지질 나노입자가 분산된 수성 분산액을 제조하는 단계; 및ii) preparing an aqueous dispersion in which solid lipid nanoparticles are dispersed by mixing cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid in an organic solvent; and

iii) 상기 수성 분산액을 증류수로 일정 시간 간격으로 12 내지 36 시간 동안 투석한 후 투석액을 농축시키는 단계를 포함할 수 있다.iii) dialyzing the aqueous dispersion with distilled water at regular time intervals for 12 to 36 hours and then concentrating the dialysate.

상기 i) 단계는, 콜레스테롤 클로로포메이트를 유기용매에 용해한 후, 이 용액을 알부민 용액에 떨어뜨려 반응시키는 단계; 및 상기 반응용액을 증류수로 12 내지 36 시간동안 투석한 후 동결건조시키는 단계를 포함할 수 있다. 이때, 상기 콜레스테롤 클로로포메이트와 알부민은 1:1 내지 5:1의 몰비로 사용되는 것일 수 있으나, 이에 제한되는 것은 아니다.Step i) includes dissolving cholesterol chloroformate in an organic solvent and dropping this solution into an albumin solution to react; And it may include dialyzing the reaction solution with distilled water for 12 to 36 hours and then freeze-drying it. At this time, the cholesterol chloroformate and albumin may be used in a molar ratio of 1:1 to 5:1, but is not limited thereto.

상기 ii) 단계에서, 유기용매는 디메틸포름아마이드, 테트라하이드로퓨란, C1 내지 C4의 저급 알코올, 메틸렌클로라이드, 클로로포름, 아세톤, 디메틸설폭사이드, N-메틸피롤리돈, 다이옥산, 에틸아세테이트, 메틸에틸케톤, 아세토나이트릴 및 이들의 혼합물에서 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 유기용매는 고형 지질 나노입자의 제조 단계에서 모두 제거되기 때문에 유기용매로 인한 독성은 고려되지 않을 수 있다. In step ii), the organic solvent is dimethylformamide, tetrahydrofuran, C1 to C4 lower alcohol, methylene chloride, chloroform, acetone, dimethyl sulfoxide, N-methylpyrrolidone, dioxane, ethyl acetate, and methyl ethyl ketone. , acetonitrile, and mixtures thereof, but are not limited thereto. Because the organic solvent is completely removed during the manufacturing step of solid lipid nanoparticles, toxicity due to the organic solvent may not be considered.

한 구체예에서, 상기 ii) 단계에서 유기용매는 클로로포름과 메탄올의 혼합물일 수 있다.In one embodiment, the organic solvent in step ii) may be a mixture of chloroform and methanol.

또한, 상기 ii) 단계에서, 유기용매에 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 혼합하는 과정에서 상기 혼합물을 초음파 처리 및/또는 감압건조하는 과정을 추가로 포함할 수 있다. In addition, in step ii), cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid are mixed in an organic solvent, and the mixture is sonicated and/or dried under reduced pressure. may additionally be included.

본 발명의 저밀도 지단백 모방 고형 지질 나노입자는 쉘의 표면에 노출된 양이온성 지질과의 정전기적 상호작용에 의해 각종 비수용성 약물 및/또는 핵산 유전자와 같은 약물의 전달체로서 사용될 수 있다. 이에, 본 발명은 상기 저밀도 지단백 모방 고형 지질 나노입자를 포함하는 약물 전달용 조성물을 제공한다. The low-density lipoprotein-mimicking solid lipid nanoparticle of the present invention can be used as a carrier for various water-insoluble drugs and/or drugs such as nucleic acid genes by electrostatic interaction with the cationic lipid exposed on the surface of the shell. Accordingly, the present invention provides a composition for drug delivery containing the low-density lipoprotein-mimicking solid lipid nanoparticles.

본 발명에 있어서, 상기 약물은 비수용성 약물, 핵산, 또는 비수용성 약물과 핵산을 동시에 포함할 수 있다.In the present invention, the drug may include a water-insoluble drug, a nucleic acid, or a water-insoluble drug and a nucleic acid simultaneously.

본 발명에 있어서, 상기 비수용성 약물은 난용성 약물, 음이온을 띠는 펩타이드, 단백질, 히알루로닉산-펩타이드 접합체 또는 히알루로닉산-단백질 접합체일 수 있으나, 이에 제한되는 것은 아니다. 상기 난용성 약물은 파클리탁셀, 도세탁셀, 암포테리신, 독소루비신, 니페디핀, 프로포폴, 디아제팜, 에스트라디올, 사이클로스포린, 리토바비어, 사퀴나비어, 비페닐디메틸디카르복실레이트, 코엔자임 큐텐, 우루소데옥시콜린산, 일라프라졸, 이마티닙, 메실레이트, 아시클로비어, 알로퓨리놀, 아미오다론, 아자티오프린, 베나제프릴, 칼시트리올, 칸데살탄, 에프로사탄, 카르비도파/레비도파, 클라리쓰로마이신, 클로자핀, 데스모프레신 아세테이트, 디클로로페낙, 에날라프릴, 파모티딘, 펠로디핀, 페노피브레이트, 펜타닐, 펙소페나딘, 포시노프릴, 푸로세미드, 글리부라이드, 하이오스사이아민, 이미프라민, 이트라코나졸, 레보타이록신, 아토르바스타틴, 로바스타틴, 메클리진, 메게스테롤, 머캅토퓨린, 메톨라존, 모메타손, 나부메타손, 오메프라졸, 파록세틴, 프로파페논, 퀴나프릴, 심바스타틴, 시롤리무스, 타크롤리무스, 티자니딘, 플루바스타틴, 피타바스타틴, 프라바스타틴, 로수바스타틴, 에피루비신 또는 이들의 혼합물로부터 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the water-insoluble drug may be a poorly soluble drug, an anionic peptide, protein, hyaluronic acid-peptide conjugate, or hyaluronic acid-protein conjugate, but is not limited thereto. The poorly soluble drugs include paclitaxel, docetaxel, amphotericin, doxorubicin, nifedipine, propofol, diazepam, estradiol, cyclosporine, ritovavir, saquinavir, biphenyldimethyldicarboxylate, coenzyme Q10, and ursodeoxycholine. Acids, ilaprazole, imatinib, mesylate, acyclovir, allopurinol, amiodarone, azathioprine, benazepril, calcitriol, candesartan, eprosartan, carbidopa/lebidopa, clarithromycin, clozapine, desmo Pressin acetate, dichlorofenac, enalapril, famotidine, felodipine, fenofibrate, fentanyl, fexofenadine, fosinopril, furosemide, glyburide, hyoscyamine, imipramine, itraconazole, levothyroxine , atorvastatin, lovastatin, meclizine, megesterol, mercaptopurine, metolazone, mometasone, nabumethasone, omeprazole, paroxetine, propafenone, quinapril, simvastatin, sirolimus, tacrolimus, tijani It may be selected from Dean, fluvastatin, pitavastatin, pravastatin, rosuvastatin, epirubicin, or mixtures thereof, but is not limited thereto.

한 구체예에서, 상기 비수용성 약물은 난용성 약물일 수 있다.In one embodiment, the water-insoluble drug may be a poorly soluble drug.

상기 조성물에 있어서, 비수용성 약물 및/또는 핵산과 고형 지질 나노입자는 1:1 내지 1:10, 1:3 내지 1:8의 중량비로 복합체를 형성할 수 있다.In the composition, the water-insoluble drug and/or nucleic acid and solid lipid nanoparticles may form a complex at a weight ratio of 1:1 to 1:10, 1:3 to 1:8.

상기 복합체는 고형 지질 나노입자의 쉘에 비수용성 약물 및/또는 핵산이 상호작용에 의해 결합되어 있거나, 코어에 비수용성 약물 및/또는 핵산을 포집하는 형태를 모두 포함할 수 있다.The complex may include a form in which water-insoluble drugs and/or nucleic acids are bound to the shell of the solid lipid nanoparticle through interaction, or in which water-insoluble drugs and/or nucleic acids are trapped in the core.

상기 핵산은 작은간섭리보핵산(siRNA), 리보좀 리보핵산(rRNA), 리보핵산(RNA), 디옥시리보핵산(DNA), 상보성 디옥시리보핵산(cDNA), 앱타머(aptamer), 전령 리보핵산(mRNA), 운반 리보핵산(tRNA) 및 안티센스 올리고디옥시뉴클레오타이드(AS-ODN)로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.The nucleic acids include small interfering ribonucleic acid (siRNA), ribosomal ribonucleic acid (rRNA), ribonucleic acid (RNA), deoxyribonucleic acid (DNA), complementary deoxyribonucleic acid (cDNA), aptamer, messenger ribonucleic acid (mRNA), It may be one or more selected from the group consisting of transport ribonucleic acid (tRNA) and antisense oligodeoxynucleotide (AS-ODN), but is not limited thereto.

한 구체예에서, 상기 핵산은 siRNA일 수 있다.In one embodiment, the nucleic acid may be siRNA.

특히 siRNA는 이중가닥 RNA(duplex RNA), 또는 단일가닥 RNA 내부에서 이중가닥의 형태를 띄는 단일가닥 RNA를 의미한다. 이중가닥 사이의 결합은 뉴클레오타이드 간의 수소결합을 통해 이루어지며, 이중가닥 내부의 모든 뉴클레오타이드가 상보적으로 완전히 결합해야 하는 것은 아니다. siRNA의 길이는 약 15 내지 60, 약 15 내지 50개, 약 15 내지 40개, 약 15 내지 30개, 약 15 내지 25개, 16 내지 25개, 19 내지 25개, 20 내지 25개, 또는 20 내지 23개의 뉴클레오타이드일 수 있다. 상기 siRNA 길이는 이중 가닥 RNA의 한쪽 뉴클레오타이드의 갯수, 즉, 염기쌍의 갯수를 의미하며, 단일 가닥 RNA인 경우에는 단일 가닥 RNA 내부의 이중 가닥의 길이를 의미한다. 또한 siRNA는 혈중 안정성을 증가시키거나 면역 반응을 약화시키는 등의 목적을 위해 다양한 작용기를 도입한 뉴클레오타이드로 이루어질 수 있다. In particular, siRNA refers to double-stranded RNA (duplex RNA), or single-stranded RNA that has a double-stranded form within single-stranded RNA. Bonding between double strands is achieved through hydrogen bonds between nucleotides, and not all nucleotides within the double strand must be completely bonded in a complementary manner. The length of the siRNA is about 15 to 60, about 15 to 50, about 15 to 40, about 15 to 30, about 15 to 25, 16 to 25, 19 to 25, 20 to 25, or 20. It may be from 23 nucleotides. The siRNA length refers to the number of nucleotides on one side of double-stranded RNA, that is, the number of base pairs, and in the case of single-stranded RNA, it refers to the length of the double strand inside the single-stranded RNA. Additionally, siRNA may be composed of nucleotides with various functional groups introduced for purposes such as increasing blood stability or weakening immune responses.

따라서, 본 발명의 siRNA는 전형적인 siRNA로부터 비변형 또는 변형된 형태 모두를 포함할 수 있다. Accordingly, the siRNA of the present invention may include both unmodified and modified forms from typical siRNA.

또한, 본 발명은 저밀도 지단백 모방 고형 지질 나노입자를 이용하여 표적세포에 비수용성 약물 및/또는 핵산을 전달하는 방법을 제공한다.Additionally, the present invention provides a method for delivering water-insoluble drugs and/or nucleic acids to target cells using low-density lipoprotein-mimicking solid lipid nanoparticles.

상기 방법은, The above method is,

i) 비수용성 약물 및/또는 핵산과 저밀도 지단백 모방 고형 지질 나노입자의 복합체를 형성하는 단계; 및i) forming a complex of a water-insoluble drug and/or nucleic acid and low-density lipoprotein-mimicking solid lipid nanoparticles; and

ii) 상기 복합체를 표적 세포에 형질감염시키는 단계를 포함할 수 있다.ii) transfecting the complex into target cells.

상기 i) 단계에서, 복합체는, 예를 들어 인산완충식염수(PBS) 또는 탈염수 내에서 비수용성 약물 및/또는 핵산의 존재 하에 상기 저밀도 지단백 모방 고형 지질 나노입자를 혼합하여 형성되는 것을 특징으로 하는데, 이때 상기 PBS는 pH 7.0 내지 8.0이며, NaCl을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. In step i), the complex is formed by mixing the low-density lipoprotein-mimicking solid lipid nanoparticles in the presence of a water-insoluble drug and/or nucleic acid, for example, in phosphate-buffered saline (PBS) or demineralized water. At this time, the PBS has a pH of 7.0 to 8.0 and may contain NaCl, but is not limited thereto.

또한, 상기 i) 단계에서, 비수용성 약물 및/또는 핵산과 고형 지질 나노입자는 1:1 내지 1:10, 1:3 내지 1:8의 중량비로 복합체를 형성할 수 있다. Additionally, in step i), the water-insoluble drug and/or nucleic acid and solid lipid nanoparticles may form a complex at a weight ratio of 1:1 to 1:10, 1:3 to 1:8.

또한, 본 발명은 KRAS를 표적으로 하는 비수용성 약물 또는 핵산이 포집된, 상기 저밀도 지단백 모방 고형 지질 나노입자를 포함하는 KRAS 유전자 변이에 의해 유발되는 암 예방 또는 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating cancer caused by KRAS gene mutation, comprising the low-density lipoprotein-mimicking solid lipid nanoparticles in which a water-insoluble drug or nucleic acid targeting KRAS is captured.

상기 약학 조성물에서, 비수용성 약물, 핵산 및 저밀도 지단백 모방 고형 지질 나노입자는 앞서 기술한 내용을 그대로 적용 또는 준용할 수 있다. In the pharmaceutical composition, the water-insoluble drug, nucleic acid, and low-density lipoprotein-mimicking solid lipid nanoparticles may be applied as is or mutatis mutandis as described above.

상기 KRAS 유전자 변이에 의해 유발되는 암은 예를 들어, 비소세포폐암, 대장암 또는 췌장암일 수 있으나, 이에 제한되는 것은 아니다.Cancer caused by the KRAS gene mutation may be, for example, non-small cell lung cancer, colon cancer, or pancreatic cancer, but is not limited thereto.

상기 약학 조성물에 있어서, KRAS를 표적으로 하는 비수용성 약물 또는 핵산이 포집된 저밀도 지단백 모방 고형 지질 나노입자는 비수용성 약물 또는 핵산과 저밀도 지단백 모방 고형 지질 나노입자의 복합체 형태일 수 있다.In the pharmaceutical composition, the low-density lipoprotein-mimicking solid lipid nanoparticles entrapped with a water-insoluble drug or nucleic acid targeting KRAS may be in the form of a complex of a water-insoluble drug or nucleic acid and a low-density lipoprotein-mimetic solid lipid nanoparticle.

상기 복합체에 포함되는 비수용성 약물은 난용성 약물일 수 있다. The water-insoluble drug included in the complex may be a poorly soluble drug.

또한, 상기 복합체에 포함되는 KRAS를 표적으로 하는 핵산은 환원 가능한 핵산 다이머일 수 있다.Additionally, the nucleic acid targeting KRAS included in the complex may be a reducible nucleic acid dimer.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention and methods for achieving them will become clear with reference to the embodiments described in detail below. However, the present invention is not limited to the embodiments disclosed below and will be implemented in various different forms. The present embodiments are merely intended to ensure that the disclosure of the present invention is complete and that common knowledge in the technical field to which the present invention pertains is not limited. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

실시예Example

[제조예 1] 알부민이 접합된 콜레스테롤(콜레스테롤-알부민)의 제조[Preparation Example 1] Preparation of albumin-conjugated cholesterol (cholesterol-albumin)

알부인이 접합된 콜레스테롤을 제조하기 위해, 인간 혈청 알부민(Human serum albumin(HSA), Sigma-Aldrich, Germany)과 콜레스테릴 클로로포메이트(Sigma-Aldrich, Germany)를 사용하였다.To prepare albumin-conjugated cholesterol, human serum albumin (HSA), Sigma-Aldrich, Germany) and cholesteryl chloroformate (Sigma-Aldrich, Germany) were used.

먼저, 인간 혈청 알부민 0.5 mmol을 인산염완충식염수(PBS, pH 8.0) 2 mL에 용해시켰다. 1 mL의 DMF에 콜레스테롤 클로로포메이트 1.5 mmol를 용해하고, 이 용액을 인간 혈청 알부민 용액에 떨어뜨렸다. 이때, 콜레스테릴 클로로포르메이트와 인간 혈청 알부민은 3:1의 몰비로 사용되었다. 이후, 상온에서 밤새 약하게 흔들어 반응시킨 후, 반응 용액을 분자 컷오프 12000 g/mol 투석 튜브를 이용하여 3L의 증류수에 대해 3 시간동안 투석하고 증류수는 24 시간동안 3~4 시간 간격으로 교환하였다. 그 후, 생성물 용액을 동결건조하여 알부민이 접합된 콜레스테롤(이하, 콜레스테롤-알부민이라 함)을 제조하였다. First, 0.5 mmol of human serum albumin was dissolved in 2 mL of phosphate-buffered saline (PBS, pH 8.0). 1.5 mmol of cholesterol chloroformate was dissolved in 1 mL of DMF, and this solution was dropped into human serum albumin solution. At this time, cholesteryl chloroformate and human serum albumin were used at a molar ratio of 3:1. After reacting by shaking gently at room temperature overnight, the reaction solution was dialyzed against 3 L of distilled water for 3 hours using a dialysis tube with a molecular cutoff of 12000 g/mol, and the distilled water was exchanged every 3 to 4 hours for 24 hours. Afterwards, the product solution was freeze-dried to prepare albumin-conjugated cholesterol (hereinafter referred to as cholesterol-albumin).

[제조예 2] 저밀도 지단백(LDL) 모방 고형 지질 나노입자(SLN)의 제조[Preparation Example 2] Preparation of low-density lipoprotein (LDL)-mimicking solid lipid nanoparticles (SLN)

LDL 모방 SLN는 용매-유화법(solvent-emulsification method)을 일부 변형하여 제조하였다.LDL-mimicking SLN was prepared by partially modifying the solvent-emulsification method.

코어 구조 지질로 콜레스테릴 올레이트 및 트리올레인을 사용하였고, 표면(쉘) 구조 지질로 DOPE, 상기 제조예 1에서 제조된 콜레스테롤-알부민 및 DC-콜레스테롤을 사용하였다. 하기 표 1 및 2의 성분들을 2 mL의 클로로포름/메탄올 혼합물(2:1, v/v)에 용해시켰다. 여기에 10 mL의 탈이온수를 첨가하고 혼합물을 완전히 볼텍싱시켰다. 현탁액은 Branson Sonifier®(20 kHz, 듀티 사이클(duty cycle) = 40, 출력 제어 = 3.5)을 사용하여 5 분동안 초음파 처리하였다. 유화된 용액을 회전 증발기로 옮기고, 용매는 콜레스테릴 올레에이트의 융점인 52℃ 이상의 온도에서 증발시켜 제거하였다. 마지막으로, LDL 모방 SLN의 수성 분산액을 밤새 투석(MWCO: 5,000)하여 정제하고, 진공 증발을 통해 최대 5 mg particle/mL로 농축시켰다.Cholesteryl oleate and triolein were used as core structural lipids, and DOPE, cholesterol-albumin and DC-cholesterol prepared in Preparation Example 1 were used as surface (shell) structural lipids. The ingredients in Tables 1 and 2 below were dissolved in 2 mL of chloroform/methanol mixture (2:1, v/v). To this, 10 mL of deionized water was added and the mixture was thoroughly vortexed. The suspension was sonicated for 5 minutes using a Branson Sonifier® (20 kHz, duty cycle = 40, power control = 3.5). The emulsified solution was transferred to a rotary evaporator, and the solvent was removed by evaporation at a temperature above 52°C, which is the melting point of cholesteryl oleate. Finally, the aqueous dispersion of LDL-mimicking SLN was purified by overnight dialysis (MWCO: 5,000) and concentrated to up to 5 mg particle/mL via vacuum evaporation.

상기 LDL 모방 SLN의 제조 과정 및 약물 전달체로서의 LDL 모방 SLN의 형태를 도식화하여 도 1에 나타내었다. The manufacturing process of the LDL-mimetic SLN and the form of the LDL-mimetic SLN as a drug carrier are schematically shown in Figure 1.

  구성성분(%)Composition (%) 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 코어core 콜레스테릴
올레이트
cholesteryl
oleate
4545 4545 4545 4545 4545
트리올레인triolein 33 33 33 1.51.5 33 shell DOPEDOPE 1414 77 1414 77 2222 콜레스테롤-알부민cholesterol-albumin 1010 1010 55 55 1010 DC-CholDC-Chol 2828 2828 2828 2828 2020 Z-평균 (Z-Ave) (d.nm)Z-average (Z-Ave) (d.nm) 68.27 ± 0.7168.27 ± 0.71 93.72 ± 0.1093.72 ± 0.10 85.36 ± 0.9885.36 ± 0.98 84.75 ± 0.2484.75 ± 0.24 101.2 ± 0.8101.2 ± 0.8 다분산지수 (PdI)Polydispersity Index (PdI) 0.204 0.204 0.190 0.190 0.208 0.208 0.182 0.182 0.1630.163 제타-전위 (ZP) (mV)Zeta-potential (ZP) (mV) 105.5 ± 2.12105.5 ± 2.12 42.3 ± 5.3742.3 ± 5.37 92.5 ± 6.5192.5 ± 6.51 32.6 ± 0.0032.6 ± 0.00 65.765.7

  구성성분 (%)Composition (%) 실시예6Example 6 실시예7Example 7 실시예8Example 8 실시예9Example 9 실시예10Example 10 코어core 콜레스테릴
올레이트
cholesteryl
oleate
4545 4545 4545 4545 4545
트리올레인triolein 1.51.5 1.51.5 1.51.5 33 1.51.5 shell DOPEDOPE 77 1414 77 1414 1414 콜레스테롤-알부민cholesterol-albumin 1010 55 55 1010 1010 DC-CholDC-Chol 1414 1414 1414 1414 1414 Z-평균 (Z-Ave) (d.nm)Z-average (Z-Ave) (d.nm) 115.65 ± 0.78115.65 ± 0.78 108.85 ± 1.20108.85 ± 1.20 105.7 ± 1.13105.7 ± 1.13 116.1 ± 0.99116.1 ± 0.99 154.7±
1.27
154.7±
1.27
다분산지수 (PdI)Polydispersity Index (PdI) 0.169 0.169 0.148 0.148 0.166 0.166 0.174 0.174 0.1660.166 제타-전위 (ZP) (mV)Zeta-potential (ZP) (mV) 80.15 ± 0.6480.15 ± 0.64 84.65 ± 4.7484.65 ± 4.74 81.5 ± 0.8581.5 ± 0.85 85.4 ± 1.4185.4 ± 1.41 73.1±2.6973.1±2.69

또한, 제조된 LDL 모방 SLN(실시예 1 내지 10)의 조성에 따른 입자 크기 및 제타 전위값을 비교하였다. Additionally, particle size and zeta potential values were compared according to the composition of the prepared LDL-mimicking SLN (Examples 1 to 10).

이때 음성 비교군으로는 실시예 5의 조성으로 제조하되, 콜레스테롤-알부민이 아닌 콜레스테롤을 사용하여 제조한 고형 지질 나노입자(SLN)를 사용하였다. 상기 SLN은 하기 실험예 1 내지 5에서의 음성 비교군으로 사용되었다.At this time, solid lipid nanoparticles (SLN) prepared according to the composition of Example 5, but using cholesterol rather than cholesterol-albumin, were used as a negative comparison group. The SLN was used as a negative comparison group in Experimental Examples 1 to 5 below.

그 결과, 상기 표 1 내지 2에서 보는 바와 같이, 콜레스테릴 올레이트 및 알부민이 접합된 콜레스테롤(콜레스테롤-알부민)의 양이 감소할수록 LDL 모방 SLN의 크기가 감소하는 경향을 보이는 것을 확인할 수 있다. 또한, DC-Chol의 양이 증가할수록 LDL 모방 SLN의 크기가 감소하는 것을 확인할 수 있다(도 2). As a result, as shown in Tables 1 and 2, it can be seen that the size of LDL-mimicking SLN tends to decrease as the amount of cholesterol conjugated with cholesteryl oleate and albumin (cholesterol-albumin) decreases. In addition, it can be seen that as the amount of DC-Chol increases, the size of LDL-mimicking SLN decreases (Figure 2).

도 2의 결과에서는, 콜레스테릴 올레이트 및 콜레스테롤(콜레스테롤-알부민)의 함량이 클수록, DC-Chol의 함량이 적을수록 LDL 모방 SLN의 Z-평균 값이 증가하는 경향을 확인할 수 있다. In the results of Figure 2, it can be seen that the Z-average value of LDL-mimicking SLN tends to increase as the content of cholesteryl oleate and cholesterol (cholesterol-albumin) increases and the content of DC-Chol decreases.

이를 기반으로 실시예 5를 최적의 LDL 모방 SLN의 조성으로 선정하였다.Based on this, Example 5 was selected as the optimal composition of LDL-mimicking SLN.

[실험예 1] 최적의 LDL 모방 SLN의 약물 봉입률 비교[Experimental Example 1] Comparison of drug encapsulation rates of optimal LDL-mimicking SLN

하기 표 3의 조성(실시예 5의 조성)으로 구성된 LDL 모방 SLN의 약물 봉입률을 확인하였다. 상기 LDL 모방 SLN의 제조는 앞서 기술한 제조예 2와 동일한 방법으로 수행하였다.The drug encapsulation rate of the LDL-mimetic SLN composed of the composition shown in Table 3 below (composition of Example 5) was confirmed. Preparation of the LDL-mimicking SLN was performed in the same manner as Preparation Example 2 described above.

SLN (LDL 모방)SLN (LDL mimic) 구성성분Ingredients 비율 (%) (w/w)Ratio (%) (w/w) 함량 (mg)Content (mg) 코어(중심부)Core (center part) 콜레스테릴 올레이트cholesteryl oleate 4545 8.438.43 트리글리세라이드triglycerides 33 0.560.56 쉘(표면부)Shell (surface part) 콜레스테롤_알부민Cholesterol_Albumin 1010 1.871.87 DOPEDOPE 2222 5.255.25 DC-cholDC-chol 2020 10.510.5

제제 유형Formulation type 평균 직경 (nm)Average diameter (nm) 다분산도polydispersity ζ-전위ζ-potential 음성 비교군Voice comparison group 92.5 ± 1.692.5 ± 1.6 0.1870.187 69.069.0 LDL 모방 SLNLDL-mimicking SLN 101.2 ± 0.8101.2 ± 0.8 0.1630.163 65.765.7

입자 제제particle formulation 단백질의 양 (nmol/mg)Amount of protein (nmol/mg) 음성 비교군Voice comparison group n.an.a LDL 모방 SLNLDL-mimicking SLN 7.29 ± 0.667.29 ± 0.66

그 결과, 상기 표 4 및 5에서 보는 바와 같이, 음성 비교군의 경우 약물 봉입율을 측정할 수 없는 것과 비교하여, 본 발명에 따른 LDL 모방 SLN는 높은 약물 봉입률을 가지는 것을 확인할 수 있다.As a result, as shown in Tables 4 and 5 above, it can be confirmed that the LDL-mimicking SLN according to the present invention has a high drug encapsulation rate, compared to the negative comparison group in which the drug encapsulation rate could not be measured.

또한, 도 3은 음성 비교균(왼쪽 사진) 및 LDL 모방 SLN(오른쪽 사진)의 TEM 사진을 나타낸 것으로, 상기 도 3에서 보는 바와 같이, 본 발명에 따른 LDL 모방 SLN는 입자간 응집 없이 우수한 분산도를 가진 균일한 나노 입자임을 확인할 수 있다. In addition, Figure 3 shows TEM images of negative comparison bacteria (left picture) and LDL-mimicking SLN (right picture). As shown in Figure 3, the LDL-mimetic SLN according to the present invention has excellent dispersion without agglomeration between particles. It can be confirmed that it is a uniform nanoparticle with .

[제조예 3] 다이머 siRNA 제조[Preparation Example 3] Preparation of dimer siRNA

1) Kras siRNA 선정1) Selection of Kras siRNA

Kras siRNA 서열은 3 가지 라이브러리를 선정하여 연구를 진행하였다. 상기 3 가지 서열은 공개되지 않은 것으로, Kras 자체는 자연적인 유전자이지만 Kras 유전자를 구성하는 전체 염기서열 중에 어떤 서열을 siRNA의 타겟 서열로 사용하는지는 연구자의 선택이다. 본 발명자들은 하기 표 1의 서열을 사용하였다. 본 실험에 사용된 모든 이중가닥 모노머 siRNA는 바이오니아(대전, 한국)에 합성 의뢰하여 구입하였다.The Kras siRNA sequence was studied by selecting three libraries. The above three sequences have not been made public, and although Kras itself is a natural gene, it is the researcher's choice which sequence among the entire base sequences constituting the Kras gene is used as the target sequence for siRNA. The present inventors used the sequences in Table 1 below. All double-stranded monomeric siRNAs used in this experiment were purchased from Bioneer (Daejeon, Korea) for synthesis.

SEQ ID NO.SEQ ID NO. 명칭designation 서열(5'->3')Sequence (5'->3') 1One Kras siRNA_#1_senseKras siRNA_#1_sense UGAAUUAGCUGUAUCGUCAAGGUGAAUUAGCUGUAUCGUCAAGG 22 Kras siRNA_#1_antisenseKras siRNA_#1_antisense UUGACGAUACAGCUAAUUCAUAUUGACGAUACAGCUAAUUCAUA 33 Kras siRNA_#2_senseKras siRNA_#2_sense ACUGUACUCCUCUUGACCUGCUACUGUACUCCUCUUGACCUGCU 44 Kras siRNA_#2_antisenseKras siRNA_#2_antisense CAGGUCAAGAGGAGUACAGUUACAGGUCAAGAGGAGUACAGUUA 55 Kras siRNA_#3_senseKras siRNA_#3_sense UAUAAUGGUGAAUAUCUUCAAAUAUAUGGUGAAUAUCUUCAAA 66 Kras siRNA_#3_antisenseKras siRNA_#3_antisense UGAAGAUAUUCACCAUUAUAUAUGAAGAUAUUCACCAUUAUAUA 77 Control siRNA_senseControl siRNA_sense UGUGGUAGCUAUACGGAUAdTdTUGUGGUAGCUAUACGGAUAdTdT 88 Control siRNA_antisenseControl siRNA_antisense UAUCCGUAUAGCUACCACAdTdTUAUCCGUAUAGCUACCACAdTdT

2) siRNA 다이머 합성2) siRNA dimer synthesis

절단 가능한 커플링제를 통해 연결된 환원성 다이머 siRNA를 합성하기 위해, 3'-말단(sense)에서 티올기로 변경된 이중가닥 모노머 siRNA(anti-Kras, 스크램블됨)를 사용하였다. To synthesize reducible dimeric siRNA linked through a cleavable coupling agent, double-stranded monomeric siRNA (anti-Kras, scrambled) modified with a thiol group at the 3'-end (sense) was used.

간단히 말해, 500 ㎕의 디에틸피로카보네이트(DEPC) 처리된 탈이온수(DW)에서 50 nmol의 이중가닥 모노머 siRNA는 디메틸설폭사이드에 포함된 50 nmol의 절단 가능한 커플링제인 디티오-비스-말레이도에탄(DTME, 15.6㎍)으로 활성화되었다(siRNA:DTME의 몰 농도는 1:1). 음이온성이 높은 이중가닥 siRNA 사이의 전하 반발을 최소화하기 위해, 750 mM NaCl을 용액에 첨가하였다(최적 용액 pH 범위, 6.5 ~ 7.5). 상온에서 약하게 흔들면서 밤새 배양한 후, 생성된 다이머 siRNA를 DW에 대해 밤새 투석(MWCO: 10 kDa)하여 정제하고 진공 증발을 통해 1 nmol/㎕까지 농축하였다. 모노머 siRNA를 환원가능한 다이머 siRNA로 합성하는 과정을 도 4에 도식화하였다. Briefly, 50 nmol of double-stranded monomeric siRNA in 500 μl of diethylpyrocarbonate (DEPC)-treated deionized water (DW) was reacted with 50 nmol of the cleavable coupling agent dithio-bis-maleido in dimethyl sulfoxide. It was activated with ethane (DTME, 15.6 μg) (siRNA:DTME molar concentration 1:1). To minimize charge repulsion between highly anionic double-stranded siRNAs, 750 mM NaCl was added to the solution (optimal solution pH range, 6.5 to 7.5). After culturing overnight at room temperature with gentle shaking, the resulting dimer siRNA was purified by dialysis against DW overnight (MWCO: 10 kDa) and concentrated to 1 nmol/μl through vacuum evaporation. The process of synthesizing monomeric siRNA into reducible dimeric siRNA is schematized in Figure 4.

3) 다이머 siRNA의 해리3) Dissociation of dimer siRNA

앞서 2)에서 합성한 다이머 siRNA는 세포 내에서 모노머의 형태로 작용하기 때문에, 모노머 siRNA로 다시 분리될 수 있어야 세포 내에서의 siRNA의 작용을 수행할 수 있다. 이에, 환원제인 디티오트레이톨(DTT)을 사용하여 환원성 다이머 siRNA인지 증명하기 위한 실험을 수행하였다. Since the dimeric siRNA synthesized in step 2) acts in the form of a monomer within the cell, it must be able to be separated into monomeric siRNA to perform the function of siRNA within the cell. Accordingly, an experiment was performed to prove that it was a reducible dimer siRNA using dithiothreitol (DTT), a reducing agent.

다이머 siRNA에 대한 이황화 결합의 절단을 확인하기 위해, 100 nmol의 다이머 siRNA 샘플(100 ㎕)을 2 μmol의 디티오트레이톨(DTT, 100 ㎕)에서 밤새 상온에서 배양하였다. 용액의 최종 pH는 5M NaOH를 사용하여 8.0으로 조정하였다. 생성된 절단된 모노머 siRNA를 DW에 대해 밤새 투석(MWCO: 10 kDa)하여 정제하고 진공 증발을 통해 최대 1 nmol/㎕까지 농축하였다.To confirm cleavage of the disulfide bond for dimeric siRNA, 100 nmol of dimeric siRNA sample (100 μl) was incubated in 2 μmol of dithiothreitol (DTT, 100 μl) overnight at room temperature. The final pH of the solution was adjusted to 8.0 using 5M NaOH. The resulting cleaved monomeric siRNA was purified by dialysis against DW overnight (MWCO: 10 kDa) and concentrated up to 1 nmol/μl through vacuum evaporation.

또한, 스크램블된 모노머 siRNA에 대한 서열을 갖는 비-커플링 연결된 다이머 siRNA를 바이오니아(대전, 한국)로부터 얻었다. Additionally, non-coupled dimeric siRNA with the sequence for scrambled monomeric siRNA was obtained from Bioneer (Daejeon, Korea).

모든 결과 생성물, 모노머 siRNA, 절단 가능한 이황화 결합을 통해 연결된 다이머 siRNA, 절단된 모노머 siRNA 및 결합되지 않은 다이머 siRNA는 10% 폴리아크릴아마이드겔 전기영동(PAGE)로 분석하였다. All resulting products, monomeric siRNA, dimer siRNA linked through a cleavable disulfide bond, cleaved monomeric siRNA, and unbound dimer siRNA were analyzed by 10% polyacrylamide gel electrophoresis (PAGE).

그 결과, 도 5에서 보는 바와 같이, 다이머 siRNA가 모노머 siRNA로 절단되었음을 확인할 수 있었다.As a result, as shown in Figure 5, it was confirmed that the dimeric siRNA was cleaved into monomeric siRNA.

[제조예 4] 다이머 siRNA와 LDL 모방 SLN의 복합체 제조[Preparation Example 4] Preparation of a complex of dimer siRNA and LDL-mimicking SLN

모노머, 절단 가능한 이황화 결합을 통해 연결된 다이머 siRNA 및 비-커플링 연결된 다이머 siRNA의 복합체들은 제조예 2의 실시예 5에서 제조된 LDL 모방 SLN와 복합체화되었다. 구체적으로, siRNA(1.5 ㎍, 100 pmol)는 10 분 동안 6의 중량비(siRNA/SLN)로 고형 지질 나노입자(SLN)와 복합체화되었다(siRNA/SLN 복합체). Complexes of monomeric, dimeric siRNA linked via a cleavable disulfide bond and non-coupled dimeric siRNA were complexed with the LDL mimetic SLN prepared in Example 5 of Preparation Example 2. Specifically, siRNA (1.5 μg, 100 pmol) was complexed with solid lipid nanoparticles (SLN) at a weight ratio of 6 (siRNA/SLN complex) for 10 min.

siRNA/SLN 복합체의 안정성을 조사하기 위해, 상기 복합체에 헤파린을 다양한 중량비(헤파린/siRNA: 0, 1, 2, 5, 10, 20 및 50)로 첨가하고 37℃에서 30 분동안 추가로 배양하였다. 배양 후, 분해된 siRNA의 양을 1% 아가로스겔 전기영동으로 분석하였다. To investigate the stability of the siRNA/SLN complex, heparin was added to the complex at various weight ratios (heparin/siRNA: 0, 1, 2, 5, 10, 20, and 50) and incubated for an additional 30 minutes at 37°C. . After incubation, the amount of degraded siRNA was analyzed by 1% agarose gel electrophoresis.

혈청 안정성을 분석하기 위해, 복합체를 미리 결정된 시간(0, 2, 4, 8, 12, 24 및 48 시간)동안 37℃, 50% v/v 혈청에서 배양하고, 생성된 샘플을 추가로 헤파린(100 ㎍) 및 DTT 용액(100 mM)으로 처리한 다음, 방출된 siRNA 분획을 대상으로 아가로스겔 전기영동을 수행하였다. To analyze serum stability, complexes were incubated in 50% v/v serum at 37°C for predetermined times (0, 2, 4, 8, 12, 24, and 48 h), and the resulting samples were further incubated with heparin ( After treatment with 100 μg) and DTT solution (100 mM), agarose gel electrophoresis was performed on the released siRNA fraction.

siRNA/SLN 복합체의 유체역학적 직경 및 표면 ζ-전위 값은 He-Ne 레이저 빔이 장착된 Zetasizer nano-series nano-ZS(Malvern Instruments Ltd., Malvern, UK)를 사용하여 663 nm의 파장, 90°의 고정된 산란 각도에서 측정되었다. 측정은 모든 샘플에 대해 25℃에서 3회 수행되었다.Hydrodynamic diameter and surface ζ-potential values of siRNA/SLN complexes were measured using a Zetasizer nano-series nano-ZS (Malvern Instruments Ltd., Malvern, UK) equipped with a He-Ne laser beam at a wavelength of 663 nm and 90°. It was measured at a fixed scattering angle of . Measurements were performed in triplicate at 25°C for all samples.

siRNA/SLN 복합체의 형태와 크기는 AFM(XE-100, Park Systems, Korea)으로 관찰하였다. AFM 분석을 위해, siRNA/SLN 복합체를 새로운 운모 표면에 두고 공기 중에서 건조시킨 다음 이미지를 312 kHz의 획득 주파수로 비접촉 모드로 기록하였다. The shape and size of the siRNA/SLN complex were observed by AFM (XE-100, Park Systems, Korea). For AFM analysis, siRNA/SLN complexes were placed on a fresh mica surface, dried in air, and then images were recorded in non-contact mode with an acquisition frequency of 312 kHz.

[실험예 2] siRNA/SLN 복합체의 세포 내 흡수 확인[Experimental Example 2] Confirmation of cellular uptake of siRNA/SLN complex

제조예 4에서 제조한 siRNA/SLN 복합체의 세포 내 흡수를 확인하고 비교하기 위해, FITC 표지된 siRNA를 복합체화에 사용하고 세포 내 흡수를 유세포분석기(FACSCalibur, USA)로 분석하였다. 이때 세포는 H441 세포주를 사용하였다.To confirm and compare the cellular uptake of the siRNA/SLN complex prepared in Preparation Example 4, FITC-labeled siRNA was used for complexation, and the cellular uptake was analyzed using a flow cytometer (FACSCalibur, USA). At this time, the H441 cell line was used.

FITC-표지된 모노머 siRNA의 경우, 모노머 siRNA는 스크램블된 모노머 siRNA에 대한 서열로 3'-말단(sense)에서 티올기 변형과 함께 5'-말단(sense)에서 FITC에 의해 말단 표지되었고, 바이오니아(대전, 한국)에 합성 의뢰하여 구입하였다. FITC 표지된 다이머 siRNA는 다이머 siRNA 합성 섹션에 설명된대로 합성하였으며, 10% PAGE로 분석하였다.For FITC-labeled monomeric siRNA, the monomeric siRNA was end-labeled by FITC at the 5'-end (sense) with a thiol group modification at the 3'-end (sense) as the sequence for scrambled monomeric siRNA, and was labeled with Bioneer ( Daejeon, Korea) was requested and purchased for synthesis. FITC-labeled dimer siRNA was synthesized as described in the dimer siRNA synthesis section and analyzed by 10% PAGE.

세포를 웰당 2ⅹ104 세포수의 밀도로 6-웰 플레이트에 24 시간동안 접종한 다음, 다이머 siRNA/SLN 복합체를 미리 정해진 시간(30 분) 동안 37℃에서 각각 형질감염시켰다(128 nM의 siRNA). 배양 배지를 제거하여 세포 흡수를 중단시키고, 형질감염된 세포를 PBS로 3회 부드럽게 세척한 후 PBS에 분산시켰다. 세포의 형광은 FACSCalibur 유세포분석 시스템(BD Bioscience) 및 CellQuest 소프트웨어(PharMinutesgen)를 사용하여 측정되었다. Cells were seeded in 6-well plates at a density of 2×10 4 cells per well for 24 hours, and then dimer siRNA/SLN complexes were each transfected at 37°C for a predetermined time (30 min) (128 nM of siRNA). Cell uptake was stopped by removing the culture medium, and the transfected cells were gently washed three times with PBS and dispersed in PBS. Fluorescence of cells was measured using a FACSCalibur flow cytometry system (BD Bioscience) and CellQuest software (PharMinutesgen).

그 결과를 도 6에 나타내었다. 도 6에서 dimeric siRNA/albumin LDL은 실시예 5에 따른 LDL 모방 SLN를 사용한 경우이고, dimeric siRNA/LDL은 음성 비교군 SLN를 사용한 경우를 나타낸다.The results are shown in Figure 6. In Figure 6, dimeric siRNA/albumin LDL shows the case of using the LDL mimic SLN according to Example 5, and dimeric siRNA/LDL shows the case of using the negative comparison group SLN.

도 5에서 보는 바와 같이, dimeric siRNA/albumin LDL에서 높은 세포 내 흡수 정도를 보였다.As shown in Figure 5, dimeric siRNA/albumin LDL showed a high degree of cellular uptake.

이러한 데이터는 알부민 융합된 siRNA/SLN 복합체가 세포내 흡수성이 우수하여 효과적인 약물전달체로 사용될 수 있음을 시사한다. These data suggest that the albumin-fused siRNA/SLN complex has excellent intracellular absorption and can be used as an effective drug delivery vehicle.

[실험예 3] siRNA/SLN 복합체의 시험관 내 활성 확인[Experimental Example 3] Confirmation of in vitro activity of siRNA/SLN complex

2 가지 유형의 다이머 siRNA, Kras(내인성) 및 스크램블(대조군)에 의해 형성된 siRNA/SLN 복합체의 유전자 침묵 효과를 확인하였다. The gene silencing effect of siRNA/SLN complex formed by two types of dimeric siRNA, Kras (endogenous) and Scramble (control) was confirmed.

먼저, 실시예 5에서 제조된 LDL 모방 SLN와 복합체를 형성한 후 세포에 처리하고, Kras mRNA의 세포 수준에서 역전사 효소-중합 효소 연쇄반응(RT-PCR)을 수행하여 유전자 침묵 효과를 확인하였다. 이때 세포는 H441 세포주를 사용하였다. First, a complex was formed with the LDL-mimicking SLN prepared in Example 5, then treated with cells, and reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on Kras mRNA at the cellular level to confirm the gene silencing effect. At this time, the H441 cell line was used.

세포를 웰당 2ⅹ104 세포수의 밀도로 6-웰 플레이트에 24 시간동안 파종한 다음 다양한 siRNA 농도에서 다이머 siRNA/SLN 복합체로 형질감염시켰다(각 그룹당 n=3). 3일간 배양한 후, 세포를 수거하고 제조사의 프로토콜에 따라 Trizol 시약을 사용하여 총 RNA를 분리하였다. Cells were seeded in 6-well plates at a density of 2×10 4 cells per well for 24 hours and then transfected with dimer siRNA/SLN complexes at various siRNA concentrations (n=3 for each group). After culturing for 3 days, cells were harvested and total RNA was isolated using Trizol reagent according to the manufacturer's protocol.

cDNA 합성은 제조사의 프로토콜에 따라 High Capacity RNA-to-cDNA 키트를 사용하여 수행되었다. cDNA synthesis was performed using the High Capacity RNA-to-cDNA kit according to the manufacturer's protocol.

표적 유전자(인간 Kras) 및 대조군 유전자(인간 β-액틴)에 대한 DNA 증폭은 2분동안 94℃의 1 사이클; 및 30초동안 94℃, 30 초동안 57℃, 1 분동안 72℃의 30 사이클; 5 분동안 72℃의 1 사이클의 열 순환 조건에서 프라이머 및 Prime Taq Premix로 수행되었다. DNA amplification for the target gene (human Kras) and control gene (human β-actin) was performed with 1 cycle of 94°C for 2 min; and 30 cycles of 94°C for 30 seconds, 57°C for 30 seconds, and 72°C for 1 minute; This was performed with primers and Prime Taq Premix under one cycle of thermal cycling conditions at 72°C for 5 minutes.

프라이머 서열은 하기 표 7의 서열을 사용하였다.The primer sequences shown in Table 7 below were used.

SEQ ID NO.SEQ ID NO. 명칭designation 서열(5'->3')Sequence (5'->3') 99 Human_Kras_Primer_FHuman_Kras_Primer_F AATTGTCCATCTACCATGGAATTGTCCATCTACCATGG 1010 Human_Kras_Primer_RHuman_Kras_Primer_R GAGGTCAGCTGAAGCAAATCCAAGAGGTCAGCTGAAGCAATCCAA 1111 Human_β-actin_Primer_FHuman_β-actin_Primer_F CCCAAAGTTCACAATGTGGCCCCAAAGTTCACAATGTGGC 1212 Human_β-actin_Primer_RHuman_β-actin_Primer_R AGGGAGACCAAAAGCCTTCAAGGGAGACCAAAAGCCTTCA

PCR 산물을 1% 아가로스 겔 전기영동으로 분석하고, ImageJ 프로그램을 사용하여 각 밴드 강도를 정량화하였다. PCR products were analyzed by 1% agarose gel electrophoresis, and the intensity of each band was quantified using the ImageJ program.

그 결과를 도 7 및 8에 나타내었다. 도 7 및 8 (및 후술할 도 9 내지 12)에서 albumin LDL은 실시예 5에 따른 LDL 모방 SLN를 사용한 경우(즉, siRNA/SLN 복합체 사용)이고, LDL은 음성 비교군 SLN를 사용한 경우를 나타낸다. The results are shown in Figures 7 and 8. In Figures 7 and 8 (and Figures 9 to 12, which will be described later), albumin LDL indicates the case of using the LDL mimetic SLN according to Example 5 (i.e., using the siRNA/SLN complex), and LDL indicates the case of using the negative comparison group SLN. .

도 7 및 도 8에서 보는 바와 같이, 본 발명에 따른 siRNA/SLN 복합체에서 우수한 kras 침묵 효과가 나타나는 것을 확인할 수 있다. 이를 통해, siRNA/SLN 복합체의 우수한 약물 전달 효과를 확인할 수 있다. As shown in Figures 7 and 8, it can be seen that the siRNA/SLN complex according to the present invention exhibits an excellent kras silencing effect. Through this, the excellent drug delivery effect of the siRNA/SLN complex can be confirmed.

[실험예 4] siRNA/SLN 복합체의 생체 내 활성 확인[Experimental Example 4] Confirmation of in vivo activity of siRNA/SLN complex

1) 동물 모델 구축1) Building an animal model

이종이식 마우스 모델을 구축하기 위해 암컷 SPF BALB/C-nu 마우스(8 주령)의 옆구리에 암세포(5ⅹ105 세포)를 피하주사하였다. 종양이 평균 부피가 50 내지 100 mm3에 도달하면 치료를 시작하였다.To construct a xenograft mouse model, cancer cells (5×10 5 cells) were subcutaneously injected into the flanks of female SPF BALB/C-nu mice (8 weeks old). Treatment was started when tumors reached an average volume of 50 to 100 mm 3 .

2 가지 유형의 모노머 또는 다이머 siRNA, Kras(내인성) 및 스크램블(대조군)의 유전자 침묵 효과를 조사하고 비교하기 위해, LDL 실시예 5에서 제조된 LDL 모방 SLN와 복합체를 형성한 후 암컷 C57BL/6 마우스에 꼬리 정맥 주사를 통해 정맥으로 투여하고 종양 조직에서 마우스 Kras mRNA의 유전자 침묵 효과는 RT-PCR로 평가하였다. To investigate and compare the gene silencing effects of two types of monomeric or dimeric siRNA, Kras (endogenous) and Scramble (control), female C57BL/6 mice were incubated with LDL complexed with the LDL mimic SLN prepared in Example 5. was administered intravenously via tail vein injection, and the gene silencing effect of mouse Kras mRNA in tumor tissue was evaluated by RT-PCR.

간단히 말해, 제형은 각 마우스에 투여되도록 siRNA 농도로 PBS에 희석되었다. 24 시간 처리 후, 종양 조직을 분쇄하고 균질화기(Tissuelyser, QIAGEN, Germany)로 조직 용해물을 제조하였다. 바로 제조사의 프로토콜에 따라 TRIzol 시약을 사용하여 총 RNA를 분리하고, β-액틴에 대해 정규화된 Kras mRNA 수준을 측정하였다.Briefly, the formulation was diluted in PBS to the siRNA concentration to be administered to each mouse. After 24 hours of treatment, tumor tissue was pulverized and tissue lysate was prepared using a homogenizer (Tissuelyser, QIAGEN, Germany). Immediately, total RNA was isolated using TRIzol reagent according to the manufacturer's protocol, and Kras mRNA levels normalized to β-actin were measured.

RT-PCR의 경우, 표적 유전자(마우스 Kras) 및 대조군 유전자(마우스 β-액틴)에 대한 DNA 증폭을 프라이머 및 Primer Taq Premix로 2분동안 94℃의 1 사이클; 및 30초동안 94℃, 30초동안 57℃, 1분동안 72℃의 26 사이클; 5분동안 72℃의 1 사이클의 열 순환 조건에서 수행하였다. For RT-PCR, DNA amplification for the target gene (mouse Kras) and control gene (mouse β-actin) was performed with primers and Primer Taq Premix for 1 cycle of 94°C for 2 min; and 26 cycles of 94°C for 30 seconds, 57°C for 30 seconds, and 72°C for 1 minute; It was performed under one cycle of thermal cycling conditions at 72°C for 5 minutes.

프라이머 서열은 하기 표 8의 서열을 사용하였다.The primer sequences in Table 8 below were used.

SEQ ID NO.SEQ ID NO. 명칭designation 서열(5'->3')Sequence (5'->3') 1313 mouse_Kras_Primer_Fmouse_Kras_Primer_F TCCAACGATCATGGACTTCATCCAACGATCATGGACTTCA 1414 mouse_Kras_Primer_Rmouse_Kras_Primer_R CAGGACTTGGAGGTCTTGGACAGGACTTGGAGGTCTTGGA 1515 mouse_β-actin_Primer_Fmouse_β-actin_Primer_F TGTTACCAACTGGGACGACATGTTACCAACTGGGACGACA 1616 mouse_β-actin_Primer_Rmouse_β-actin_Primer_R AAGGAAGGCTGGAAAAAAGGAAGGCTGGAAAA

PCR 산물은 1% 아가로스 겔 전기영동으로 분석하고 ImageJ 프로그램을 사용하여 각 밴드 강도를 정량화하였다.PCR products were analyzed by 1% agarose gel electrophoresis, and the intensity of each band was quantified using the ImageJ program.

도 9 및 10의 결과에서도 볼 수 있듯이, 동물 모델에서도 앞선 결과(도 7 및 8)와 마찬가지로 본 발명에 따른 siRNA/SLN 복합체에서 우수한 유전자 전달 효과를 보임을 확인할 수 있다. As can be seen in the results of FIGS. 9 and 10, it can be confirmed that the siRNA/SLN complex according to the present invention shows an excellent gene transfer effect in animal models, similar to the previous results (FIGS. 7 and 8).

[실험예 5] siRNA의 조직 분포 및 약동학적 프로파일 확인[Experimental Example 5] Confirmation of tissue distribution and pharmacokinetic profile of siRNA

마우스에서 다이머 siRNA에 의해 형성된 siRNA/SLN 복합체의 생체 분포 및 혈액 제거율(blood clearance)을 확인하기 위해, 125I-표지된 siRNA를 Bolton-Hunter 방법을 사용하여 제조하고, 복합체화에 사용하였다.To confirm the biodistribution and blood clearance of the siRNA/SLN complex formed by dimeric siRNA in mice, 125I-labeled siRNA was prepared using the Bolton-Hunter method and used for complexation.

먼저, 방사성-표지된 모노머 siRNA의 합성을 위해, Bolton-Hunter 시약인 N-숙신이미딜-3-(4-하이드록시페닐)프로피오네이트(N-succinimidyl-3-(4-hydroxyphenyl)propionate, SHPP)를 DMSO에 10 mg/ml의 농도로 용해시키고, 10 ㎕의 125I 용액(1 m Ci)를 10 ㎕의 SHPP 용액에 첨가하였다. 클로라민-T를 10 mg/ml의 농도로 PBS에 용해시키고, 50 ㎕의 클로라민-T 용액을 SHPP의 요오드화를 위해 15 초동안 격렬하게 혼합하면서 준비된 20 ㎕의 SHPP/125I 혼합물에 즉시 첨가하였다. 요오드화된 SHPP 용액을 벤젠/DMF 혼합물 1 mL(40:1, v/v)로 추출한 다음, 유기상을 깨끗한 튜브로 옮겼다. 유기용매를 증발하여 제거하고, 건조된 요오드화된 SHPP를 용해시키며, 4℃에서 2 시간동안 10 nmol의 아민 작용화된 모노머 siRNA(100 ㎕)에 반응시켜 요오드화된 SHPP 상의 NHS기와 모노머 siRNA의 5'-말단에서 변형된 아민기를 공유 결합하였다. 125I-표지된 모노머 siRNA를 밤새 투석(MWCO: 5 kDa)하여 정제하였다(NHS기의 몰비, SHPP의 NHS기/모노머 siRNA의 아민기). First, for the synthesis of radiolabeled monomeric siRNA, the Bolton-Hunter reagent N-succinimidyl-3-(4-hydroxyphenyl)propionate, SHPP) was dissolved in DMSO at a concentration of 10 mg/ml, and 10 μl of 125I solution (1 m Ci) was added to 10 μl of SHPP solution. Chloramine-T was dissolved in PBS at a concentration of 10 mg/ml, and 50 μl of Chloramine-T solution was immediately added to 20 μl of the prepared SHPP/125I mixture with vigorous mixing for 15 seconds for iodination of SHPP. The iodinated SHPP solution was extracted with 1 mL of benzene/DMF mixture (40:1, v/v), and then the organic phase was transferred to a clean tube. The organic solvent was removed by evaporation, the dried iodinated SHPP was dissolved, and reacted with 10 nmol of amine-functionalized monomeric siRNA (100 μl) for 2 hours at 4°C to separate the NHS group on the iodinated SHPP and the 5'-link of the monomeric siRNA. -A modified amine group was covalently bonded to the terminal. 125I-labeled monomeric siRNA was purified by dialysis (MWCO: 5 kDa) overnight (molar ratio of NHS groups, NHS group of SHPP/amine group of monomeric siRNA).

아민 작용화된 모노머 siRNA의 경우, 모노머 siRNA는 스크램블된 siRNA에 대한 서열을 갖는 3'-말단(sense)에서 티올기 변형과 함께 5'-말단(sense)에서 아민기에 의해 말단-표지되었고, 바이오니아(대전, 한국)에 합성 의뢰하여 구매하였다. 125I-표지된 다이머 siRNA는 다이머 siRNA 합성 섹션에 기술된 대로 합성되었고, 10% PAGE로 분석되었다.For amine functionalized monomeric siRNA, the monomeric siRNA was end-labeled with an amine group at the 5'-end (sense) along with a thiol group modification at the 3'-end (sense) with the sequence for scrambled siRNA, Bioneer. (Daejeon, Korea) was requested and purchased for synthesis. 125I-labeled dimer siRNA was synthesized as described in the dimer siRNA synthesis section and analyzed by 10% PAGE.

주사 시점까지 방사성 붕괴에 대해 수정된 약동학적 프로파일은 암컷 SPC C57BL/6 마우스 그룹에서 혈액 샘플을 수집하여 측정되었다. 125I 표지된 모노머 또는 다이머 siRNA에 의해 형성된 siRNA/SLN 복합체를 정맥 내(iv) 주사한 후, 지정된 시간에 샘플링을 수행하였고, 수확된 샘플의 방사능은 γ 카운터(1470 자동 감마 카운터, Perkin Elmer, USA)를 사용하여 측정되었다. 실험에 사용된 시점은 0.25, 0.5, 1, 2, 4, 24 및 48시간이었으며, 마우스 꼬리 정맥에서 약 2 ㎕의 혈액을 수집하여 혈액 응고를 방지하기 위해 8 ㎕의 EDTA 용액에 저장하였다(각 그룹에 대해 n=3).Pharmacokinetic profiles corrected for radioactive decay up to the time of injection were determined by collecting blood samples from groups of female SPC C57BL/6 mice. After intravenous (iv) injection of siRNA/SLN complexes formed by 125I-labeled monomeric or dimeric siRNA, sampling was performed at indicated times, and radioactivity of harvested samples was measured by γ counter (1470 automatic gamma counter, Perkin Elmer, USA ) was measured using . The time points used in the experiment were 0.25, 0.5, 1, 2, 4, 24, and 48 hours. Approximately 2 μl of blood was collected from the mouse tail vein and stored in 8 μl of EDTA solution to prevent blood coagulation (each n=3 for group).

생체 내 siRNA 조직 분포를 평가하기 위해, 125I 표지 된 다이머 siRNA에 의해 형성된 siRNA/SLN 복합체를 암컷 SPF C57BL/6 마우스에 정맥(iv) 주입을 통해 주사하였다. 주사 후 특정 시점(1, 4, 24 및 48 시간)에 마우스(n=3 마우스/시점)를 희생시키고 샘플 장기를 수확하여 무게를 쟀다. 생체 내 siRNA 조직 분포는 γ-카운터를 사용하여 측정된 각 조직의 방사능 수치로부터, 최초 주사 투여 시의 방사능 수치 대비 계산되었다(% of injection dose/gram).To evaluate siRNA tissue distribution in vivo, siRNA/SLN complexes formed by 125I-labeled dimeric siRNA were injected into female SPF C57BL/6 mice via intravenous (iv) injection. At specific time points (1, 4, 24, and 48 hours) after injection, mice (n=3 mice/time point) were sacrificed and sample organs were harvested and weighed. In vivo siRNA tissue distribution was calculated from the radioactivity level of each tissue measured using a γ-counter and compared to the radioactivity level at the time of the first injection (% of injection dose/gram).

그 결과, 도 11에 나타난 바와 같이, 모든 실험군 중 siRNA/SLN 복합체(알부민 LDL)에서 가장 우수한 혈액 안정성을 나타내어 가장 높은 혈중 반감기를 보였으며, 이로 인하여 시간이 경과할수록 암 조직에 siRNA가 많이 분포되어 있음을 확인할 수 있다(도 12). 이를 통해, 본 발명에 따른 siRNA/SLN 복합체가 암 조직으로의 약물 전달 효율이 가장 우수함을 확인하였다.As a result, as shown in Figure 11, among all experimental groups, the siRNA/SLN complex (albumin LDL) showed the best blood stability and the highest blood half-life, and as a result, more siRNA was distributed to cancer tissues over time. It can be confirmed that there is (Figure 12). Through this, it was confirmed that the siRNA/SLN complex according to the present invention has the best drug delivery efficiency to cancer tissue.

[실험예 6] 비수용성 약물 전달체의 제조[Experimental Example 6] Preparation of water-insoluble drug carrier

1) 비수용성 약물로 파클리탁셀(Taxol)이 봉입된 LDL 모방 SLN의 제조 (Taxol이 봉입된 SLN)1) Preparation of LDL-mimicking SLN encapsulated with paclitaxel (Taxol) as a non-aqueous drug (SLN encapsulated with Taxol)

하기 표 9에 나타난 바와 같이 구성성분을 유리병에 담긴 2 mL의 클로로포름:메탄올(2:1) 용액에 용해시켰다. 10 mL의 증류수를 상기 유리병에 첨가하여 1분간 교반(vortexing)하여 섞어 주었고, 그 후 용액을 Branson 초음파 처리기 450(20kHz, 듀티 주기= 40, 출력 제어=3.5)으로 3분간 초음파 처리하였다. 용액을 회전식 증발기로 옮겼고, 용매인 클로로포름:메탄올(2:1, v/v) 용액을 콜레스테릴 올레이트의 융점인 60℃ 이상의 온도에서 제거하였다. 증류수 안에서 하룻밤 동안 분획분자량(Molecular weight of cut-off, MWCO) 5000의 투석 막(dialysis membrane)을 이용하여 정제하였고, 정제된 비수용성 약물(taxol)이 봉입된 LDL 모방 SLN 용액은 4℃에서 보관하여 비수용성 약물(taxol)이 봉입된 고형 지질 나노입자(Taxol containing SLN)를 제조하였다.As shown in Table 9 below, the ingredients were dissolved in 2 mL of chloroform:methanol (2:1) solution in a glass bottle. 10 mL of distilled water was added to the glass bottle and mixed by vortexing for 1 minute, and then the solution was sonicated for 3 minutes with a Branson sonicator 450 (20 kHz, duty cycle = 40, output control = 3.5). The solution was transferred to a rotary evaporator, and the solvent chloroform:methanol (2:1, v/v) solution was removed at a temperature above 60°C, which is the melting point of cholesteryl oleate. It was purified overnight in distilled water using a dialysis membrane with a molecular weight of cut-off (MWCO) of 5000, and the LDL-mimicking SLN solution containing the purified non-aqueous drug (taxol) was stored at 4°C. Thus, solid lipid nanoparticles (Taxol containing SLN) encapsulated with a water-insoluble drug (taxol) were prepared.

구분division 구성성분Ingredients 함량 (mg)Content (mg) 함량 비율 (%)Content ratio (%) 표면 지질부
(Surface lipid)
surface lipids
(Surface lipid)
DOPEDOPE 245245 15.215.2
콜레스테롤-알부민cholesterol-albumin 206.25206.25 12.812.8 DC-콜레스테롤DC-cholesterol 490490 30.430.4 코어 지질부
(Core lipid)
core geology
(Core lipid)
콜레스테롤 올레이트cholesterol oleate 618.75618.75 38.438.4
트리올레인triolein 41.2541.25 2.62.6 약물 (Core)Drug (Core) 탁솔(파클리탁셀)Taxol (paclitaxel) 1010 0.60.6

2) Taxol이 봉입된 SLN의 물리화학적 특성 확인2) Confirmation of physical and chemical properties of SLN encapsulated with Taxol

실험예 6-1)에서 제조된 Taxol이 봉입된 SLN의 평균 크기 및 제타 전위 측정은 레이저광 산란법으로 측정하였으며, 파장 632nm 및 검출각도 90°의 He-Ne 레이저가 탑재된 동적 광산란기(DSL)(Zeta-Plus, 브룩헤븐인스트루먼트사, NY)를 사용하여 측정하였다. 25℃의 증류수 내에 분산된 Taxol이 봉입된 SLN(실험예 6-1에서 제조된)의 농도가 5 mg/ml일 때, 크기를 3회 측정하였으며, 상기 Taxol이 봉입된 SLN에 포함된 약물의 함량 및 봉입율을 평가하기 위해 고성능 액체 크로마토크래피(High Performance Liquid Chromatography, HPLC)를 사용하였다. 상기 Taxol이 봉입된 SLN 용액을 동결건조(Freeze drying)하여 증류수를 제거하였다. 동결건조된 Taxol이 봉입된 SLN를 메탄올 20 ml에 분산시켜 완전히 녹인 후 필터(Millex SR 0.45um filter unit)를 통해 비수용성 약물을 추출한 후 고성능 액체 크로마토그래피를 이용하여 봉입 된 비수용성 약물의 양을 분석하였고, 그 결과를 아래의 표 10에 나타내었다. 이 때 약물의 농도에 따른 검량선(calibration curve)과 함께 비교하여 비수용성 약물의 양을 정량 분석하였고, 봉입된 비수용성 약물의 양(%, w/w) 및 봉입율(%)은 아래의 수학식 1 및 2를 사용하여 같이 분석하였다.The average size and zeta potential of the Taxol-encapsulated SLN prepared in Experimental Example 6-1) were measured by laser light scattering, using a dynamic light scattering device (DSL) equipped with a He-Ne laser with a wavelength of 632 nm and a detection angle of 90°. ) was measured using (Zeta-Plus, Brookhaven Instruments, NY). When the concentration of SLN encapsulated with Taxol dispersed in distilled water at 25°C (prepared in Experimental Example 6-1) was 5 mg/ml, the size was measured three times, and the size of the drug contained in the SLN encapsulated with Taxol was measured. High Performance Liquid Chromatography (HPLC) was used to evaluate the content and encapsulation rate. The SLN solution containing Taxol was freeze-dried to remove distilled water. SLN containing freeze-dried Taxol was dispersed in 20 ml of methanol and completely dissolved. Then, the water-insoluble drug was extracted through a filter (Millex SR 0.45um filter unit), and the amount of the encapsulated non-water-soluble drug was measured using high-performance liquid chromatography. It was analyzed, and the results are shown in Table 10 below. At this time, the amount of water-insoluble drug was quantitatively analyzed by comparison with the calibration curve according to the drug concentration, and the amount (%, w/w) and encapsulation ratio (%) of the encapsulated non-aqueous drug were calculated using the formula below. They were analyzed together using Equations 1 and 2.

[수학식 1][Equation 1]

[수학식 2][Equation 2]

크기 (nm)Size (nm) 표면전하 (mV)Surface charge (mV) 약물 봉입 효율 (%)Drug encapsulation efficiency (%) 약물 함량
(%, w/w)
drug content
(%, w/w)
115.1±2.4115.1±2.4 76.1±8.476.1±8.4 93.293.2 14.914.9

표 10에 나타난 바와 같이, Taxol이 봉입된 SLN가 수용액 상에서 안정적인 물리화학적 특성을 가지고 있음을 확인할 수 있었다. 보다구체적으로 비수용성 약물(taxol)이 봉입된 Taxol이 봉입된 SLN는 입자의 무게 대비 14.9% (w/w)의 효율로 약물을 봉입하고 있었고, 100 내지 130nm 수준의 크기와 65 내지 85mV 수준의 표면전하를 가지는 비수용성 약물(taxol)이 봉입된 고형 지질 나노입자임을 확인하였다.As shown in Table 10, it was confirmed that SLN encapsulated with Taxol had stable physicochemical properties in aqueous solution. More specifically, the SLN encapsulated with Taxol, an insoluble drug (taxol), encapsulated the drug with an efficiency of 14.9% (w/w) relative to the weight of the particle, and had a size of 100 to 130 nm and a voltage of 65 to 85 mV. It was confirmed that it was a solid lipid nanoparticle encapsulated with a water-insoluble drug (taxol) with a surface charge.

<110> LIM, duck-soo <120> Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof <130> P22C10C0921 <160> 16 <170> KoPatentIn 3.0 <210> 1 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#1_sense <400> 1 ugaauuagcu guaucgucaa gg 22 <210> 2 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#1_antisense <400> 2 uugacgauac agcuaauuca ua 22 <210> 3 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#2_sense <400> 3 acuguacucc ucuugaccug cu 22 <210> 4 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#2_antisense <400> 4 caggucaaga ggaguacagu ua 22 <210> 5 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#3_sense <400> 5 uauaauggug aauaucuuca aa 22 <210> 6 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#3_antisense <400> 6 ugaagauauu caccauuaua ua 22 <210> 7 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> Control siRNA_sense <400> 7 ugugguagcu auacggauad tdt 23 <210> 8 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> Control siRNA_antisense <400> 8 uauccguaua gcuaccacad tdt 23 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Human_Kras_Primer_F <400> 9 aattgtccat ctaccatgg 19 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human_Kras_Primer_R <400> 10 gaggtcagct gaagcaaatc caa 23 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Human_b-actin_Primer_F <400> 11 cccaaagttc acaatgtggc 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Human_b-actin_Primer_R <400> 12 agggagacca aaagccttca 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse_Kras_Primer_F <400> 13 tccaacgatc atggacttca 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse_Kras_Primer_R <400> 14 caggacttgg aggtcttgga 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse_b-actin_Primer_F <400> 15 tgttaccaac tgggacgaca 20 <210> 16 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> mouse_b-actin_Primer_R <400> 16 aaggaaggct ggaaaa 16 <110> LIM, duck-soo <120> Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof <130>P22C10C0921 <160> 16 <170> KoPatentIn 3.0 <210> 1 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#1_sense <400> 1 ugaauuagcu guaucgucaa gg 22 <210> 2 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#1_antisense <400> 2 uugacgauac agcuaauuca ua 22 <210> 3 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#2_sense <400> 3 acuguacucc ucuugaccug cu 22 <210> 4 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#2_antisense <400> 4 caggucaaga ggaguacagu ua 22 <210> 5 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#3_sense <400> 5 uauaauggug aauaucuuca aa 22 <210> 6 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> Kras siRNA_#3_antisense <400> 6 ugaagauauu caccauuaua ua 22 <210> 7 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> Control siRNA_sense <400> 7 uguguagcu auacggauad tdt 23 <210> 8 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> Control siRNA_antisense <400> 8 uauccguaua gcuaccacad tdt 23 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Human_Kras_Primer_F <400> 9 aattgtccat ctaccatgg 19 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Human_Kras_Primer_R <400> 10 gaggtcagct gaagcaaatc caa 23 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Human_b-actin_Primer_F <400> 11 cccaaagttc acaatgtggc 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Human_b-actin_Primer_R <400> 12 aggggacca aaagccttca 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse_Kras_Primer_F <400> 13 tccaacgatc atggacttca 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse_Kras_Primer_R <400> 14 caggacttgg aggtcttgga 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse_b-actin_Primer_F <400> 15 tgttaccaac tgggacgaca 20 <210> 16 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> mouse_b-actin_Primer_R <400> 16 aaggaaggct ggaaaa 16

Claims (22)

콜레스테릴 에스테르 및 트리글리세라이드를 포함하는 코어; 및
알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 포함하는 쉘;을 포함하고,
상기 콜레스테릴 에스테르의 함량은 전체 고형 지질 나노입자 100 중량부를 기준으로 30 내지 60 중량부인,
저밀도 지단백(LDL) 모방 고형 지질 나노입자.
a core containing cholesteryl ester and triglyceride; and
A shell containing albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid;
The content of the cholesteryl ester is 30 to 60 parts by weight based on 100 parts by weight of total solid lipid nanoparticles,
Low-density lipoprotein (LDL)-mimicking solid lipid nanoparticles.
제 1 항에 있어서,
콜레스테릴 에스테르는 콜레스테롤에 탄소수 10 내지 24의 포화 또는 불포화 지방산이 에스테르 결합된 것인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
Cholesteryl ester is a low-density lipoprotein-mimicking solid lipid nanoparticle in which a saturated or unsaturated fatty acid with 10 to 24 carbon atoms is ester bonded to cholesterol.
제 1 항에 있어서,
트리글리세라이드는 글리세롤 1 분자에 탄소수 10 내지 24의 포화 또는 불포화 지방산 3 분자가 에스테르 결합된 것인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
Triglyceride is a low-density lipoprotein-mimicking solid lipid nanoparticle in which three molecules of saturated or unsaturated fatty acids of 10 to 24 carbon atoms are ester bonded to one molecule of glycerol.
제 1 항에 있어서,
알부민이 접합된 콜레스테롤은 콜레스테릴 클로로포메이트와 알부민의 반응물로,
상기 콜레스테릴 클로로포메이트의 클로로포메이트기와 알부민의 아민기가 결합된 것인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
Cholesterol conjugated to albumin is a reaction product of cholesteryl chloroformate and albumin.
A low-density lipoprotein-mimicking solid lipid nanoparticle in which the chloroformate group of cholesteryl chloroformate and the amine group of albumin are combined.
제 4 항에 있어서,
알부민이 접합된 콜레스테롤에서 콜레스테릴 클로로포메이트와 알부민의 몰비는 1:1 내지 5:1인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 4,
Low-density lipoprotein-mimicking solid lipid nanoparticles in which the molar ratio of cholesteryl chloroformate and albumin in albumin-conjugated cholesterol is 1:1 to 5:1.
제 1 항에 있어서,
융합 유도성 지질은 1,2-디올레일-sn-글리세로-3-포스파티딜에탄올아민(1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, DOPE), 팔미토일올레오일포스파티딜콜린(palmitoyloleoylphosphatidylethanolamine, POPC), 에그 포스파티딜콜린(egg phosphatidylcholine, EPC), 디스테아로일포스파티딜콜린(distearoylphosphatidylcholine, DSPC), 디올레오일포스파티딜콜린(dioleoylphosphatidylcholine, DOPC), 디팔미토일포스파티딜콜린(dipalmitoylphosphatidylcholine, DPPC), 디올레오일포스파티딜글리세롤(dioleoylphosphatidylglycerol, DOPG), 디팔미토일포스파티딜글리세롤(dipalmitorylphosphatidylglycerol, DPPG), 디스테아로일포스파티딜에탄올아민(distearoylphosphatidylethanolamine, DSPE), 포스파티딜에탄올아민(phosphatidylethanolamine, PE), 디팔미토일포스파티딜에탄올아민(dipalmitoylphosphatidylethanolamine), 1-팔미토일-2-올레일-sn-글리세로-3-포스포에탄올아민(POPE), 1-팔미토일-2-올레일-sn-글리세로-3-포스포콜린(POPC), 1,2-디올레일-sn-글리세로-3-[포스포-L-세린](DOPS), 및 1,2-디올레일-sn-글리세로-3-[포스포-L-세린]으로 이루어진 군에서 선택된 하나 이상인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
The fusion-inducing lipids are 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and palmitoyloleoylphosphatidylethanolamine (POPC). , egg phosphatidylcholine (EPC), distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DSPC) dioleoylphosphatidylglycerol, DOPG ), dipalmitorylphosphatidylglycerol (DPPG), distearoylphosphatidylethanolamine (DSPE), phosphatidylethanolamine (PE), dipalmitoylphosphatidylethanolamine, 1-palmito work- 2-oleyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleyl -sn-glycero-3-[phospho-L-serine] (DOPS), and 1,2-dioleyl-sn-glycero-3-[phospho-L-serine], at least one selected from the group consisting of Low-density lipoprotein-mimicking solid lipid nanoparticles.
제 1 항에 있어서,
양이온성 지질은 3-베타[N-(N',N'-디메틸아미노에탄)카바모일]콜레스테롤(DC-콜레스테롤), 3베타-[N-(N',N',N'-트리메틸아미노에탄)카바모일]콜레스테롤 (TC-콜레스테롤), 3베타[N-(N'-모노메틸아미노에탄)카바모일]콜레스테롤 (MC-콜레스테롤), 3베타[N- (아미노에탄)카바모일]콜레스테롤 (AC-콜레스테롤), N-(N'-아미노에탄)카바모일프로파노익 토코페롤 (AC-토코페롤), N-(N'-메틸아미노에탄)카바모일프로파노익 토코페롤 (MC-토코페롤), N,N-디올레일-N,N-디메틸암모늄클로라이드 (DODAC), N,N-디스테아릴-N,N-디메틸암모늄브로마이드 (DDAB), N-(1-(2,3-디올레오일옥시)프로필-N,N,N-트리메틸암모늄클로라이드 (DOTAP), N,N-디메틸-(2,3-디올레오일옥시)프로필아민 (DODMA), N-(1-(2,3-디올레일)프로필)-N,N,N-트리메틸암모늄 클로라이드 (DOTMA), 1,2-디올레일-3-디메틸암모늄-프로판 (DODAP), 1,2-디올레일카바밀-3-디메틸암모늄-프로판 (DOCDAP), 1,2-디리네오일-3-디메틸암모늄프로판(Dilineoyl-3-Dimethylammonium-propane, DLINDAP), 디올레오일옥시-N-[2-스퍼민카복사미도)에틸}-N,N-디메틸-1-프로판아미늄트리플루오로아세테이트(DOSPA), 디옥타데실아미도글리실 스퍼민 (DOGS), 1,2-디미리스트릴옥시프로필-3-디메틸-하이드록시에틸 암모늄 브로마이드 (DMRIE), 3-디메틸아미노-2-(콜레스트-5-엔-3-베타-옥시부탄-4-옥시)-1-(시스,시스-9,12-옥타데카디에녹시)프로판 (CLinDMA), 2-[5'-(콜레스트-5-엔-3-베타-옥시)-3'-옥사펜톡시]-3-다메틸-1-(시스,시스-9',12'-옥타데카디에녹시)프로판 (CpLinDMA), N,N-디메틸-3,4-디올레일옥시벤질아민 (DMOBA), 1,2-N,N'-디올레일카바밀-3-디메틸아미노프로판 (DOcarbDAP), 1,2-디아실-3-트리메틸암모늄-프로판(TAP), 1,2-디아실-3-디메틸암모늄-프로판(DAP), 1,2-디-O-옥타데세일-3-트리메틸암모늄프로판, 및 1,2-디올레일-3-트리메틸암모늄 프로판으로 이루어진 군에서 선택된 하나 이상인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
Cationic lipids include 3-beta[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-cholesterol), 3beta-[N-(N',N',N'-trimethylaminoethane) )carbamoyl]cholesterol (TC-cholesterol), 3beta[N-(N'-monomethylaminoethane)carbamoyl]cholesterol (MC-cholesterol), 3beta[N-(aminoethane)carbamoyl]cholesterol (AC -cholesterol), N-(N'-aminoethane)carbamoylpropanoic tocopherol (AC-tocopherol), N-(N'-methylaminoethane)carbamoylpropanoic tocopherol (MC-tocopherol), N,N -Dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N-(1-(2,3-dioleoyloxy)propyl -N,N,N-trimethylammonium chloride (DOTAP), N,N-dimethyl-(2,3-dioleoyloxy)propylamine (DODMA), N-(1-(2,3-dioleyl)propylamine )-N,N,N-trimethylammonium chloride (DOTMA), 1,2-dioleyl-3-dimethylammonium-propane (DODAP), 1,2-dioleylcarbamyl-3-dimethylammonium-propane (DOCDAP) , 1,2-Dilineoyl-3-Dimethylammonium-propane (DLINDAP), dioleoyloxy-N-[2-sperminecarboxamido)ethyl}-N,N-dimethyl- 1-Propanaminiumtrifluoroacetate (DOSPA), Dioctadecylamidoglycyl Spermine (DOGS), 1,2-Dimyristriloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide (DMRIE), 3- Dimethylamino-2-(cholest-5-en-3-beta-oxybutane-4-oxy)-1-(cis,cis-9,12-octadecadienoxy)propane (CLinDMA), 2-[ 5'-(cholest-5-en-3-beta-oxy)-3'-oxapentoxy]-3-dimethyl-1-(cis,cis-9',12'-octadecadienoxy) Propane (CpLinDMA), N,N-dimethyl-3,4-dioleyloxybenzylamine (DMOBA), 1,2-N,N'-dioleylcarbamyl-3-dimethylaminopropane (DOcarbDAP), 1,2 -diacyl-3-trimethylammonium-propane (TAP), 1,2-diacyl-3-dimethylammonium-propane (DAP), 1,2-di-O-octadecyl-3-trimethylammonium propane, and Low-density lipoprotein-mimicking solid lipid nanoparticles, which are at least one selected from the group consisting of 1,2-dioleyl-3-trimethylammonium propane.
제 1 항에 있어서,
저밀도 지단백 모방 고형 지질 나노입자의 직경은 60 내지 200 nm인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
Low-density lipoprotein-mimicking solid lipid nanoparticles have a diameter of 60 to 200 nm.
제 1 항에 있어서,
전체 저밀도 지단백 모방 고형 지질 나노입자 100 중량부를 기준으로,
콜레스테릴 에스테르 30 내지 60 중량부, 트리글리세라이드 0.01 내지 5 중량부, 알부민이 접합된 콜레스테롤 1 내지 20 중량부, 융합 유도성 지질 5 내지 40 중량부 및 양이온성 지질 10 내지 40 중량부를 포함하는 것인 저밀도 지단백 모방 고형 지질 나노입자.
According to claim 1,
Based on 100 parts by weight of total low-density lipoprotein-mimicking solid lipid nanoparticles,
Containing 30 to 60 parts by weight of cholesteryl ester, 0.01 to 5 parts by weight of triglyceride, 1 to 20 parts by weight of albumin-conjugated cholesterol, 5 to 40 parts by weight of fusion-inducing lipid, and 10 to 40 parts by weight of cationic lipid. Phosphorus low-density lipoprotein-mimicking solid lipid nanoparticles.
유기용매에서 콜레스테릴 에스테르, 트리글리세라이드, 알부민이 접합된 콜레스테롤, 융합 유도성 지질 및 양이온성 지질을 혼합하여, 저밀도 지단백 모방 고형 지질 나노입자가 분산된 수성 분산액을 제조하는 단계를 포함하는,
저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
Comprising the step of mixing cholesteryl ester, triglyceride, albumin-conjugated cholesterol, fusion-inducing lipid, and cationic lipid in an organic solvent to prepare an aqueous dispersion in which low-density lipoprotein-mimicking solid lipid nanoparticles are dispersed,
Method for preparing low-density lipoprotein-mimicking solid lipid nanoparticles.
제 10 항에 있어서,
제조된 수성 분산액을 투석하여 정제하고 농축시키는 단계를 추가로 포함하는 것인 저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
According to claim 10,
A method for producing low-density lipoprotein-mimicking solid lipid nanoparticles, further comprising the step of purifying and concentrating the prepared aqueous dispersion by dialysis.
제 10 항에 있어서,
알부민이 접합된 콜레스테롤은 유기용매에 용해된 콜레스테릴 클로로포메이트와 알부민 수용액을 혼합하여 제조된 것인 저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
According to claim 10,
A method for producing low-density lipoprotein-mimicking solid lipid nanoparticles, wherein albumin-conjugated cholesterol is prepared by mixing cholesteryl chloroformate dissolved in an organic solvent and an aqueous albumin solution.
제 12 항에 있어서,
알부민이 접합된 콜레스테롤에서 콜레스테롤과 알부민의 몰비는 1:1 내지 5:1인 저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
According to claim 12,
A method for producing low-density lipoprotein-mimicking solid lipid nanoparticles in which the molar ratio of cholesterol to albumin in albumin-conjugated cholesterol is 1:1 to 5:1.
제 10 항에 있어서,
유기용매는 디메틸포름아마이드, 테트라하이드로퓨란, C1 내지 C4의 저급 알코올, 메틸렌클로라이드, 클로로포름, 아세톤, 디메틸설폭사이드, N-메틸피롤리돈, 다이옥산, 에틸아세테이트, 메틸에틸케톤, 아세토나이트릴 및 이들의 혼합물에서 선택되는 것인 저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
According to claim 10,
Organic solvents include dimethylformamide, tetrahydrofuran, C1 to C4 lower alcohols, methylene chloride, chloroform, acetone, dimethyl sulfoxide, N-methylpyrrolidone, dioxane, ethyl acetate, methyl ethyl ketone, acetonitrile and these. A method for producing low-density lipoprotein-mimicking solid lipid nanoparticles selected from a mixture of.
제 10 항에 있어서,
저밀도 지단백 모방 고형 지질 나노입자의 직경은 60 내지 200 nm인 저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
According to claim 10,
A method for producing low-density lipoprotein-mimicking solid lipid nanoparticles having a diameter of 60 to 200 nm.
제 10 항에 있어서,
전체 저밀도 지단백 모방 고형 지질 나노입자 100 중량부를 기준으로,
콜레스테릴 에스테르 30 내지 60 중량부, 트리글리세라이드 0.01 내지 5 중량부, 알부민이 접합된 콜레스테롤 1 내지 20 중량부, 융합 유도성 지질 5 내지 40 중량부 및 양이온성 지질 10 내지 40 중량부를 포함하는 것인 저밀도 지단백 모방 고형 지질 나노입자의 제조방법.
According to claim 10,
Based on 100 parts by weight of total low-density lipoprotein-mimicking solid lipid nanoparticles,
Containing 30 to 60 parts by weight of cholesteryl ester, 0.01 to 5 parts by weight of triglyceride, 1 to 20 parts by weight of albumin-conjugated cholesterol, 5 to 40 parts by weight of fusion-inducing lipid, and 10 to 40 parts by weight of cationic lipid. Method for manufacturing low-density lipoprotein-mimicking solid lipid nanoparticles.
제 1 항에 따른 저밀도 지단백 모방 고형 지질 나노입자를 포함하는 약물 전달용 조성물.
A composition for drug delivery comprising the low-density lipoprotein-mimicking solid lipid nanoparticles according to claim 1.
제 17 항에 있어서,
약물은 핵산 및 비수용성 약물 중 하나 이상을 포함하는 것인 약물 전달용 조성물.
According to claim 17,
A composition for drug delivery wherein the drug includes one or more of nucleic acid and water-insoluble drug.
제 18 항에 있어서,
핵산은 siRNA, rRNA, RNA, DNA, cDNA, 앱타머, mRNA, tRNA 및 안티센스-올리고데옥시뉴클레오타이드(AS-ODN)로 이루어진 군에서 선택된 하나 이상이고,
상기 핵산은 저밀도 지단백 모방 고형 지질 나노입자의 쉘의 양이온성 지질과 정전기적 상호작용에 의해 결합된 것인 약물 전달용 조성물.
According to claim 18,
The nucleic acid is one or more selected from the group consisting of siRNA, rRNA, RNA, DNA, cDNA, aptamer, mRNA, tRNA, and antisense-oligodeoxynucleotide (AS-ODN),
A composition for drug delivery wherein the nucleic acid is bound to the cationic lipid of the shell of the low-density lipoprotein-mimicking solid lipid nanoparticle by electrostatic interaction.
제 18 항에 있어서,
비수용성 약물은 난용성 약물, 음이온을 띠는 펩타이드, 단백질, 히알루로닉산-펩타이드 접합체 또는 히알루로닉산-단백질 접합체인 약물 전달용 조성물.
According to claim 18,
Non-water-soluble drugs include drug delivery compositions that are poorly soluble drugs, anionic peptides, proteins, hyaluronic acid-peptide conjugates, or hyaluronic acid-protein conjugates.
KRAS를 표적으로 하는 핵산 및 비수용성 약물 중 하나 이상; 및
제1항에 따른 저밀도 지단백 모방 고형 지질 나노입자를 포함하는,
KRAS 유전자 변이에 의해 유발되는 암의 예방 또는 치료용 약학 조성물.
One or more of nucleic acids and water-insoluble drugs that target KRAS; and
Comprising low-density lipoprotein-mimicking solid lipid nanoparticles according to claim 1,
Pharmaceutical composition for preventing or treating cancer caused by KRAS gene mutation.
제 21 항에 있어서,
RAS를 표적으로 하는 핵산은 환원가능한 핵산 다이머(dimer)인 KRAS 유전자 변이에 의해 유발되는 암 예방 또는 치료용 약학 조성물.
According to claim 21,
A nucleic acid targeting RAS is a pharmaceutical composition for preventing or treating cancer caused by KRAS gene mutation, which is a reducible nucleic acid dimer.
KR1020220062950A 2022-05-23 2022-05-23 Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof KR20230163181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220062950A KR20230163181A (en) 2022-05-23 2022-05-23 Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220062950A KR20230163181A (en) 2022-05-23 2022-05-23 Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof

Publications (1)

Publication Number Publication Date
KR20230163181A true KR20230163181A (en) 2023-11-30

Family

ID=88968593

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220062950A KR20230163181A (en) 2022-05-23 2022-05-23 Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof

Country Status (1)

Country Link
KR (1) KR20230163181A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Samowitz WS, et al., Cancer Epidemiol. Biomarkers Prev. 9: 1193-7, 2000

Similar Documents

Publication Publication Date Title
Mondal et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications
KR101198354B1 (en) Ldl-like cationic nanoparticles for deliverying nucleic acid gene, method for preparing thereof and method for deliverying nucleic acid gene using the same
KR101209265B1 (en) Pharmaceutical Composition Containing Anionic Drug and Preparation Method of the Same
KR102541164B1 (en) Hybridosomes, compositions comprising the same, processes for their production and uses thereof
Wen et al. Recent in vivo evidences of particle-based delivery of small-interfering RNA (siRNA) into solid tumors
Wang et al. Supramolecularly engineered phospholipids constructed by nucleobase molecular recognition: upgraded generation of phospholipids for drug delivery
JP5836394B2 (en) Anionic drug carrier containing cationic lipid and method for producing the same
JP2011503070A (en) Self-assembled micelle-like nanoparticles for systemic gene delivery
KR101296326B1 (en) Composition for Delivery of Anionic Drugs Containing Poly-lactic Acid and Preparation Method thereof
JP2000516630A (en) Novel liposome complex to increase systemic delivery
US20070160658A1 (en) Delivery system for diagnostic and therapeutic agents
JP2001511440A (en) Stable granular composite with neutral or negative global charge in layered structure
US20160243246A1 (en) Hyaluronic acid-nucleic acid conjugate and composition for nucleic acid delivery containing the same
US20150297749A1 (en) Low-density lipoprotein analogue nanoparticles, and composition comprising same for targeted diagnosis and treatment of liver
Sarisozen et al. Lipid-based siRNA delivery systems: challenges, promises and solutions along the long journey
Moholkar et al. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes
Deng et al. An exosome-mimicking membrane hybrid nanoplatform for targeted treatment toward Kras-mutant pancreatic carcinoma
Su et al. Construction of a two-in-one liposomal system (TWOLips) for tumor-targeted combination therapy
KR20220092273A (en) Lipid nanoparticles comprising mannose or uses thereof
González-Rioja et al. The development of highly dense highly protected surfactant ionizable lipid RNA loaded nanoparticles
Choi et al. Enhanced efficacy of folate-incorporated cholesteryl doxorubicin liposome in folate receptor abundant cancer cell
KR102402620B1 (en) High density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof
KR20230163181A (en) Low density lipoprotein mimicking solid lipid nanoparticles for drug delivery and uses thereof
Khairnar et al. Nanosponge-mediated oligonucleotide delivery: A cutting-edge technology towards cancer management
EP2896401B1 (en) Targeted drug delivery system for poorly soluble drug