KR20230150965A - soft magnetic metal powder - Google Patents

soft magnetic metal powder Download PDF

Info

Publication number
KR20230150965A
KR20230150965A KR1020237028794A KR20237028794A KR20230150965A KR 20230150965 A KR20230150965 A KR 20230150965A KR 1020237028794 A KR1020237028794 A KR 1020237028794A KR 20237028794 A KR20237028794 A KR 20237028794A KR 20230150965 A KR20230150965 A KR 20230150965A
Authority
KR
South Korea
Prior art keywords
soft magnetic
metal powder
magnetic metal
less
particle size
Prior art date
Application number
KR1020237028794A
Other languages
Korean (ko)
Inventor
신지 호리에
세이지 이시타니
다쿠미 이자와
Original Assignee
도다 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도다 고교 가부시끼가이샤 filed Critical 도다 고교 가부시끼가이샤
Publication of KR20230150965A publication Critical patent/KR20230150965A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

(과제) 성형 밀도가 높은 압분 성형체를 제조할 수 있는 미립자로 이루어지는 연자성 금속 분말로서, 포화 자화를 저하시키는 보론의 함유량이 적기 때문에, 자기 특성이 우수한 압분 자심을 제조할 수 있고, 또한 입도 분포가 좁은 미립자의 집합체이기 때문에 표면 평활성이 우수한 박층을 형성할 수 있는 연자성 금속 분말을 제공한다.
(해결 수단) 평균 입자경이 0.05 ㎛ 이상, 또한, 1.5 ㎛ 이하이고, 하기 (식) 으로 나타내는 변화 계수가 0.25 이하이고, 보론의 함유량이 5.0 중량% 미만 (단, 0 은 포함하지 않는다) 인 연자성 금속 분말.
(식) 입자경의 표준 편차/평균 입자경
(Problem) It is a soft magnetic metal powder made of fine particles that can produce a compacted body with a high compaction density. Since the content of boron, which reduces saturation magnetization, is low, it is possible to produce a compacted magnetic core with excellent magnetic properties and particle size distribution. Provides a soft magnetic metal powder that can form a thin layer with excellent surface smoothness because it is an aggregate of narrow fine particles.
(Solution) The average particle diameter is 0.05 ㎛ or more and 1.5 ㎛ or less, the coefficient of variation expressed by the following (equation) is 0.25 or less, and the boron content is less than 5.0% by weight (however, 0 is not included). Magnetic metal powder.
(Formula) Standard deviation of particle size/average particle size

Description

연자성 금속 분말soft magnetic metal powder

본 발명은 연자성 금속 분말에 관한 것이다. 상세하게는, 그 연자성 금속 분말은 미립자로 이루어지기 때문에 높은 성형 밀도의 압분 성형체를 제조할 수 있음과 함께, 포화 자화를 저하시키는 보론의 함유량이 적기 때문에, 자기 특성이 우수한 압분 자심을 제조할 수 있고, 또한 입도 분포가 좁은 미립자의 집합체이기 때문에 표면 평활성이 우수한 박층을 형성할 수 있는 연자성 금속 분말에 관한 것이다.The present invention relates to soft magnetic metal powder. In detail, since the soft magnetic metal powder is composed of fine particles, it is possible to manufacture a powder compact with a high compaction density, and since the content of boron, which reduces saturation magnetization, is small, it is possible to produce a powder magnetic core with excellent magnetic properties. It relates to a soft magnetic metal powder that can form a thin layer with excellent surface smoothness because it is an aggregate of fine particles with a narrow particle size distribution.

각종 전기 기기의 고기능화나 소형·박형화에 수반하여, 전기 기기에 내장되는 인덕터나 트랜스에는 자기 특성의 향상에 더하여, 박층화도 요구되고 있다.As various electric devices become more functional and smaller and thinner, inductors and transformers built into the electric devices are required to have thinner layers as well as improved magnetic properties.

인덕터 등의 자기 특성을 향상시키기 위해, 압분 자심에는 높은 성형 밀도가 요구된다.In order to improve the magnetic properties of inductors, etc., a high molding density is required for the powder magnetic core.

연자성 금속 분말이 미립자로 이루어지는 집합체이면 압분 자심의 성형 밀도의 향상을 기대할 수 있다.If the soft magnetic metal powder is an aggregate composed of fine particles, an improvement in the molding density of the powder magnetic core can be expected.

미립자의 연자성 금속 분말을 제조하는 방법으로서, 특허문헌 1 에 기재된 바와 같은 금속염 수용액에 대하여, 보론 (B) 계 환원제를 함유하는 환원액을 적하하는 액상 환원법이 있다.As a method for producing fine particle soft magnetic metal powder, there is a liquid phase reduction method in which a reducing solution containing a boron (B)-based reducing agent is dropped into an aqueous metal salt solution as described in Patent Document 1.

그러나, B 는 포화 자화를 저하시키기 때문에, B 를 많이 함유하는 연자성 금속 분말로 제조한 압분 자심은 포화 자화가 저하된다는 문제가 있다.However, since B reduces saturation magnetization, powder magnetic cores made from soft magnetic metal powder containing a large amount of B have a problem in that saturation magnetization decreases.

또, 입도 분포가 넓은 연자성 금속 분말을 사용하여, 큰 입자의 간극을 중·소의 입자로 메우는 것에 의해서도 압분 자심의 성형 밀도의 향상을 기대할 수 있다.In addition, the molding density of the powder magnetic core can be expected to improve by using soft magnetic metal powder with a wide particle size distribution and filling the gaps between large particles with medium and small particles.

입도 분포가 넓은 연자성 금속 분말이면, 물 아토마이즈법, 가스 아토마이즈법, 분무 열분해법과 같은 일반적인 방법으로 제조할 수 있다.If it is a soft magnetic metal powder with a wide particle size distribution, it can be manufactured by general methods such as water atomization, gas atomization, and spray pyrolysis.

그러나, 입도 분포가 넓은 연자성 금속 분말은 박층화했을 때에 표면의 양호한 평활성이 얻어지기 어렵다는 문제가 있다.However, soft magnetic metal powder with a wide particle size distribution has a problem in that it is difficult to obtain good surface smoothness when thinned.

그래서, 성형 밀도가 높고, 또, B 의 함유량이 적어 자기 특성이 우수한 압분 자심을 제조할 수 있는 미립자로 이루어지는 연자성 금속 분말로서, 입도 분포가 좁아서 표면 평활성도 우수한 박층을 형성할 수 있는 연자성 금속 분말의 개발이 요망되고 있다.Therefore, it is a soft magnetic metal powder made of fine particles that can produce a powder magnetic core with high molding density and excellent magnetic properties due to a low B content, and has a narrow particle size distribution that can form a thin layer with excellent surface smoothness. The development of metal powder is desired.

일본 공개특허공보 2010-261065호Japanese Patent Publication No. 2010-261065

특허문헌 1 에는, 철염, 착화제, 분산제, pH 조정제, P 계 환원제를 함유하는 철염 수용액에 B 계 환원제를 함유하는 환원액을 적하하는 액상 환원법에 의해, 종래보다 입경이 작은 연자성 금속 분말을 제조하는 방법이 기재되어 있다.Patent Document 1 discloses a liquid phase reduction method in which a reducing solution containing a B-based reducing agent is added dropwise to an iron salt aqueous solution containing an iron salt, a complexing agent, a dispersing agent, a pH adjuster, and a P-based reducing agent, thereby producing a soft magnetic metal powder with a smaller particle size than before. The manufacturing method is described.

그러나, 특허문헌 1 에 기재되는 연자성 금속 분말은 B 를 많이 함유하기 때문에, 포화 자화가 저하된다는 문제가 있다.However, since the soft magnetic metal powder described in Patent Document 1 contains a lot of B, there is a problem that saturation magnetization is reduced.

본 발명자들은 상기 여러 문제를 해결하는 것을 기술적 과제로 하여, 시행 착오적인 수많은 시험 제작·실험을 거듭한 결과, B 계 환원제를 많이 첨가하지 않아도, 평균 입자경이 0.05 ㎛ 이상, 또한, 1.5 ㎛ 이하의 미립자이고, 또한, 입자경의 표준 편차/평균 입자경으로 나타내는 변화 계수가 0.25 이하이면서 입도 분포가 좁은 연자성 금속 분말을 제조하는 데 성공하여, 상기 기술적 과제를 해결한 것이다.The present inventors made it a technical task to solve the above-mentioned problems, and as a result of numerous trial and error-based test production and experiments, they found that the average particle diameter was 0.05 ㎛ or more and 1.5 ㎛ or less even without adding a large amount of B-based reducing agent. The above technical problem was solved by successfully producing a soft magnetic metal powder that is fine particles and has a narrow particle size distribution with a coefficient of variation expressed as standard deviation/average particle size of particle size of 0.25 or less.

본 발명에 관련된 연자성 금속 분말은, 성형 밀도가 높은 압분 성형체를 제조할 수 있으므로, 고밀도화에 의한 자기 특성이 향상된 압분 자심을 제조할 수 있고, 또한 포화 자화를 저하시키는 B 의 함유량이 낮기 때문에, 더욱 자기 특성이 우수한 압분 자심을 제조할 수 있는 연자성 금속 분말이며, 게다가 표면 평활성이 우수한 박층을 형성할 수도 있다.The soft magnetic metal powder related to the present invention can produce a compacted compact with a high compacting density, so it is possible to produce a compacted magnetic core with improved magnetic properties due to increased density, and also has a low content of B, which reduces saturation magnetization. It is a soft magnetic metal powder that can produce powder magnetic cores with more excellent magnetic properties, and can also form a thin layer with excellent surface smoothness.

상기 기술적 과제는 다음과 같은 본 발명에 의해 해결할 수 있다.The above technical problem can be solved by the present invention as follows.

본 발명은, 평균 입자경이 0.05 ㎛ 이상, 또한, 1.5 ㎛ 이하이고, 하기 (식) 으로 나타내는 변화 계수가 0.25 이하이고, 보론 (B) 의 함유량이 5.0 중량% 미만 (단, 0 은 포함하지 않는다) 인 연자성 금속 분말이다.In the present invention, the average particle diameter is 0.05 ㎛ or more and 1.5 ㎛ or less, the coefficient of variation expressed by the following (formula) is 0.25 or less, and the boron (B) content is less than 5.0% by weight (however, 0 is not included) ) is a soft magnetic metal powder.

(식) 입자경의 표준 편차/평균 입자경 (σ/D)(Formula) Standard deviation of particle size/average particle size (σ/D)

또한, 본 발명은, 철 (Fe) 의 함유량이 90 중량% 이상인 상기 연자성 금속 분말이다.Additionally, the present invention is the soft magnetic metal powder described above with an iron (Fe) content of 90% by weight or more.

또한, 본 발명은, 1 종 또는 2 종 이상의 금속 산화물로 피복된 상기 연자성 금속 분말이다.Furthermore, the present invention is the soft magnetic metal powder coated with one or two or more types of metal oxides.

또한, 본 발명은, 상기 금속 산화물의 금속 원소가 알루미늄 (Al), 규소 (Si), 지르코늄 (Zr), 티타늄 (Ti), 이트륨 (Y) 또는 인 (P) 인 상기 연자성 금속 분말이다.Additionally, the present invention is the soft magnetic metal powder wherein the metal element of the metal oxide is aluminum (Al), silicon (Si), zirconium (Zr), titanium (Ti), yttrium (Y), or phosphorus (P).

또한, 본 발명은, 금속염, 착화제, pH 조정제, P 계 환원제를 함유하는 금속염 수용액에 B 계 환원제를 함유하는 환원액을 적하하는 액상 환원법에 의해 제조하는 상기 연자성 금속 분말의 제조 방법이다.Additionally, the present invention is a method for producing the soft magnetic metal powder described above, which is produced by a liquid phase reduction method in which a reducing solution containing a B-based reducing agent is added dropwise to an aqueous metal salt solution containing a metal salt, a complexing agent, a pH adjuster, and a P-based reducing agent.

본 발명은, 평균 입자경이 0.05 ㎛ ∼ 1.5 ㎛ 인 연자성 금속 분말로서 미립자의 집합체이기 때문에, 높은 성형 밀도를 실현할 수 있으므로, 자기 특성이 높은 압분 자심을 제조할 수 있다.Since the present invention is an aggregate of fine particles as a soft magnetic metal powder with an average particle diameter of 0.05 μm to 1.5 μm, a high molding density can be realized, and a powder magnetic core with high magnetic properties can be manufactured.

또, 「입자경의 표준 편차/평균 입자경」으로 나타내는 변화 계수가 0.25 이하라고 하는 입도 분포가 좁은 미립자의 연자성 금속 분말이기 때문에, 표면 평활성이 우수한 박층을 형성할 수 있다.In addition, since it is a soft magnetic metal powder of fine particles with a narrow particle size distribution with a coefficient of variation expressed as “standard deviation of particle diameter/average particle diameter” of 0.25 or less, a thin layer with excellent surface smoothness can be formed.

또한, 포화 자화를 저하시키는 B 의 함유량이 5.0 중량% 미만이기 때문에, 자기 특성이 더욱 우수한 압분 자심을 제조할 수 있다.Additionally, since the content of B, which reduces saturation magnetization, is less than 5.0% by weight, a powder magnetic core with even more excellent magnetic properties can be manufactured.

또한, 철 (Fe) 의 함유량이 90 중량% 이상이면, 포화 자화가 높은 압분 자심을 제조할 수 있다.Additionally, if the iron (Fe) content is 90% by weight or more, a powder magnetic core with high saturation magnetization can be manufactured.

또, 연자성 금속 분말을 금속 산화물로 피복하면, 각 입자간의 전기적인 절연성을 확보할 수 있기 때문에, 에너지 손실을 억제할 수 있다.Additionally, if the soft magnetic metal powder is coated with a metal oxide, electrical insulation between each particle can be ensured, thereby suppressing energy loss.

도 1 은, 본 발명에 있어서의 연자성 금속 분말 (σ/D = 0.180) 의 SEM 사진 (10000 배) 이다.
도 2 는, 본 발명에 있어서의 연자성 금속 분말 (σ/D = 0.167) 의 SEM 사진 (10000 배) 이다.
도 3 은, 본 발명에 있어서의 연자성 금속 분말 (σ/D = 0.113) 의 SEM 사진 (10000 배) 이다.
Figure 1 is an SEM photograph (10000 times) of the soft magnetic metal powder (σ/D = 0.180) in the present invention.
Figure 2 is an SEM photograph (10000 times) of the soft magnetic metal powder (σ/D = 0.167) in the present invention.
Figure 3 is an SEM photograph (10000 times) of the soft magnetic metal powder (σ/D = 0.113) in the present invention.

본 발명에 있어서의 연자성 금속 분말은 미립자의 집합체이며, 또한, 입도 분포가 좁기 때문에, 성형 밀도가 높은 압분 성형체를 제조할 수 있음과 함께, 표면 평활성이 우수한 박층을 형성할 수 있다.The soft magnetic metal powder in the present invention is an aggregate of fine particles and has a narrow particle size distribution, so that a compacted body with a high molding density can be manufactured and a thin layer with excellent surface smoothness can be formed.

연자성 금속 분말의 평균 입자경은 0.05 ㎛ ∼ 1.5 ㎛ 가 바람직하고, 더욱 바람직하게는 0.07 ㎛ ∼ 1.0 ㎛ 이다.The average particle diameter of the soft magnetic metal powder is preferably 0.05 μm to 1.5 μm, and more preferably 0.07 μm to 1.0 μm.

평균 입자경이 0.05 ㎛ 미만이면, 입자 표면의 산화 피막의 비율이 많아지기 때문에 포화 자화가 저하되고, 또한 1.5 ㎛ 를 초과하면 박층화했을 때에 표면의 최대 높이 (Rmax) 의 값이 높아져 박층의 표면 평활성이 저하될 우려가 있기 때문이다.If the average particle diameter is less than 0.05 ㎛, the proportion of oxide film on the particle surface increases, so the saturation magnetization decreases, and if it exceeds 1.5 ㎛, the value of the maximum surface height (Rmax) when thinned increases, and the surface smoothness of the thin layer increases. This is because there is a risk that it may deteriorate.

산화 피막에 의한 포화 자화의 저하를 억제하기 위해서, 연자성 금속 분말에 있어서의 산소 (O) 의 함유량은 8.0 중량% 미만이 바람직하고, 더욱 바람직하게는 5.0 중량% 이하이다.In order to suppress a decrease in saturation magnetization due to the oxide film, the oxygen (O) content in the soft magnetic metal powder is preferably less than 8.0% by weight, and more preferably 5.0% by weight or less.

연자성 금속 분말 미립자의 「입자경의 표준 편차/평균 입자경」으로 나타내는 변화 계수는 0.25 이하가 바람직하고, 보다 바람직하게는 0.22 이하이다.The coefficient of variation expressed as “standard deviation of particle diameter/average particle diameter” of the soft magnetic metal powder fine particles is preferably 0.25 or less, and more preferably 0.22 or less.

변화 계수가 0.25 를 초과하면, 박층화했을 경우의 Rmax 의 값이 높아져 박층의 표면 평활성이 저하될 우려가 있기 때문이다.If the coefficient of variation exceeds 0.25, the value of Rmax when thinned is increased, and there is a risk that the surface smoothness of the thin layer may decrease.

본 발명에 의하면, 10 ∼ 30 ㎛ 의 박층이어도, Rmax 를 3.5 ㎛ 미만으로 할 수 있다.According to the present invention, even if it is a thin layer of 10 to 30 μm, Rmax can be set to less than 3.5 μm.

연자성 금속 분말의 입자경은 주사형 현미경 (SEM) 을 사용하여 2000 배 ∼ 10000 배의 배율로 촬영한 후, 화상 해석 소프트를 사용하여 계측할 수 있다.The particle size of the soft magnetic metal powder can be photographed at a magnification of 2,000 to 10,000 times using a scanning microscope (SEM), and then measured using image analysis software.

본 발명의 연자성 금속 분말이 함유하는 B 의 함유량은 5.0 중량% 미만이지만, 0 중량% 는 아니다.The content of B in the soft magnetic metal powder of the present invention is less than 5.0% by weight, but is not 0% by weight.

B 는 포화 자화를 저하시키기 때문에 적은 편이 바람직하지만, B 계 환원제를 사용하지 않으면 구상이 아닌 미립자가 증가하여 성형 밀도가 저하될 우려가 있기 때문이다.A smaller amount of B is preferable because it lowers the saturation magnetization, but if a B-based reducing agent is not used, non-spherical fine particles may increase and the molding density may decrease.

본 발명에 있어서의 연자성 금속 분말은 금속 산화물로 피복되어 있어도 된다. 절연 효과의 향상을 기대할 수 있기 때문이다.The soft magnetic metal powder in the present invention may be coated with a metal oxide. This is because an improvement in the insulation effect can be expected.

금속 산화물이 함유하는 금속 원소로는, Al, Si, Zr, Ti, Y, P 를 예시할 수 있다.Examples of metal elements contained in the metal oxide include Al, Si, Zr, Ti, Y, and P.

금속 산화물에 있어서의 금속 원소의 함유량은 0.1 중량% ∼ 3.0 중량% 가 바람직하다. 3.0 중량% 보다 많이 함유하면 포화 자화가 저하될 우려가 있기 때문이다.The content of the metal element in the metal oxide is preferably 0.1% by weight to 3.0% by weight. This is because if it contains more than 3.0% by weight, there is a risk that saturation magnetization may decrease.

충분한 자기 특성을 구비하는 압분 자심을 제조하기 위해서, 연자성 금속 분말의 포화 자화는 150 Wb·m/kg 이상, 보자력은 10 kA/m 이하인 것이 바람직하다.In order to manufacture a powder magnetic core having sufficient magnetic properties, it is preferable that the saturation magnetization of the soft magnetic metal powder is 150 Wb·m/kg or more and the coercive force is 10 kA/m or less.

본 발명은, 금속염 수용액을 B 계 환원제로 환원하여 제조하는 액상 환원법으로 제조할 수 있다.The present invention can be produced by a liquid phase reduction method in which an aqueous metal salt solution is reduced with a B-based reducing agent.

금속염은 한정되지 않지만 철염이 바람직하다.The metal salt is not limited, but iron salt is preferred.

철염으로는, 황산철 (II), 염화철 (II), 아세트산철 (II), 옥살산철 (II), 염화철 (III), 황산철 (III) 을 예시한다.Examples of iron salts include iron (II) sulfate, iron (II) chloride, iron (II) acetate, iron (II) oxalate, iron (III) chloride, and iron (III) sulfate.

금속염 수용액에는 착화제나 환원제를 첨가해도 된다.A complexing agent or reducing agent may be added to the aqueous metal salt solution.

착화제는 특별히 한정되지 않지만, 글리신, 알라닌, 황산암모늄, 염화암모늄, 시트르산 III 나트륨을 예시할 수 있다.The complexing agent is not particularly limited, but examples include glycine, alanine, ammonium sulfate, ammonium chloride, and sodium III citrate.

환원제는 특별히 한정되지 않지만, P 계 환원제를 사용하는 것이 바람직하다.The reducing agent is not particularly limited, but it is preferable to use a P-based reducing agent.

P 계 환원제로서, 하이포아인산나트륨, 하이포아인산칼슘을 예시할 수 있다.Examples of the P-based reducing agent include sodium hypophosphite and calcium hypophosphite.

금속염 수용액의 pH 는 6.5 ∼ 11.0 으로 조정하는 것이 바람직하다.The pH of the metal salt aqueous solution is preferably adjusted to 6.5 to 11.0.

pH 조정제는 특별히 한정되지 않지만, 수산화나트륨, 암모니아수, 탄산수소나트륨을 예시한다.The pH adjuster is not particularly limited, but examples include sodium hydroxide, aqueous ammonia, and sodium bicarbonate.

금속염 수용액에는 적절히, 분산제, 촉매, 소포제를 첨가해도 된다.A dispersant, catalyst, or anti-foaming agent may be added to the metal salt aqueous solution as appropriate.

금속염 수용액을 환원하는 환원제는 B 계 환원제를 사용한다.A B-based reducing agent is used as a reducing agent to reduce the aqueous metal salt solution.

B 계 환원제로는, 수소화붕소나트륨, 수소화붕소칼륨, 디메틸아미노보란을 예시할 수 있다.Examples of the B-type reducing agent include sodium borohydride, potassium borohydride, and dimethylaminoborane.

B 계 환원제와 함께, B 를 함유하지 않는 하이드라진을 사용해도 된다.In addition to the B-based reducing agent, hydrazine that does not contain B may be used.

환원 온도는 10 ℃ ∼ 95 ℃ 에서 실시하는 것이 바람직하다.The reduction temperature is preferably carried out at 10°C to 95°C.

실시예Example

본 발명의 실시예를 나타내지만, 본 발명은 이들에 한정되는 것은 아니다.Although examples of the present invention are shown, the present invention is not limited to these.

(실시예 1)(Example 1)

황산철 (II) 7 수화물 0.2 mol/L, 글리신 0.08 mol/L, 하이포아인산나트륨 0.1 mol/L 의 농도가 되도록 유리 비커 내에 증류수 1500 ml 와 함께 투입하고, 실온에서, 회전수 100 rpm ∼ 300 rpm 으로 교반하면서 수산화나트륨을 사용하여 pH 7.0 ∼ 8.5 의 금속염 수용액을 제조하였다.Add 1,500 ml of distilled water into a glass beaker to achieve a concentration of 0.2 mol/L of iron (II) sulfate heptahydrate, 0.08 mol/L of glycine, and 0.1 mol/L of sodium hypophosphite, and rotate at room temperature at a rotation speed of 100 rpm to 300 rpm. An aqueous metal salt solution of pH 7.0 to 8.5 was prepared using sodium hydroxide while stirring.

제조한 금속염 수용액을 회전수 100 rpm ∼ 300 rpm 으로 교반시키면서, 비커 내를 질소 가스에 의해 불활성 분위기로 한 상태에서 45 ℃ 가 될 때까지 가열하였다.The prepared aqueous metal salt solution was stirred at a rotation speed of 100 rpm to 300 rpm and heated to 45°C in an inert atmosphere using nitrogen gas inside the beaker.

수소화붕소나트륨을 0.25 mol/L 가 되도록 증류수 300 ml 와 혼합하고, 실온에서 100 rpm ∼ 300 rpm 으로 교반하여 용해시킴으로써 B 계 환원액을 제작하였다.A B-based reduction solution was prepared by mixing sodium borohydride with 300 ml of distilled water to a concentration of 0.25 mol/L and dissolving it by stirring at 100 rpm to 300 rpm at room temperature.

질소 분위기 중에서 45 ℃ 의 금속염 수용액을 회전수 100 rpm ∼ 300 rpm 으로 교반하면서 제조한 B 계 환원제를 서서히 적하하였다.The prepared B-based reducing agent was slowly added dropwise to the metal salt aqueous solution at 45°C in a nitrogen atmosphere while stirring at a rotation speed of 100 rpm to 300 rpm.

금속염 수용액으로부터의 발포가 없어진 시점을 환원 반응의 종점으로 하였다.The point at which foaming from the aqueous metal salt solution disappeared was set as the end point of the reduction reaction.

환원 반응 종료 후, 증류수로 수세하고, 알코올로 치환 후, 질소 가스의 불활성 분위기에서 건조시킴으로써 실시예 1 의 연자성 금속 분말을 얻었다.After completion of the reduction reaction, the soft magnetic metal powder of Example 1 was obtained by washing with distilled water, replacing with alcohol, and drying in an inert atmosphere of nitrogen gas.

(실시예 2 ∼ 5 및 비교예 1 ∼ 3)(Examples 2 to 5 and Comparative Examples 1 to 3)

실시예 2 ∼ 5 및 비교예 1 ∼ 3 의 원료를 표 1 에 나타내는 바와 같이 한 것 이외에는 실시예 1 과 동일한 조건으로 제조하였다.The raw materials of Examples 2 to 5 and Comparative Examples 1 to 3 were manufactured under the same conditions as Example 1 except that they were as shown in Table 1.

(실시예 6)(Example 6)

실시예 1 에서 얻어진 연자성 금속 분말 0.30 mol/L, 테트라에톡시실란 (TEOS) 0.04 mol/L, 암모니아수 0.20 mol/L 의 농도가 되도록 칭량하여 유리 비커 내에 이소프로필알코올 150 ml 와 함께 투입하고, 실온에서 1 시간, 회전수 100 rpm ∼ 300 rpm 으로 교반하여 TEOS 를 가수분해시킴으로써 연자성 금속 분말의 미립자의 표면을 실리카로 피복하는 처리를 실시하였다.The soft magnetic metal powder obtained in Example 1 was weighed to a concentration of 0.30 mol/L, tetraethoxysilane (TEOS) 0.04 mol/L, and ammonia water at 0.20 mol/L, and then added together with 150 ml of isopropyl alcohol into a glass beaker. TEOS was hydrolyzed by stirring at room temperature for 1 hour at a rotation speed of 100 to 300 rpm, and the surface of the soft magnetic metal powder fine particles was coated with silica.

이소프로필알코올로 세정 후, 질소 가스의 불활성 분위기 중에서 건조시켜 실리카 피복 처리 연자성 금속 분말을 얻었다.After washing with isopropyl alcohol, it was dried in an inert atmosphere of nitrogen gas to obtain a silica-coated soft magnetic metal powder.

(비교예 4)(Comparative Example 4)

염화철 (II) 수화물 1.0 mol/L, 염화암모늄 1.5 mol/L, 시트르산삼나트륨 수화물 0.8 mol/L, 하이포아인산나트륨 수화물 1.5 mol/L, 분산제로서 폴리비닐피롤리돈 0.004 mol/L 의 농도가 되도록 각각 칭량하고, 유리제 용기 내에 증류수 200 ml 와 함께 투입하여, 실온에 있어서 회전수 160 rpm ∼ 300 rpm 으로 60 ∼ 120 분간 교반함으로써 금속염 수용액을 제조하였다.So that the concentration is 1.0 mol/L of iron (II) chloride hydrate, 1.5 mol/L of ammonium chloride, 0.8 mol/L of trisodium citrate hydrate, 1.5 mol/L of sodium hypophosphite hydrate, and 0.004 mol/L of polyvinylpyrrolidone as a dispersant. Each was weighed, poured into a glass container along with 200 ml of distilled water, and stirred at room temperature at a rotation speed of 160 rpm to 300 rpm for 60 to 120 minutes to prepare an aqueous metal salt solution.

제조한 금속염 수용액을 실온에 있어서 회전수 160 rpm ∼ 300 rpm 으로 교반시키면서, 수산화나트륨 수용액을 적하하여 pH 10 으로 하였다.While stirring the prepared aqueous metal salt solution at a rotation speed of 160 rpm to 300 rpm at room temperature, aqueous sodium hydroxide solution was added dropwise to adjust the pH to 10.

회전수 160 rpm ∼ 300 rpm 으로 교반하고 있는 금속염 수용액에 대해, 실시예 1 과 동일한 B 계 환원액을 서서히 적하하여, 금속염 수용액 표면으로부터의 기포의 발생이 없어진 것을 확인하고 나서, 석출된 분말을 액 중으로부터 분리하고, 얻은 분말을 수세 및 알코올 세정한 후, 질소 가스의 불활성 분위기 중에서 건조시킴으로써 비정질 연자성 합금 분말을 얻었다.The same B-based reducing solution as in Example 1 was slowly added dropwise to the metal salt aqueous solution being stirred at a rotation speed of 160 rpm to 300 rpm, and after confirming that no bubbles were generated from the surface of the metal salt aqueous solution, the precipitated powder was poured into the solution. After separation from the core, the obtained powder was washed with water and alcohol, and then dried in an inert atmosphere of nitrogen gas to obtain an amorphous soft magnetic alloy powder.

(비교예 5)(Comparative Example 5)

폴리올법으로 Fe 입자를 합성하였다. 에틸렌글리콜 100 ml 를 환류기가 부착된 유리 용기에 넣고, 질소 가스를 300 ml/min 의 유량으로 불어 넣고, 테플론 (등록상표) 교반 날개에 의해 100 rpm 의 회전 속도로 액을 교반하였다.Fe particles were synthesized by the polyol method. 100 ml of ethylene glycol was placed in a glass container equipped with a reflux, nitrogen gas was blown in at a flow rate of 300 ml/min, and the liquid was stirred at a rotation speed of 100 rpm with a Teflon (registered trademark) stirring blade.

교반하고 있는 액 중에, 염화제일철 4 수화물 FeCl2·4H2O 를 0.1 mol/L 의 농도가 되도록 투입하였다.Into the stirred liquid, ferrous chloride tetrahydrate FeCl 2 ·4H 2 O was added to a concentration of 0.1 mol/L.

이어서, [Fe] 에 대한 [OH-] 농도의 비 [OH-]/[Fe] 가 40 이 되도록 NaOH 를 투입하였다.Next, NaOH was added so that the ratio of [OH - ] concentration to [Fe] [OH - ]/[Fe] was 40.

또한, 핵 생성을 위한 백금 전구체로서 헥사클로라이드백금 (IV) 산을 2.0×10-8 mol/L 투입하였다.Additionally, 2.0×10 -8 mol/L of platinum (IV) hexachloride acid was added as a platinum precursor for nucleation.

투입 후, 환류기에 냉각수를 흘리고, 질소 가스의 불어 넣기 및 기계 교반을 계속하면서 가열하고, 170 ℃ 의 상태에서 환류하면서 20 min 유지하여, 환원 반응을 실시하였다.After injection, cooling water was poured into a refluxer, heated while continuing to blow nitrogen gas and mechanically stirred, and maintained for 20 min while refluxing at 170°C to perform a reduction reaction.

석출된 입자는, 용액이 실온이 될 때까지 방랭하고 나서 에탄올 중으로 옮기고, 원심 분리에 의해 세정을 반복하고, 질소 분위기 중에서 건조시킴으로써 Fe 입자 분말을 얻었다.The precipitated particles were allowed to cool until the solution reached room temperature, then transferred to ethanol, washed repeatedly by centrifugation, and dried in a nitrogen atmosphere to obtain Fe particle powder.

(비교예 6)(Comparative Example 6)

카르보닐 철분 (제품명 : HQ BASF 사 제조) 을 사용하였다.Carbonyl iron powder (product name: HQ manufactured by BASF) was used.

(입자 형상)(Particle shape)

주사형 전자 현미경 (SEM) (S-4800 형 FE-SEM/주식회사 히타치 하이테크 제조) 사진 (10000 배) 으로 육안에 의해 관찰하였다.It was observed with the naked eye using a scanning electron microscope (SEM) (S-4800 type FE-SEM/manufactured by Hitachi Hi-Tech Co., Ltd.) photograph (10,000 times).

입자의 최장경 a 와 최단경 b 의 비 (a/b) 를 산출하고, 이하에 나타내는 바와 같이 형상을 평가하였다.The ratio (a/b) between the longest diameter a and the shortest diameter b of the particles was calculated, and the shape was evaluated as shown below.

구상 : a/b ≤ 1.7 이면서 1.0 ≤ a/b ≤ 1.2 의 비율이 90 % 이상Design: a/b ≤ 1.7 and the ratio of 1.0 ≤ a/b ≤ 1.2 is 90% or more

구상/입상 : a/b ≤ 1.7 이면서 1.0 ≤ a/b ≤ 1.2 의 비율이 50 % 이상 90 % 미만Spherical/granular: a/b ≤ 1.7 and the ratio of 1.0 ≤ a/b ≤ 1.2 is 50% or more but less than 90%

입상 : a/b ≤ 1.7 이면서 1.0 ≤ a/b ≤ 1.2 의 비율이 50 % 미만Prize: a/b ≤ 1.7 and the ratio of 1.0 ≤ a/b ≤ 1.2 is less than 50%

침상 : a/b > 1.7Bed : a/b > 1.7

(평균 입자경, 표준 편차 및 변화 계수)(Average particle size, standard deviation and coefficient of variation)

주사형 전자 현미경을 사용하여 2000 ∼ 10000 배의 배율로 촬영하고, 촬영한 시야 내의 모든 입자의 최장경을, 화상 해석 소프트 「A 상군」 (아사히 카세이 엔지니어링 주식회사 제조) 을 사용하여 계측하여 평균 입자경을 산출하고, 또한 표준 편차를 계산하였다. 또한, 그들의 수치로부터 변화 계수를 계산하였다.Photographs were taken at a magnification of 2000 to 10000 times using a scanning electron microscope, and the longest diameter of all particles within the photographed field of view was measured using image analysis software “A Sanggun” (manufactured by Asahi Kasei Engineering Co., Ltd.) to calculate the average particle diameter. and also calculated the standard deviation. Additionally, the coefficient of variation was calculated from their values.

(결정 구조)(crystal structure)

X 선 회절 장치 (D8 ADVANCE/브루커·재팬 주식회사 제조) 를 사용하여 측정을 실시하고, 리드 벨트 해석에 의해 시료 중의 결정상의 동정을 실시하였다.Measurements were performed using an

(조성 분석)(composition analysis)

<Fe, P, Si><Fe, P, Si>

형광 X 선 회절 장치 (ZSX PrimusII/주식회사 리가쿠 제조) 를 사용하여 JIS K0119 의 「형광 X 선 분석 통칙」에 따라 측정을 실시하였다.Measurements were performed in accordance with JIS K0119, “General Rules for Fluorescence X-ray Analysis,” using a fluorescence

<B><B>

유도 결합 플라즈마 (ICP) 발광 분광 분석 장치 (iCAP6500/써모피셔 사이언티픽 주식회사 제조) 를 사용하여 측정을 실시하였다.Measurements were performed using an inductively coupled plasma (ICP) emission spectroscopic analyzer (iCAP6500/manufactured by Thermo Fisher Scientific Co., Ltd.).

<O><O>

산소·질소·수소 분석 장치 (EMGA-930/주식회사 호리바 제작소 제조) 를 사용하여 측정을 실시하였다.Measurements were performed using an oxygen/nitrogen/hydrogen analysis device (EMGA-930/manufactured by Horiba Corporation).

(자기 특성)(magnetic properties)

진동 시료형 자력계 (VSM) (TM-VSM2130MRHL 형/주식회사 타마카와 제작소 제조) 를 사용하여 인가 자장 797.7 kA/m 에서, 포화 자화 (σs) 및 보자력 (Hc) 을 측정하였다.Saturation magnetization (σs) and coercive force (Hc) were measured at an applied magnetic field of 797.7 kA/m using a vibrating sample magnetometer (VSM) (TM-VSM2130MRHL type/manufactured by Tamakawa Ltd.).

(박층 특성)(Thin layer properties)

실시예 1 의 연자성 금속 분말 5.0 g 에 피마자유 0.5 ml 및 질화면 클리어 래커 (P 용 클리어 (표준 시료) 151-009/칸사이 페인트 주식회사 제조) 4.5 g 을 첨가하고, 자전·공전 믹서 (아와토리렌타로 ARE-310/주식회사 싱키 제조) 를 사용하여, 회전수 1500 rpm 으로 3 분간 교반하여 페이스트를 제조하였다.To 5.0 g of the soft magnetic metal powder of Example 1, 0.5 ml of castor oil and 4.5 g of nitride screen clear lacquer (Clear for P (standard sample) 151-009/manufactured by Kansai Paint Co., Ltd.) were added, and a rotating/revolving mixer (Awa) was added. A paste was prepared by stirring for 3 minutes at a rotation speed of 1500 rpm using Torrentaro ARE-310 (manufactured by Sinky Co., Ltd.).

제조한 페이스트를 3 mill 의 어플리케이터를 사용하여 PET 필름에 도포하고, 실온에서 건조시킴으로써 약 20 ㎛ 의 박층을 제조하였다.The prepared paste was applied to PET film using a 3 mill applicator and dried at room temperature to prepare a thin layer of about 20 ㎛.

박층의 최대 높이 (Rmax) 는 비접촉 표면 조도계 (NewView600/캐논 마케팅 재팬 주식회사 제조) 를 사용하여 측정하였다.The maximum height (Rmax) of the thin layer was measured using a non-contact surface roughness meter (NewView600/manufactured by Canon Marketing Japan Co., Ltd.).

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

표 1 및 표 2 로부터, 본 발명에 있어서의 연자성 금속 분말은 포화 자화 및 보자력이 높고, 또한 표면 평활성이 우수한 박층을 제조할 수 있음이 증명되었다.From Tables 1 and 2, it was proven that the soft magnetic metal powder in the present invention has high saturation magnetization and coercive force, and can produce a thin layer with excellent surface smoothness.

본 발명에 있어서의 연자성 금속 분말은 미립자로 이루어지기 때문에, 성형 밀도가 높은 압분 성형체를 제조할 수 있고, 또한 B 의 함유량이 낮기 때문에, 자기 특성이 우수한 압분 자심을 제조할 수 있다.Since the soft magnetic metal powder in the present invention consists of fine particles, a green compact with a high molding density can be manufactured, and since the B content is low, a green magnetic core with excellent magnetic properties can be manufactured.

또한, 입도 분포가 좁은 미립자의 집합체이기 때문에 표면 평활성이 우수한 박층을 제조할 수 있다.Additionally, because it is an aggregate of fine particles with a narrow particle size distribution, a thin layer with excellent surface smoothness can be produced.

따라서, 본 발명은 산업상 이용가능성이 높은 발명이다.Therefore, the present invention is an invention with high industrial applicability.

Claims (5)

평균 입자경이 0.05 ㎛ 이상, 또한, 1.5 ㎛ 이하이고, 하기 (식) 으로 나타내는 변화 계수가 0.25 이하이고, 보론의 함유량이 5.0 중량% 미만 (단, 0 은 포함하지 않는다) 인 연자성 금속 분말.
(식) 입자경의 표준 편차/평균 입자경
A soft magnetic metal powder having an average particle diameter of 0.05 μm or more and 1.5 μm or less, a coefficient of variation expressed by the following (equation) of 0.25 or less, and a boron content of less than 5.0% by weight (excluding 0).
(Formula) Standard deviation of particle size/average particle size
제 1 항에 있어서,
철의 함유량이 90 중량% 이상인 연자성 금속 분말.
According to claim 1,
Soft magnetic metal powder with an iron content of 90% by weight or more.
제 1 항 또는 제 2 항에 있어서,
1 종 또는 2 종 이상의 금속 산화물로 피복된 연자성 금속 분말.
The method of claim 1 or 2,
Soft magnetic metal powder coated with one or two or more types of metal oxides.
제 3 항에 있어서,
상기 금속 산화물의 금속 원소가 알루미늄, 규소, 지르코늄, 티타늄, 이트륨 또는 인인 연자성 금속 분말.
According to claim 3,
A soft magnetic metal powder wherein the metal element of the metal oxide is aluminum, silicon, zirconium, titanium, yttrium, or phosphorus.
금속염, 착화제, pH 조정제, 인계 환원제를 함유하는 금속염 수용액에 보론계 환원제를 함유하는 환원액을 적하하는 액상 환원법에 의해 제조하는 제 1 항 또는 제 2 항에 기재된 연자성 금속 분말의 제조 방법.A method for producing the soft magnetic metal powder according to claim 1 or 2, which is produced by a liquid phase reduction method in which a reducing solution containing a boron-based reducing agent is added dropwise to an aqueous metal salt solution containing a metal salt, a complexing agent, a pH adjuster, and a phosphorus-based reducing agent.
KR1020237028794A 2021-03-03 2022-03-01 soft magnetic metal powder KR20230150965A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021033782A JP2022134575A (en) 2021-03-03 2021-03-03 soft magnetic metal powder
JPJP-P-2021-033782 2021-03-03
PCT/JP2022/008676 WO2022186226A1 (en) 2021-03-03 2022-03-01 Soft magnetic metal powder

Publications (1)

Publication Number Publication Date
KR20230150965A true KR20230150965A (en) 2023-10-31

Family

ID=83154410

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237028794A KR20230150965A (en) 2021-03-03 2022-03-01 soft magnetic metal powder

Country Status (5)

Country Link
JP (1) JP2022134575A (en)
KR (1) KR20230150965A (en)
CN (1) CN116917063A (en)
TW (1) TW202235639A (en)
WO (1) WO2022186226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048499A1 (en) * 2022-08-31 2024-03-07 戸田工業株式会社 Soft-magnetic metal powder, production method for same, and resin composition
WO2024048500A1 (en) * 2022-09-01 2024-03-07 戸田工業株式会社 Soft magnetic metal powder having high spheroidization rate and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261065A (en) 2009-04-30 2010-11-18 Nec Tokin Corp Amorphous soft magnetic alloy powder, dust core and inductor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036183A (en) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp Method for manufacturing magnetic particle, magnetic particle and magnetic recording medium
WO2014041705A1 (en) * 2012-09-12 2014-03-20 エム・テクニック株式会社 Method for manufacturing metal microparticles
US11285539B2 (en) * 2016-05-13 2022-03-29 University Of Maryland, College Park Synthesis and functionalization of highly monodispersed iron and Core/Iron oxide shell magnetic particles with broadly tunable diameter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261065A (en) 2009-04-30 2010-11-18 Nec Tokin Corp Amorphous soft magnetic alloy powder, dust core and inductor

Also Published As

Publication number Publication date
WO2022186226A1 (en) 2022-09-09
JP2022134575A (en) 2022-09-15
TW202235639A (en) 2022-09-16
CN116917063A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
KR20230150965A (en) soft magnetic metal powder
JP2021121694A (en) Iron powder and production method thereof, molding for inductor, and inductor
TWI707734B (en) Silicon oxide-coated iron powder, method for producing the same, indcutor molded body and inductor using the same
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP2021077894A (en) Soft magnetic powder, soft magnetic material, dust core, and manufacturing method of dust core
JP2008525640A (en) High tap density ultrafine spherical metallic nickel powder and wet manufacturing method thereof
KR102376001B1 (en) Silicon oxide-coated iron powder, manufacturing method thereof, molded article for inductor using same, and inductor
JP6427061B2 (en) Method of preparing core-shell-shell FeCo / SiO2 / MnBi nanoparticles, and core-shell-shell FeCo / SiO2 / MnBi nanoparticles
JP2018182301A (en) Composite magnetic material and motor
US9431159B2 (en) Iron cobalt ternary alloy nanoparticles with silica shells and metal silicate interface
JP7097702B2 (en) Fe-Co alloy powder and inductor moldings and inductors using it
JP2022119746A (en) metal powder
US20230381861A1 (en) METHOD FOR MANUFACTURING IRON (Fe)-NICKEL (Ni) ALLOY POWDER
WO2024048500A1 (en) Soft magnetic metal powder having high spheroidization rate and method for manufacturing same
KR20200058470A (en) Iron and its manufacturing method and molded body and inductor for inductor
JP2005281786A (en) Magnetic metal particle and production method therefor
Matsumoto et al. Preparation and Magnetic Properties of Nano-Sized Iron Powder Particles Coated with Silica Film by Calcium Hydride Reduction Method
JP7002179B2 (en) Fe-Ni alloy powder and inductor moldings and inductors using it
TW202127477A (en) Silicon oxide coated soft magnetic powder and manufacturing method
KR101972656B1 (en) Preparation method for metal and metal ceramic phase separated composite structured ferrite
TW202412971A (en) Soft magnetic metal powder with high spheroidization rate and manufacturing method thereof
WO2024048499A1 (en) Soft-magnetic metal powder, production method for same, and resin composition
CN114728334B (en) Silicon oxide-coated soft magnetic powder and method for producing same
TW202340489A (en) (Fe)-nickel (Ni) alloy powder, green compact or sheet including alloy powder, and inductor, reactor, choke coil, noise filter, transformer, rotary machine, power generator, or radio wave absorber including green compact or sheet
Tri A novel synthesis of core/shell Co0. 5Ni0. 5Fe2O4/SiO2 nanomaterial and the effect of SiO2 on its magnetic properties