KR20230087074A - Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same - Google Patents

Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same Download PDF

Info

Publication number
KR20230087074A
KR20230087074A KR1020210175677A KR20210175677A KR20230087074A KR 20230087074 A KR20230087074 A KR 20230087074A KR 1020210175677 A KR1020210175677 A KR 1020210175677A KR 20210175677 A KR20210175677 A KR 20210175677A KR 20230087074 A KR20230087074 A KR 20230087074A
Authority
KR
South Korea
Prior art keywords
thin film
silicon
dielectric constant
forming
low dielectric
Prior art date
Application number
KR1020210175677A
Other languages
Korean (ko)
Inventor
박종률
강태형
박용주
김상호
황인천
이상경
Original Assignee
에스케이트리켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이트리켐 주식회사 filed Critical 에스케이트리켐 주식회사
Priority to KR1020210175677A priority Critical patent/KR20230087074A/en
Priority to PCT/KR2022/016538 priority patent/WO2023106623A1/en
Priority to TW111145349A priority patent/TWI849595B/en
Publication of KR20230087074A publication Critical patent/KR20230087074A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)

Abstract

The present invention relates to: a precursor for forming a low dielectric constant silicon-containing thin film including a silicon-containing compound represented by chemical formula 1; a method for forming a thin film using the precursor; and a semiconductor device including a low dielectric constant silicon-containing thin film manufactured by the thin film forming method. In chemical formula 1, R is independently a hydrogen atom or a C_1-C_6 linear, branched, or cyclic alkyl group, an allyl group containing a C_1-C_6 linear, branched or cyclic functional group, a vinyl group containing a C_1-C_6 linear, branched or cyclic functional group, an alkoxy group containing a C_1-C_6 linear, branched or cyclic functional group, a primary or secondary amine group, or a phenyl group containing a C_1-C_6 functional group, and L is a linking group selected from a linear, branched, cyclic alkyl or aryl group. According to the present invention, it is possible to manufacture a low dielectric constant silicon-containing thin film and a semiconductor device including the low dielectric constant silicon-containing thin film by using the precursor.

Description

저 유전율 실리콘 함유 박막 형성용 전구체, 이를 이용한 저 유전율 실리콘 함유 박막 형성 방법 및 상기 저 유전율 실리콘 함유 박막을 포함하는 반도체 소자.{PRECURSOR FOR LOW-K SILICON-CONTAINING FILM DEPOSITION, DEPOSITION METHOD OF LOW-K SILICON-CONTAINING FILM AND SEMICONDUCTOR DEVICE OF THE SAME}A precursor for forming a low-k silicon-containing thin film, a method for forming a low-k silicon-containing thin film using the same, and a semiconductor device including the low-k silicon-containing thin film. -CONTAINING FILM AND SEMICONDUCTOR DEVICE OF THE SAME}

본 발명은 실리콘 함유 박막 형성용 전구체, 이를 이용한 실리콘 함유 박막 형성 방법 및 상기 실리콘 함유 박막을 포함하는 반도체 소자에 관한 것으로, 더욱 상세하게는, 다이알콕사이드로 연결된 다이실란(Dialkoxide-bridged disilane) 구조의 실리콘 함유 화합물을 이용하여 저 유전율 박막을 형성할 수 있는 전구체, 이를 이용한 실리콘 함유 박막 형성 방법 및 상기 금속 박막을 포함하는 반도체 소자에 관한 것이다.The present invention relates to a precursor for forming a silicon-containing thin film, a method for forming a silicon-containing thin film using the same, and a semiconductor device including the silicon-containing thin film, and more particularly, to a dialkoxide-bridged disilane structure A precursor capable of forming a low permittivity thin film using a silicon-containing compound, a method for forming a silicon-containing thin film using the same, and a semiconductor device including the metal thin film.

반도체 소자의 소형화, 고집적화에 따라 기생 커패시턴스가 증가하고 이로 인해 응답 속도 지연(RC delay)이 발생하여 이를 해결하기 위한 연구개발이 진행되고 있다. 상기 기생 커패시턴스는 주로 금속 배선과 금속 배선 사이가 매우 가까워져 상기 금속 배선들의 배치가 커패시터와 동일한 구조를 갖게 되면서 발생하며, 이를 줄이기 위해서는 상기 금속 배선 사이에 형성되는 층간 절연막을 저 유전상수를 갖는 절연 물질로서 형성할 필요가 있다.Parasitic capacitance increases with the miniaturization and high integration of semiconductor devices, which causes a response speed delay (RC delay), and research and development is being conducted to solve this problem. The parasitic capacitance is mainly generated when metal wires are very close to each other and the arrangement of the metal wires has the same structure as a capacitor. To reduce this, an insulating material having a low dielectric constant is used as an interlayer insulating film formed between the metal wires. need to be formed as

상기 저 유전상수를 갖는 절연 물질은 SOD(spin-on dielectric) 방식 및 화학 기상 증착 방식(Chemical vapor deposition, 이하, CVD)으로 형성될 수 있으며, 이러한 예로는 불소를 포함하는 실리콘 산화막(Fluarinated Silicate Glass, 이하 FSG막) 및 SiOC 막을 들 수 있다.The insulating material having a low dielectric constant may be formed by a spin-on dielectric (SOD) method and a chemical vapor deposition (hereinafter referred to as CVD) method, such as a silicon oxide film containing fluorine (Fluarinated Silicate Glass , hereinafter FSG film) and SiOC film.

종래에 저 유전율 박막을 형성하기 위해 사용되는 전구체로는 옥타메틸사이클로테트라실록산(OMCTS), 디에톡시메틸실란(DEMS), 테트라에톡시오르소실리케이트(TEOS) 등을 들 수 있다. 상기 전구체는 액상으로 증착 공정을 위한 기화에 유리하나 형성된 박막에서 충분한 경도를 얻기 어려워 적용범위에 제한이 따른다.Precursors conventionally used to form low dielectric constant thin films include octamethylcyclotetrasiloxane (OMCTS), diethoxymethylsilane (DEMS), tetraethoxyorthosilicate (TEOS), and the like. The precursor is in a liquid phase and is advantageous for vaporization for the deposition process, but it is difficult to obtain sufficient hardness in the formed thin film, so the application range is limited.

예를 들어, 대한민국 공개특허공보 10-2006-0029762호에는 SiH4 및 SiF4 가스를 사용하여 절연막을 형성하는 공정에서 유기 실록산 소스 가스로 MTES, DEMS. DMOMS, TOMCATS, DMDMOS, DMDOSH. Z3MS 등을 사용하고 있으나, 상기 유기 실록산 소스는 전구체에 부가적으로 첨가되는 것으로서 유전율을 낮추는데 한계가 있으며, 상기 유기 실록산 소스를 전구체로 사용하는 경우에는 경도가 낮아지는 문제점이 발생하여 박막 형성 공정에 사용이 제한적인 문제점이 있다.For example, Korean Patent Publication No. 10-2006-0029762 discloses SiH 4 and SiF 4 as organic siloxane source gases in the process of forming an insulating film using MTES and DEMS. DMOMS, TOMCATS, DMDMOS, DMDOSH. Although Z3MS and the like are used, the organic siloxane source is added additionally to the precursor, and there is a limit to lowering the dielectric constant. When the organic siloxane source is used as a precursor, a problem in that the hardness is lowered occurs, which is difficult to achieve in the thin film formation process. There are problems with limited use.

대한민국 공개특허공보 10-2006-0029762호Republic of Korea Patent Publication No. 10-2006-0029762

본 발명은 상기와 같은 종래기술들을 감안하여 안출된 것으로, 박막 형성 공정에서 에너지를 인가하여 쉽게 분해될 수 있는 화학구조의 실리콘 함유 화합물을 통해 분자 내의 탄소 함량비를 조절하기 용이하고 형성된 박막의 경도를 개선할 수 있는 저 유전율 실리콘 함유 박막 형성용 전구체를 제공하는 것을 그 목적으로 한다.The present invention has been made in view of the prior art as described above, and it is easy to control the carbon content ratio in the molecule through a silicon-containing compound having a chemical structure that can be easily decomposed by applying energy in the thin film formation process, and the hardness of the formed thin film Its object is to provide a precursor for forming a low permittivity silicon-containing thin film capable of improving.

또한, 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 사용함으로써 저 유전율 실리콘 함유 박막을 형성할 수 있는 방법을 제공하는 것을 그 목적으로 한다.In addition, it is an object of the present invention to provide a method for forming a low dielectric constant silicon-containing thin film by using the precursor for forming a low dielectric constant silicon-containing thin film.

또한, 상기 저 유전율 실리콘 함유 박막을 포함하는 반도체 소자를 제공하는 것을 그 목적으로 한다.In addition, it is an object of the present invention to provide a semiconductor device including the low dielectric constant silicon-containing thin film.

상기와 같은 목적을 달성하기 위한 본 발명의 저 유전율 실리콘 함유 박막 형성용 전구체는 하기 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 한다.The precursor for forming a low dielectric constant silicon-containing thin film of the present invention to achieve the above object is characterized in that it includes a silicon-containing compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에서,In Formula 1,

R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.R are each independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, a C 1 -C 6 straight-chain, branched or cyclic allyl group including a functional group, C 1 -C 6 a vinyl group containing a straight-chain, branched or cyclic functional group of C 1 -C 6 alkoxy group containing a straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a C 1 -C A phenyl group containing 6 functional groups, and L is a linking group selected from a straight-chain, branched, and cyclic alkyl group or an aryl group.

구체적으로, 상기 화학식 1로 표시되는 실리콘 함유 화합물은 하기 화학식 2 내지 화학식 4 중 어느 하나로 표시되는 실리콘 함유 화합물일 수 있다.Specifically, the silicon-containing compound represented by Chemical Formula 1 may be a silicon-containing compound represented by any one of Chemical Formulas 2 to 4 below.

[화학식 2][Formula 2]

Figure pat00002
Figure pat00002

[화학식 3][Formula 3]

Figure pat00003
Figure pat00003

[화학식 4][Formula 4]

Figure pat00004
Figure pat00004

상기 화학식 2 내지 화학식 4에서,In Formulas 2 to 4,

R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, n은 1 내지 8의 정수이다.R are each independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, a C 1 -C 6 straight-chain, branched or cyclic allyl group including a functional group, C 1 -C 6 a vinyl group containing a straight-chain, branched or cyclic functional group of C 1 -C 6 alkoxy group containing a straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a C 1 -C It is a phenyl group containing a functional group of 6 , and n is an integer of 1 to 8.

또한, 상기 전구체는 용매를 추가적으로 포함하는 것일 수 있다. 이때, 상기 용매는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 그 이상일 수 있으며, 상기 저 유전율 실리콘 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함될 수 있다.In addition, the precursor may additionally include a solvent. In this case, the solvent may be any one or more of C1-C16 saturated or unsaturated hydrocarbons, ketones, ethers, glymes, esters, tetrahydrofuran, and tertiary amines, and the total weight of the precursor for forming the low dielectric constant silicon-containing thin film It may be included in 1 to 99% by weight relative to.

또한, 본 발명의 저 유전율 실리콘 함유 박막 형성 방법은 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 이용하여 기판 상에 박막을 형성하는 단계를 포함한다.In addition, the method of forming a thin film containing low dielectric constant silicon of the present invention includes forming a thin film on a substrate using the precursor for forming a thin film containing low dielectric constant silicon.

또한, 상기 저 유전율 실리콘 함유 박막은 SOD(spin-on dielectric, SOD) 공정, 고밀도 플라즈마 화학 기상 증착(High Density Plasma -Chemical Vapor Deposition, HDPCVD) 공정, 또는 원자층 증착(Atomic Layer Deposition, ALD) 공정에 의해 형성될 수 있다.In addition, the low dielectric constant silicon-containing thin film is a spin-on dielectric (SOD) process, a high density plasma-chemical vapor deposition (HDPCVD) process, or an atomic layer deposition (ALD) process. can be formed by

또한, 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 DLI(Direct Liquid Injection)을 통해 챔버 내부로 이송시키는 단계를 포함할 수 있다.In addition, a step of transferring the low dielectric constant silicon-containing thin film forming precursor into the chamber through direct liquid injection (DLI) may be included.

또한, 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 기판에 공급하고 플라즈마를 발생시켜 박막을 형성하는 단계를 포함할 수 있다.In addition, a step of supplying the low dielectric constant silicon-containing thin film forming precursor to a substrate and generating plasma may include forming the thin film.

또한, 본 발명의 반도체 소자는 상기 저 유전율 실리콘 함유 박막 형성 방법에 의해 제조될 수 있다.In addition, the semiconductor device of the present invention can be manufactured by the method of forming a low dielectric constant silicon-containing thin film.

본 발명에 따른 전구체는 박막 형성 공정에서 에너지를 인가하여 쉽게 분해될 수 있는 화학구조로 이루어져 있으므로 저 유전율 실리콘 함유 박막의 형성 공정에 적용하면 분자 내의 탄소 함량비를 조절하기 용이하고 형성된 박막의 경도를 개선하는 효과를 얻을 수 있다.Since the precursor according to the present invention has a chemical structure that can be easily decomposed by applying energy in the thin film formation process, it is easy to control the carbon content ratio in the molecule when applied to the formation process of a low permittivity silicon-containing thin film, and the hardness of the formed thin film is reduced. improvement can be obtained.

또한, 상기 전구체를 사용함으로써 저 유전율 실리콘 함유 박막 및 상기 저 유전율 실리콘 함유 박막을 포함하는 반도체 소자를 제조할 수 있다.In addition, by using the precursor, a low dielectric constant silicon-containing thin film and a semiconductor device including the low dielectric constant silicon containing thin film can be manufactured.

도 1은 화학식 1로 표시되는 실리콘 함유 화합물로 이루어진 전구체가 플라즈마 인가에 의해 반응 사이트를 형성하는 과정을 도시한 개념도이다.
도 2는 실시예 1에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 3은 실시예 2에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 4는 실시예 3에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 5는 실시예 4에 따른 실리콘 함유 화합물의 1H-NMR 분석결과이다.
도 6은 실시예 1 내지 4에 따른 실리콘 함유 화합물의 TGA 분석결과이다.
1 is a conceptual diagram illustrating a process in which a precursor made of a silicon-containing compound represented by Chemical Formula 1 forms a reaction site by applying plasma.
2 is a 1 H-NMR analysis result of the silicon-containing compound according to Example 1.
3 is a 1 H-NMR analysis result of the silicon-containing compound according to Example 2.
4 is a 1 H-NMR analysis result of the silicon-containing compound according to Example 3.
5 is a 1 H-NMR analysis result of a silicon-containing compound according to Example 4.
6 is a TGA analysis result of silicon-containing compounds according to Examples 1 to 4.

이하 본 발명을 보다 상세히 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail. Terms or words used in this specification and claims should not be construed as being limited to ordinary or dictionary meanings, and the inventor may appropriately define the concept of terms in order to explain his or her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.

본 발명에 따른 저 유전율 실리콘 함유 박막 형성용 전구체는 하기 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 한다.The precursor for forming a low dielectric constant silicon-containing thin film according to the present invention is characterized by including a silicon-containing compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00005
Figure pat00005

상기 화학식 1에서,In Formula 1,

R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.R are each independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, a C 1 -C 6 straight-chain, branched or cyclic allyl group including a functional group, C 1 -C 6 a vinyl group containing a straight-chain, branched or cyclic functional group of C 1 -C 6 alkoxy group containing a straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a C 1 -C A phenyl group containing 6 functional groups, and L is a linking group selected from a straight-chain, branched, and cyclic alkyl group or an aryl group.

상기 화학식 1로 표시되는 실리콘 함유 화합물은 2개의 실란 화합물이 대칭되는 형태로 결합하고 있으므로, 박막 형성 공정의 전구체로 사용할 때 최적의 증착 효율을 얻을 수 있다. Since the silicon-containing compound represented by Chemical Formula 1 combines two silane compounds in a symmetrical form, optimum deposition efficiency can be obtained when used as a precursor in a thin film formation process.

도 1에와 같은 구조의 실리콘 함유 화합물을 박막 형성 공정에 적용하는 경우를 예로 들어 설명하면, 2개의 실란 화합물을 연결하고 있는 알콕시기는 낮은 결합에너지를 가지고 있어 절단(break-up)되기 용이하기 때문에 플라즈마를 인가하면 산소 원자에 라디칼이 형성된 중간체로 분해된다. 이를 통해 반응 사이트를 가진 두개의 실리콘 단량체가 형성되기 때문에 박막이 형성되는 속도를 크게 높일 수 있게 된다. 또한, 상기 반응 사이트와 박막 표면의 반응기가 기밀하게 결합될 수 있기 때문에 형성된 박막의 경도를 향상시킬 수 있게 된다. 또한, 상기 화학식 1에서 R은 실리콘 원자에 결합되어 있기 때문에 일단 박막 표면에 흡착한 후 박막 내에 Si-C 결합을 형성하게 된다. 이러한 표면 흡착 과정을 통해 형성되는 실리콘 함유 박막의 유전율을 낮출 수 있게 된다.If a silicon-containing compound having the same structure as in FIG. 1 is applied to the thin film formation process as an example, the alkoxy group connecting the two silane compounds has low binding energy and is easy to break-up. When plasma is applied, oxygen atoms are decomposed into intermediates in which radicals are formed. Through this, since two silicon monomers having reactive sites are formed, the speed at which thin films are formed can be greatly increased. In addition, since the reaction site and the reactive group on the surface of the thin film can be airtightly coupled, the hardness of the formed thin film can be improved. In addition, since R in Chemical Formula 1 is bonded to a silicon atom, a Si—C bond is formed in the thin film after being once adsorbed on the surface of the thin film. The dielectric constant of the silicon-containing thin film formed through this surface adsorption process can be lowered.

상기 화학식 1로 표시되는 실리콘 화합물의 연결기는 실리콘 원자에 결합한 알콕시기 간의 연결 및 에너지 인가에 의한 분해가 용이한 구조로 이루어진 것으로서, 전술한 바와 같이 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택될 수 있다.The linking group of the silicone compound represented by Formula 1 has a structure that is easily decomposed by linkage between alkoxy groups bonded to silicon atoms and application of energy, and as described above, among linear, branched, and cyclic alkyl or aryl groups can be chosen

구체적으로 상기 연결기가 직쇄형 또는 분지형 알킬기인 경우 상기 화학식 1로 표시되는 실리콘 함유 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다.Specifically, when the linking group is a straight-chain or branched alkyl group, the silicon-containing compound represented by Chemical Formula 1 may be a compound represented by Chemical Formula 2 below.

[화학식 2][Formula 2]

Figure pat00006
Figure pat00006

상기 R은 화학식 1에서 정의된 것과 같으며, 상기 n은 1 내지 8의 정수로서 상기 2개의 알콕시기 사이에 다양한 형태의 알킬기가 결합될 수 있다.R is as defined in Formula 1, and n is an integer of 1 to 8, and various types of alkyl groups may be bonded between the two alkoxy groups.

또한, 상기 연결기가 고리형 알킬기인 경우 하기 화학식 3과 같은 화학구조의 화합물을 형성할 수 있다.In addition, when the linking group is a cyclic alkyl group, a compound having a chemical structure shown in Chemical Formula 3 may be formed.

[화학식 3][Formula 3]

Figure pat00007
Figure pat00007

상기 R은 화학식 1에서 정의된 것과 같으며, 상기 n은 1 내지 8의 정수로서 상기 2개의 알콕시기 사이에 다양한 형태의 고리형 알킬기가 결합될 수 있다.R is as defined in Formula 1, and n is an integer of 1 to 8, and various types of cyclic alkyl groups may be bonded between the two alkoxy groups.

또한, 상기 연결기가 아릴기인 경우 하기 화학식 4와 같은 화학구조의 화합물을 형성할 수 있다.In addition, when the linking group is an aryl group, a compound having a chemical structure shown in Chemical Formula 4 may be formed.

[화학식 4][Formula 4]

Figure pat00008
Figure pat00008

상기 R은 화학식 1에서 정의된 것과 같은데, 상기 화학구조에서는 에너지가 조사될 때 아릴기와 산소 사이가 절단되면서 라디칼을 형성할 수 있다. 또한, 이와 같이 형성된 아릴기는 박막 내 탄소 함량을 높일 수 있다.The R is the same as defined in Formula 1, and in the chemical structure, when energy is irradiated, a radical may be formed while cleavage between an aryl group and oxygen. In addition, the aryl group formed in this way can increase the carbon content in the thin film.

또한, 본 발명의 전구체는 용매를 추가적으로 포함할 수 있다. 상기 용매로는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 이들의 혼합물을 사용할 수 있다. 상기 C1-C16의 포화 또는 불포화 탄화수소의 예로는 톨루엔, 헵탄 등을 들 수 있으며, 3차 아민으로는 디메틸에틸아민을 들 수 있다.In addition, the precursor of the present invention may additionally include a solvent. As the solvent, any one of C 1 -C 16 saturated or unsaturated hydrocarbons, ketones, ethers, glymes, esters, tetrahydrofuran, and tertiary amines, or mixtures thereof may be used. Examples of the C 1 -C 16 saturated or unsaturated hydrocarbon include toluene and heptane, and examples of the tertiary amine include dimethylethylamine.

특히, 실리콘 함유 화합물이 실온에서 고체 상태인 경우 이를 용해할 수 있는 용매를 포함하는 것이 바람직하다. 즉, 상기 용매를 포함하는 경우, 상기 상기 실리콘 함유 화합물을 용해할 수 있는 용매 및 함량으로 함유되게 되며, 상기 실리콘 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함되는 것이 바람직하다.In particular, when the silicon-containing compound is in a solid state at room temperature, it is preferable to include a solvent capable of dissolving it. That is, when the solvent is included, it is contained in a solvent and an amount capable of dissolving the silicon-containing compound, and is preferably included in an amount of 1 to 99% by weight based on the total weight of the precursor for forming the silicon-containing thin film.

상기 용매를 포함하거나 포함하지 않는 전구체는 기화할 수 있는 것이기 때문에 이를 전구체 가스 형태로 챔버 내로 공급할 수 있다. 따라서, 실리콘 함유 화합물의 종류에 따라 실온에서 액상으로 존재하며, 쉽게 기화될 수 있는 경우에는 별도의 용매 없이도 박막 형성 공정을 수행할 수 있다.Since the precursor with or without the solvent can be vaporized, it can be supplied into the chamber in the form of a precursor gas. Therefore, when the silicon-containing compound exists in a liquid state at room temperature and can be easily vaporized, depending on the type of silicon-containing compound, a thin film forming process can be performed without a separate solvent.

또한, 상기 실리콘 함유 화합물을 사용하여 저 유전율 실리콘 함유 박막을 형성할 때, SOD(spin-on dielectric, SOD) 공정, 고밀도 플라즈마 화학 기상 증착(High Density Plasma-Chemical Vapor Deposition, HDP-CVD) 공정, 또는 원자층 증착(Atomic Layer Deposition, ALD) 공정을 이용하여 박막을 형성할 수 있다.In addition, when forming a low dielectric constant silicon-containing thin film using the silicon-containing compound, a spin-on dielectric (SOD) process, a high density plasma-chemical vapor deposition (HDP-CVD) process, Alternatively, the thin film may be formed using an atomic layer deposition (ALD) process.

예를 들어, HDP-CVD 공정을 적용할 경우 상압 화학 기상 증착 공정(AP-CVD), 저압 화학 기상 증착 공정(LP-CVD) 또는 플라즈마 강화 화학 기상 증착 공정(PE-CVD)에 비해 고진공 및 고파워에서 진행될 수 있기 때문에 구조적으로 치밀하고 기계적 특성이 우수한 박막을 형성할 수 있게 된다.For example, when the HDP-CVD process is applied, high vacuum and high temperature are compared to atmospheric pressure chemical vapor deposition process (AP-CVD), low pressure chemical vapor deposition process (LP-CVD) or plasma enhanced chemical vapor deposition process (PE-CVD). Since the process can be performed at power, it is possible to form a thin film that is structurally dense and has excellent mechanical properties.

이를 위하여 상기 저 유전율 실리콘 함유 박막 형성용 전구체를 DLI(Direct Liquid Injection)을 통해 챔버 내부로 이송시키는 단계, 상기 챔버 내부로 이송된 상기 전구체와 다른 소스 가스가 기판에 공급된 상태에서 플라즈마를 인가하여 박막을 형성하는 단계를 포함하여 박막을 형성하게 된다.To this end, transferring the precursor for forming the low dielectric constant silicon-containing thin film into the chamber through DLI (Direct Liquid Injection), applying plasma while a source gas different from the precursor transferred into the chamber is supplied to the substrate, Forming a thin film includes forming a thin film.

예를 들어, 금속 배선 패턴이 형성된 기판 상에 상기 저 유전율 실리콘 함유 박막 형성용 전구체의 가스, 산소 가스, 캐리어 가스인 수소 가스를 공급하고 여기에 플라즈마를 발생시킴으로써 상기 기판 상에 형성된 금속 배선 패턴 사이의 갭을 채우는 저 유전율의 층간 절연막을 형성할 수 있다. 또한, 불화실리콘 절연막을 형성하고자 하는 경우 불소 소스 가스를 함께 공급하여 박막을 형성할 수도 있다.For example, between the metal wiring patterns formed on the substrate by supplying the low dielectric constant silicon-containing thin film precursor gas, oxygen gas, and carrier gas hydrogen gas to the substrate on which the metal wiring pattern is formed and generating plasma thereto. It is possible to form an interlayer insulating film of low permittivity filling the gap of . In addition, when forming a silicon fluoride insulating film, a fluorine source gas may be supplied together to form a thin film.

또한, 층간 절연막의 종류에 따라 기판 상에 실리콘 소스 가스, 불소 소스 가스, 산소 가스, 탄소를 포함하는 가스와 함께 캐리어 가스인 수소 가스를 공급하고 플라즈마를 발생시킴으로써 기판 상의 금속 배선 패턴 사이의 갭을 채우는 저 유전율의 절연막을 형성할 수 있다.In addition, depending on the type of interlayer insulating film, a silicon source gas, a fluorine source gas, an oxygen gas, and a hydrogen gas as a carrier gas are supplied to the substrate along with a gas containing carbon, and plasma is generated to close the gap between the metal wiring patterns on the substrate. A low dielectric constant insulating film may be formed.

상기 불소 소스로는 통상적으로 사용하는 SiF4를 사용할 수 있으며, 탄소를 포함하는 가스로는 CH4, C2H4, C2H6, C2H2, C6H6와 같은 탄화수소 가스나 메틸에톡시실란(MTES), 디에톡시메틸실란(DEMS), 디메톡시메틸실란(DMOMS), 테트라메틸사이클로테트라실록산(TOMCATS), 디메틸디메톡시실란(DMDMOS), 디메틸디옥시실릴사이클로헥산(DMDOSH), 트리메틸실란과 같은 유기실록산 소스 가스를 사용할 수 있다.Commonly used SiF 4 may be used as the fluorine source, and hydrocarbon gases such as CH 4 , C 2 H 4 , C 2 H 6 , C 2 H 2 , C 6 H 6 or methyl Ethoxysilane (MTES), diethoxymethylsilane (DEMS), dimethoxymethylsilane (DMOMS), tetramethylcyclotetrasiloxane (TOMCATS), dimethyldimethoxysilane (DMDMOS), dimethyldioxysilylcyclohexane (DMDOSH), An organosiloxane source gas such as trimethylsilane may be used.

상기 박막을 형성하기 위한 공정은 1 내지 1000mTorr의 챔버 내 압력 조건에서 수행할 수 있다. 또한, 상기 챔버 내에 플라즈마를 형성하기 위한 소스 파워는 500 내지 9,000W, 바이어스 파워는 0 내지 5,000W가 적절하다. 또한, 상기 바이어스 파워는 경우에 따라서 가하지 않을 수도 있다.The process for forming the thin film may be performed under pressure conditions in the chamber of 1 to 1000 mTorr. In addition, the source power for forming the plasma in the chamber is 500 to 9,000W, and the bias power is 0 to 5,000W. Also, the bias power may not be applied in some cases.

상기 박막 형성 공정에서 본 발명에서 사용되는 실리콘 함유 화합물의 구조적 특성 상 층간 절연막이 형성될 때 미세한 공극이 형성되게 된다. 이러한 공극이 형성됨으로써 상기 층간 절연막의 유전율을 더욱 더 낮추어 줄 수 있으며, 기존의 층간 절연막에 비해 더 낮은 유전율을 달성할 수 있게 된다.Due to the structural characteristics of the silicon-containing compound used in the present invention in the thin film formation process, fine voids are formed when an interlayer insulating film is formed. By forming such a gap, the dielectric constant of the interlayer insulating film can be further lowered, and a lower dielectric constant can be achieved compared to the existing interlayer insulating film.

또한, 실리콘 함유 화합물과 박막 표면과의 결합력이 향상되기 때문에 형성된 박막의 기계적 특성이 향상되게 된다.In addition, since the bonding force between the silicon-containing compound and the surface of the thin film is improved, the mechanical properties of the formed thin film are improved.

또한, 상기 수소가 유입됨에 따라 갭필 능력을 향상시킬 수 있으므로 상기 금속 배선 사이에 보이드(void)가 없는 층간 절연막을 형성하게 되며, 이를 통해 보이드에 의해 발생될 수 있는 공정 불량을 방지할 수 있게 된다.In addition, since the gap-filling ability can be improved as the hydrogen flows in, an interlayer insulating film without voids is formed between the metal wires, thereby preventing process defects that may occur due to voids. .

또한, 상기 박막 형성 공정을 적용하면 저 유전율 실리콘 함유 박막을 포함하는 것을 특징으로 하는 반도체 소자를 제조할 수 있다. 이때 상기 저 유전율 실리콘 함유 박막은 층간 절연막으로서 FSG(Fluarinated Silicate Glass)막이나 OSG(Organo Silicate Glass) 막을 형성하게 되며, 이를 통해 반도체 소자의 배선 간 기생 커패시턴스를 감소시켜 고품질의 반도체 소자를 형성하게 된다.In addition, when the thin film formation process is applied, a semiconductor device comprising a low permittivity silicon-containing thin film can be manufactured. At this time, the low dielectric constant silicon-containing thin film forms a FSG (Fluarinated Silicate Glass) film or OSG (Organo Silicate Glass) film as an interlayer insulating film, and through this, a high-quality semiconductor device is formed by reducing parasitic capacitance between wires of the semiconductor device. .

이하 실시예를 통하여 본 발명의 효과를 설명한다.The effects of the present invention will be described through examples below.

실시예 1. 4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane의 제조Example 1. Preparation of 4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane

다이클로로다이메틸실란 200g(1.55mol)을 헥산 5ℓ로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 90.4㎖(1.55mol)와 트라이에틸아민 215㎖ (1.55mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 2,3-부탄다이올 70.7㎖(0.77mol)와 트라이에틸아민 259㎖(1.86mol), 헥산 1ℓ의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[70℃(bath 기준)@0.2torr]하여 무색의 액체인 4,4,6,7,9,9-헥사메틸-3,5,8,10-테트라옥사-4,9-다이실라도데칸 [4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane] 159.5g (수율: 70%)을 얻었다.A solution in which 200 g (1.55 mol) of dichlorodimethylsilane was diluted with 5 liters of hexane was cooled to a low temperature (about 0 ° C), and 90.4 ml (1.55 mol) of ethyl alcohol and 215 ml (1.55 mol) of triethylamine were slowly added in that order. After that, the mixture was stirred at room temperature for about 6 hours. The reaction was cooled again to a low temperature (about 0° C.), and a mixture of 70.7 ml (0.77 mol) of 2,3-butanediol, 259 ml (1.86 mol) of triethylamine, and 1 liter of hexane was added, followed by about 12 ml of hexane at room temperature. Stir for an hour. The final reactant was filtered, and the solvent was removed from the filtrate under reduced pressure to obtain a colorless liquid. The resulting liquid was purified under reduced pressure [70°C (bath standard) @ 0.2 torr] to obtain 4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9 which is a colorless liquid. -Disiladodecane [4,4,6,7,9,9-hexamethyl-3,5,8,10-tetraoxa-4,9-disiladodecane] 159.5 g (yield: 70%) was obtained.

생성물의 NMR 분석결과는 도 2와 같으며 특성 피크는 다음과 같다.The results of NMR analysis of the product are shown in FIG. 2, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.16 [s, 12H, -Si(OCH2CH3)(CH3)2], 1.15 [t, J=7.0 Hz, 6H, meso -Si(OCH2CH3)(CH3)2], 1.22-1.25 [m, 6.8H, dl -Si(OCH2CH3)(CH3)2 and -OCH(CH3)], 3.65-3.72 [m, 4H, meso and dl -Si(OCH2CH3)(CH3)2], 3.79-3.86 [m, 1.7H, meso -OCH(CH3)], 3.95-4.02 [m, 0.5H, dl -OCH(CH3)] 1 H-NMR (C 6 D 6 ): δ 0.16 [s, 12H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.15 [t, J=7.0 Hz, 6H, meso-Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.22-1.25 [m, 6.8H, dl -Si(OCH 2 CH 3 )(CH 3 ) 2 and -OCH(CH 3 )], 3.65-3.72 [m, 4H, meso and dl -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.79-3.86 [m, 1.7H, meso -OCH(CH 3 )], 3.95-4.02 [m, 0.5H, dl -OCH(CH 3 )]

실시예 2. 1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane의 제조Example 2. Preparation of 1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane

다이클로로다이메틸실란 20g(0.15mol)을 헥산 500㎖로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 9㎖(0.15mol)와 트라이에틸아민 21.5㎖(0.15mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 1,2-사이클로헥산다이올 8.9g(0.07mol)와 트라이에틸아민 26㎖(0.18mol), 테트라하이드로퓨란 100㎖의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[100℃(bath 기준)@0.2torr]하여 무색의 액체인 1,2-비스((에톡시다이메틸실릴)옥시)사이클로헥산 [1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane] 13.2g (수율: 53%)을 얻었다.A solution in which 20 g (0.15 mol) of dichlorodimethylsilane was diluted with 500 ml of hexane was cooled to a low temperature (about 0 ° C), and 9 ml (0.15 mol) of ethyl alcohol and 21.5 ml (0.15 mol) of triethylamine were slowly added in that order. After addition, the mixture was stirred at room temperature for about 6 hours. The reactant was cooled again to a low temperature (about 0 ° C), and a mixture of 8.9 g (0.07 mol) of 1,2-cyclohexanediol, 26 ml (0.18 mol) of triethylamine, and 100 ml of tetrahydrofuran was added, Stirred at room temperature for about 12 hours. The final reactant was filtered, and the solvent was removed from the filtrate under reduced pressure to obtain a colorless liquid. The resulting liquid was purified under reduced pressure [100°C (bath standard) @ 0.2 torr] to obtain 1,2-bis((ethoxydimethylsilyl)oxy)cyclohexane [1,2-bis((ethoxydimethylsilyl)oxy], which is a colorless liquid. cyclohexane] to obtain 13.2 g (yield: 53%).

생성물의 NMR 분석결과는 도 3과 같으며 특성 피크는 다음과 같다.The NMR analysis result of the product is shown in FIG. 3, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.21-0.24 [m, 12H, -Si(OCH2CH3)(CH3)2], 1.16-1.20 [m, 7.3H, -Si(OCH2CH3)(CH3)2], 1.36-1.46 [m, 2.8H, cycle-(CHCH2-CH2)-], 1.51-1.57 [m, 1.1H, cycle-(CHCH2-CH2)-], 1.64-1.72 [m, 1.5H, cycle-(CHCH2-CH2)-], 1.86-1.94 [m, 1.6H, cycle-(CHCH2-CH2)-], 1.96-2.03 [m, 1.1H, cycle-(CHCH2-CH2)-], 3.70-3.76 [m, 4.9H, cycle-(CHCH2-CH2)- and -Si(OCH2CH3)(CH3)2], 3.86-3.88 [m, 1.1H, cycle-(CHCH2-CH2)-] 1 H-NMR (C 6 D 6 ): δ 0.21-0.24 [m, 12H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.16-1.20 [m, 7.3H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.36-1.46 [m, 2.8H, cycle-(CHCH 2 -CH 2 )-], 1.51-1.57 [m, 1.1H, cycle-(CHCH 2 -CH 2 )-] , 1.64-1.72 [m, 1.5H, cycle-(CHCH 2 -CH 2 )-], 1.86-1.94 [m, 1.6H, cycle-(CHCH 2 -CH 2 )-], 1.96-2.03 [m, 1.1 H, cycle-(CHCH 2 -CH 2 )-], 3.70-3.76 [m, 4.9H, cycle-(CHCH 2 -CH 2 )- and -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.86 -3.88 [m, 1.1H, cycle-(CHCH 2 -CH 2 )-]

실시예 3. 1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane의 제조Example 3. Preparation of 1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane

다이클로로다이메틸실란 10g(0.08mol)을 헥산 500㎖로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 4.5㎖(0.08mol)와 트라이에틸아민 10.8㎖(0.08mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 1,4-사이클로헥산다이올 4.5g(0.04mol)와 트라이에틸아민 11.8㎖(0.09mol), 테트라하이드로퓨란 100㎖의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[100℃(bath 기준)@0.6torr]하여 무색의 액체인 1,4-비스((에톡시다이메틸실릴)옥시)사이클로헥산 [1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane] 7.9g (수율: 62%)을 얻었다.A solution in which 10 g (0.08 mol) of dichlorodimethylsilane was diluted with 500 ml of hexane was cooled to a low temperature (about 0 ° C), and 4.5 ml (0.08 mol) of ethyl alcohol and 10.8 ml (0.08 mol) of triethylamine were slowly added in that order. After addition, the mixture was stirred at room temperature for about 6 hours. The reactant was cooled again to a low temperature (about 0 ° C), and a mixture of 4.5 g (0.04 mol) of 1,4-cyclohexanediol, 11.8 ml (0.09 mol) of triethylamine, and 100 ml of tetrahydrofuran was added, Stirred at room temperature for about 12 hours. The final reactant was filtered, and the solvent was removed from the filtrate under reduced pressure to obtain a colorless liquid. The resulting liquid was purified under reduced pressure [100°C (bath standard) @ 0.6 torr] to obtain 1,4-bis((ethoxydimethylsilyl)oxy)cyclohexane [1,4-bis((ethoxydimethylsilyl)oxy], which is a colorless liquid. cyclohexane] to obtain 7.9 g (yield: 62%).

생성물의 NMR 분석결과는 도 4와 같으며 특성 피크는 다음과 같다.The results of NMR analysis of the product are shown in FIG. 4, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.15 [d, 12H, J=6.0 Hz -Si(OCH2CH3)(CH3)2], 1.14 [t, J=7.0 Hz, 5.6H, -Si(OCH2CH3)(CH3)2], 1.46-1.55, 1.91-2.00 [m, 4.3H, cycle-CH(CH2-CH2)CH-], 1.91-2.00 [m, 4.3H, cycle-CH(CH2-CH2)CH-], 3.67 [q, 3.9H, -Si(OCH2CH3)(CH3)2], 3.82-3.89 [m, 2.1H, cycle-CH(CH2-CH2)CH-] 1 H-NMR (C 6 D 6 ): δ 0.15 [d, 12H, J=6.0 Hz -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.14 [t, J=7.0 Hz, 5.6H, - Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.46-1.55, 1.91-2.00 [m, 4.3H, cycle-CH(CH 2 -CH 2 )CH-], 1.91-2.00 [m, 4.3H, cycle-CH(CH 2 -CH 2 )CH-], 3.67 [q, 3.9H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.82-3.89 [m, 2.1H, cycle-CH(CH 2 -CH 2 )CH-]

실시예 4.1,2-bis((ethoxydimethylsilyl)oxy)benzene의 제조Example 4. Preparation of 1,2-bis((ethoxydimethylsilyl)oxy)benzene

다이클로로다이메틸실란 10g(0.08mol)을 헥산 500㎖로 희석한 용액을 저온(약 0℃)으로 냉각하고 에틸알코올 4.5㎖(0.08mol)와 트라이에틸아민 10.8㎖(0.08mol)를 순서대로 천천히 첨가한 뒤, 실온에서 약 6시간 동안 교반하였다. 반응물을 다시 저온(약 0℃)으로 냉각하고, 1,2-다이하이드록시벤젠 4.2g(0.04mol)와 트라이에틸아민 11.8㎖(0.09mol), 테트라하이드로퓨란 100㎖의 혼합물을 첨가한 뒤, 실온에서 약 12시간 동안 교반하였다. 최종 반응물을 필터하고 여과액을 감압 하에서 용매를 제거하여 무색의 액체를 얻었다. 얻어진 액체를 감압 정제[175℃(bath 기준)@0.4torr]하여 무색의 액체인 1,2-비스((에톡시다이메틸실릴)옥시)벤젠 [1,2-bis((ethoxydimethylsilyl)oxy)benzene] 3.2g (수율: 25%)을 얻었다.A solution in which 10 g (0.08 mol) of dichlorodimethylsilane was diluted with 500 ml of hexane was cooled to a low temperature (about 0 ° C), and 4.5 ml (0.08 mol) of ethyl alcohol and 10.8 ml (0.08 mol) of triethylamine were slowly added in that order. After addition, the mixture was stirred at room temperature for about 6 hours. The reaction was cooled to a low temperature (about 0 ° C) again, and a mixture of 4.2 g (0.04 mol) of 1,2-dihydroxybenzene, 11.8 ml (0.09 mol) of triethylamine, and 100 ml of tetrahydrofuran was added, Stirred at room temperature for about 12 hours. The final reactant was filtered, and the solvent was removed from the filtrate under reduced pressure to obtain a colorless liquid. The resulting liquid was purified under reduced pressure [175°C (bath standard) @ 0.4 torr] to obtain 1,2-bis((ethoxydimethylsilyl)oxy)benzene [1,2-bis((ethoxydimethylsilyl)oxy)benzene, which is a colorless liquid. ] 3.2 g (yield: 25%) was obtained.

생성물의 NMR 분석결과는 도 5와 같으며 특성 피크는 다음과 같다.The results of NMR analysis of the product are shown in FIG. 5, and the characteristic peaks are as follows.

1H-NMR(C6D6): δ 0.26 [s, 12H, -Si(OCH2CH3)(CH3)2], 1.13 [t, 6.5H, J=7.0 Hz, -Si(OCH2CH3)(CH3)2], 3.74 [q, 4.3H, -Si(OCH2CH3)(CH3)2], 6.79-6.83 [m, 2.5H, aromatic-C(CH=CH)-], 7.09-7.13 [m, 2.2H, aromatic-C(CH=CH)-] 1 H-NMR (C 6 D 6 ): δ 0.26 [s, 12H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 1.13 [t, 6.5H, J=7.0 Hz, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 3.74 [q, 4.3H, -Si(OCH 2 CH 3 )(CH 3 ) 2 ], 6.79-6.83 [m, 2.5H, aromatic-C(CH=CH)-], 7.09-7.13 [m, 2.2H, aromatic-C(CH=CH)-]

또한, 실시예 1 내지 4의 화합물에 대해 TGA 분석을 실시한 결과 도 6에서와 같이 100 내지 200℃ 영역에서 중량 감소가 나타났다. 이러한 결과로부터 상대적으로 낮은 온도에서 증착이 가능한 것으로 확인되었다.In addition, as a result of performing TGA analysis on the compounds of Examples 1 to 4, as shown in FIG. 6, weight loss was observed in the range of 100 to 200 ° C. From these results, it was confirmed that deposition is possible at a relatively low temperature.

실시예 1 내지 4에 따른 화합물을 이용한 증착 공정을 통해 박막을 형성하는 시험평가를 다음과 같이 실시하였다.A test evaluation of forming a thin film through a deposition process using the compounds according to Examples 1 to 4 was performed as follows.

[제조예][Production Example]

저 유전율 실리콘 함유 박막의 증착 공정을 수행하기 위하여 반응 챔버 내에 6인치 p-타입 Si 웨이퍼를 장착하고, 반응 챔버 내부를 아르곤(Ar) 가스로 퍼지하였다. 120℃의 vaporizer에서 전구체는 0.4g/min의 속도, 운반 가스는 400sccm, 400W 플라즈마가 인가된 챔버로 공급되었고, 350 내지 400℃의 공정온도 및 2 내지 10sccm의 산소(O2) 주입량에 따른 split을 통해 증착되는 저 유전율 실리콘 함유 박막의 증착율(GPC)을 측정하였고, 그 결과는 하기 표 1 과 같다.In order to perform a deposition process of a low dielectric constant silicon-containing thin film, a 6-inch p-type Si wafer was mounted in a reaction chamber, and the inside of the reaction chamber was purged with argon (Ar) gas. In the vaporizer at 120 °C, the precursor was supplied to the chamber at a rate of 0.4 g/min and a carrier gas of 400 sccm and 400 W plasma, and the split according to the process temperature of 350 to 400 °C and the injection amount of oxygen (O 2 ) of 2 to 10 sccm. The deposition rate (GPC) of the low permittivity silicon-containing thin film deposited through was measured, and the results are shown in Table 1 below.

공정조건process condition 공정 온도(℃)Process temperature (℃) O2 Gas Flow(sccm)O 2 Gas Flow (sccm) GPC(Å/min)GPC (Å/min) 1One 350350 22 113113 22 350350 1010 142142 33 400400 22 9696 44 400400 1010 122122

증착한 박막의 XPS 분석을 통해 박막 내 실리콘 및 산소, 탄소의 함유량을 측정한 결과는 하기 표 2와 같다.The results of measuring the content of silicon, oxygen, and carbon in the thin film through XPS analysis of the deposited thin film are shown in Table 2 below.

공정조건process condition SiSi OO CC 조성비
(Si : O : C)
composition ratio
(Si:O:C)
1One 36.836.8 43.343.3 2020 1 : 1.18 : 0.54 1:1.18:0.54 22 36.736.7 49.549.5 13.813.8 1 : 1.35 : 0.381:1.35:0.38 33 37.737.7 42.942.9 19.519.5 1 : 1.14 : 0.521:1.14:0.52 44 37.237.2 49.549.5 13.413.4 1 : 1.33 : 0.361:1.33:0.36

또한, 증착한 박막의 k값 및 modulus를 측정한 결과는 하기 표 3과 같다.In addition, the results of measuring the k value and modulus of the deposited thin film are shown in Table 3 below.

공정 조건process conditions kk Modulus(GPa)Modulus (GPa) 1One 1.941.94 31.131.1 22 2.462.46 2828 33 1.801.80 4242 44 2.272.27 38.438.4

표 3의 결과를 살펴보면 증착된 박막은 저 유전율을 가지며 높은 기계적 물성을 나타내는 것을 확인할 수 있다. 따라서 본 발명의 실리콘 함유 박막 형성용 전구체를 사용하면 고품질의 저 유전율 박막을 형성할 수 있는 것으로 나타났다.Looking at the results of Table 3, it can be seen that the deposited thin film has a low dielectric constant and exhibits high mechanical properties. Therefore, it was found that a high-quality, low-permittivity thin film could be formed by using the precursor for forming a silicon-containing thin film according to the present invention.

본 발명은 상술한 바와 같이 바람직한 실시형태를 들어 설명하였으나, 상기 실시형태들에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been described with preferred embodiments as described above, it is not limited to the above embodiments, and various modifications can be made by those skilled in the art within the scope of not departing from the spirit of the present invention. and change is possible. Such modifications and variations are intended to fall within the scope of this invention and the appended claims.

Claims (10)

하기 화학식 1로 표시되는 실리콘 함유 화합물을 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.

[화학식 1]
Figure pat00009


상기 화학식 1에서,
R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, L은 직쇄형, 분지형, 고리형 알킬기 또는 아릴기 중에서 선택되는 연결기이다.
A precursor for forming a low dielectric constant silicon-containing thin film comprising a silicon-containing compound represented by Formula 1 below.

[Formula 1]
Figure pat00009


In Formula 1,
R are each independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, a C 1 -C 6 straight-chain, branched or cyclic allyl group including a functional group, C 1 -C 6 a vinyl group containing a straight-chain, branched or cyclic functional group of C 1 -C 6 alkoxy group containing a straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a C 1 -C A phenyl group containing 6 functional groups, and L is a linking group selected from a straight-chain, branched, and cyclic alkyl group or an aryl group.
청구항 1에 있어서,
상기 화학식 1로 표시되는 실리콘 함유 화합물은 하기 화학식 2 내지 화학식 4 중 어느 하나로 표시되는 실리콘 함유 화합물인 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.

[화학식 2]
Figure pat00010


[화학식 3]
Figure pat00011


[화학식 4]
Figure pat00012


상기 화학식 2 내지 화학식 4에서,
R은 각각 독립적으로 수소원자 또는 C1-C6의 직쇄형, 분지형 또는 고리형 알킬기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알릴기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 비닐기, C1-C6의 직쇄형, 분지형 또는 고리형 관능기를 포함하는 알콕시기, 1차 또는 2차 아민기, 또는 C1-C6의 관능기를 포함하는 페닐기이며, n은 1 내지 8의 정수이다.
The method of claim 1,
A precursor for forming a low dielectric constant silicon-containing thin film, characterized in that the silicon-containing compound represented by Formula 1 is a silicon-containing compound represented by any one of Formulas 2 to 4 below.

[Formula 2]
Figure pat00010


[Formula 3]
Figure pat00011


[Formula 4]
Figure pat00012


In Formulas 2 to 4,
R are each independently a hydrogen atom or a C 1 -C 6 straight-chain, branched or cyclic alkyl group, a C 1 -C 6 straight-chain, branched or cyclic allyl group including a functional group, C 1 -C 6 a vinyl group containing a straight-chain, branched or cyclic functional group of C 1 -C 6 alkoxy group containing a straight-chain, branched or cyclic functional group, a primary or secondary amine group, or a C 1 -C It is a phenyl group containing a functional group of 6 , and n is an integer of 1 to 8.
청구항 1에 있어서,
용매를 추가적으로 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.
The method of claim 1,
A precursor for forming a low dielectric constant silicon-containing thin film, characterized in that it further comprises a solvent.
청구항 3에 있어서,
상기 용매는 C1-C16의 포화 또는 불포화 탄화수소, 케톤, 에테르, 글라임, 에스테르, 테트라하이드로퓨란, 3차 아민 중 어느 하나 또는 그 이상인 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.
The method of claim 3,
The solvent is a precursor for forming a low dielectric constant silicon-containing thin film, characterized in that any one or more of C 1 -C 16 saturated or unsaturated hydrocarbons, ketones, ethers, glymes, esters, tetrahydrofuran, and tertiary amines.
청구항 3에 있어서,
상기 용매는 상기 저 유전율 실리콘 함유 박막 형성용 전구체 총 중량에 대하여 1 내지 99 중량%로 포함되는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성용 전구체.
The method of claim 3,
The solvent is a precursor for forming a low dielectric constant silicon-containing thin film, characterized in that contained in 1 to 99% by weight relative to the total weight of the precursor for forming a low dielectric constant silicon-containing thin film.
청구항 1 또는 3에 따른 저 유전율 실리콘 함유 박막 형성용 전구체를 이용하여 기판 상에 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
A method of forming a low dielectric constant silicon-containing thin film comprising the step of forming a thin film on a substrate using the precursor for forming a low dielectric constant silicon-containing thin film according to claim 1 or 3.
청구항 6에 있어서,
상기 저 유전율 실리콘 함유 박막은 SOD(spin-on dielectric, SOD) 공정, 고밀도 플라즈마 화학 기상 증착(High Density Plasma-Chemical Vapor Deposition, HDP-CVD) 공정, 또는 원자층 증착(Atomic Layer Deposition, ALD) 공정에 의해 형성되는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
The method of claim 6,
The low dielectric constant silicon-containing thin film is a spin-on dielectric (SOD) process, a high density plasma-chemical vapor deposition (HDP-CVD) process, or an atomic layer deposition (ALD) process. A method for forming a low dielectric constant silicon-containing thin film, characterized in that formed by.
청구항 6에 있어서,
상기 저 유전율 실리콘 함유 박막 형성용 전구체를 DLI(Direct Liquid Injection)을 통해 챔버 내부로 이송시키는 단계를 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
The method of claim 6,
The low dielectric constant silicon-containing thin film forming method comprising the step of transferring the precursor for forming the low dielectric constant silicon-containing thin film into the chamber through DLI (Direct Liquid Injection).
청구항 6에 있어서,
상기 저 유전율 실리콘 함유 박막 형성용 전구체를 기판에 공급하고 플라즈마를 발생시켜 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 저 유전율 실리콘 함유 박막 형성 방법.
The method of claim 6,
A method of forming a low-permittivity silicon-containing thin film, comprising supplying the precursor for forming the low-permittivity silicon-containing thin film to a substrate and generating a plasma to form the thin film.
청구항 6의 저 유전율 실리콘 함유 박막 형성 방법에 의해 제조된 저 유전율 실리콘 함유 박막을 포함하는 것을 특징으로 하는 반도체 소자.
A semiconductor device comprising a low dielectric constant silicon-containing thin film manufactured by the low dielectric constant silicon-containing thin film forming method of claim 6.
KR1020210175677A 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same KR20230087074A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210175677A KR20230087074A (en) 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
PCT/KR2022/016538 WO2023106623A1 (en) 2021-12-09 2022-10-27 Precursor for forming low dielectric constant silicon-containing thin film, method for forming low dielectric constant silicon-containing thin film using same, and semiconductor device including low dielectric constant silicon-containing thin film
TW111145349A TWI849595B (en) 2021-12-09 2022-11-28 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210175677A KR20230087074A (en) 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same

Publications (1)

Publication Number Publication Date
KR20230087074A true KR20230087074A (en) 2023-06-16

Family

ID=86730778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210175677A KR20230087074A (en) 2021-12-09 2021-12-09 Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same

Country Status (2)

Country Link
KR (1) KR20230087074A (en)
WO (1) WO2023106623A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029762A (en) 2004-10-04 2006-04-07 삼성전자주식회사 Method for forming a thin film in semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG98468A1 (en) * 2001-01-17 2003-09-19 Air Prod & Chem Organosilicon precursors for interlayer dielectric films with low dielectric constants
US6716770B2 (en) * 2001-05-23 2004-04-06 Air Products And Chemicals, Inc. Low dielectric constant material and method of processing by CVD
US20070299239A1 (en) * 2006-06-27 2007-12-27 Air Products And Chemicals, Inc. Curing Dielectric Films Under A Reducing Atmosphere
US7998536B2 (en) * 2007-07-12 2011-08-16 Applied Materials, Inc. Silicon precursors to make ultra low-K films of K<2.2 with high mechanical properties by plasma enhanced chemical vapor deposition
US9337018B2 (en) * 2012-06-01 2016-05-10 Air Products And Chemicals, Inc. Methods for depositing films with organoaminodisilane precursors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060029762A (en) 2004-10-04 2006-04-07 삼성전자주식회사 Method for forming a thin film in semiconductor device

Also Published As

Publication number Publication date
WO2023106623A1 (en) 2023-06-15
TW202323260A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US6572923B2 (en) Asymmetric organocyclosiloxanes and their use for making organosilicon polymer low-k dielectric film
US6440876B1 (en) Low-K dielectric constant CVD precursors formed of cyclic siloxanes having in-ring SI—O—C, and uses thereof
JP6219870B2 (en) Compositions and methods for deposition of silicon oxide films
TW535238B (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
KR100453612B1 (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
US8802882B2 (en) Composition and method for low temperature chemical vapor deposition of silicon-containing films including silicon carbonitride and silicon oxycarbonitride films
JP5003722B2 (en) Organosiloxane compounds
JP4438385B2 (en) Insulating film material, organosilane compound manufacturing method, insulating film, and semiconductor device using the same
KR101327640B1 (en) Method for forming a dielectric film and novel precursors for implementing said method
KR20080005331A (en) Precursors for cvd silicon carbo-nitride films
KR20020096963A (en) Methods for forming low-k dielectric films
US20110042789A1 (en) Material for chemical vapor deposition, silicon-containing insulating film and method for production of the silicon-containing insulating film
US20100174103A1 (en) Material for forming silicon-containing film, and silicon-containing insulating film and method for forming the same
US6410770B2 (en) Chloride-free process for the production of alkylsilanes suitable for microelectronic applications
US20100140754A1 (en) Film-forming material, silicon-containing insulating film and method for forming the same
KR20220061162A (en) Monoalkoxysilane and high-density organosilica film prepared therefrom
JP4333480B2 (en) Si-containing film forming material and use thereof
KR20230087074A (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
US7029723B2 (en) Forming chemical vapor depositable low dielectric constant layers
KR20230087022A (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
KR20230086947A (en) Precursor for low-k silicon-containing film deposition, deposition method of low-k silicon-containing film and semiconductor device of the same
KR20220061161A (en) Monoalkoxysilane and dialkoxysilane and high-density organosilica film prepared therefrom
JP4341560B2 (en) Si-containing film forming material, Si-containing film, method for producing Si-containing film, and semiconductor device
JP6993394B2 (en) Silicon compounds and methods of depositing films using silicon compounds
TWI747023B (en) Silicon compounds and methods for depositing films using same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal