KR20230062374A - Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis - Google Patents

Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis Download PDF

Info

Publication number
KR20230062374A
KR20230062374A KR1020220132281A KR20220132281A KR20230062374A KR 20230062374 A KR20230062374 A KR 20230062374A KR 1020220132281 A KR1020220132281 A KR 1020220132281A KR 20220132281 A KR20220132281 A KR 20220132281A KR 20230062374 A KR20230062374 A KR 20230062374A
Authority
KR
South Korea
Prior art keywords
catalyst
water electrolysis
iridium
polymer electrolyte
preparing
Prior art date
Application number
KR1020220132281A
Other languages
Korean (ko)
Inventor
한상범
모용환
이용수
박현석
강은지
Original Assignee
주식회사 보야스에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 보야스에너지 filed Critical 주식회사 보야스에너지
Publication of KR20230062374A publication Critical patent/KR20230062374A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/023Catalysts characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1019100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1052Pore diameter
    • B01J35/10612-50 nm
    • B01J35/40
    • B01J35/615
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

본 발명은 초음파 분무 열분해법을 이용한 고효율의 고분자 전해질 수전해용 촉매의 제조방법에 관한 것으로, 본 발명에서는 초음파 분무 열분해법을 이용하여 고분자 전해질 수전해용 촉매를 제조하였으며, 초음파 발생기를 이용하여 분무 입자의 크기를 줄여 촉매의 크기를 감소시켰다.
또한, 본 발명은 전도성 산화물 지지체인 안티몬주석산화물(antimony doped tin oxide; ATO)에 이리듐-루테늄 산화물(Iridium Ruthenium oxide, IrRuOx) 촉매를 담지하여 귀금속 촉매의 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 얻을 수 있다.
또한, 본 발명의 고분자 전해질 수전해용 촉매는 귀금속 촉매의 사용량을 감소시켜 단위 전지의 효율을 높일 수 있어 경제적이다.
The present invention relates to a method for preparing a high-efficiency polymer electrolyte water electrolysis catalyst using ultrasonic spray pyrolysis. In the present invention, a polymer electrolyte water electrolysis catalyst was prepared using ultrasonic spray pyrolysis, and an ultrasonic generator The size of the catalyst was reduced by reducing the size.
In addition, the present invention supports the Iridium Ruthenium oxide (IrRuOx) catalyst on antimony doped tin oxide (ATO), which is a conductive oxide support, to reduce the amount of precious metal catalyst used and to achieve high current density unit cell performance. can be obtained.
In addition, the polymer electrolyte water electrolysis catalyst of the present invention is economical because it can increase the efficiency of a unit cell by reducing the amount of noble metal catalyst used.

Description

고효율의 고분자 전해질 수전해용 IrRuOx/ATO 촉매의 제조방법{Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis} Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis}

본 발명은 고효율의 고분자 전해질(PEM, Proton Exchange Membrane) 수전해 시스템에 관한 것으로써, 산소발생전극에 귀금속 촉매 사용량을 줄이기 위한 촉매의 제조방법에 관한 것이다.The present invention relates to a high-efficiency polymer electrolyte (PEM, Proton Exchange Membrane) water electrolysis system, and relates to a method for preparing a catalyst for reducing the amount of noble metal catalyst used in an oxygen generating electrode.

수전해는 크게 알칼리 전해질을 사용하는 알칼리 수전해와 산성 전해질막을 사용하는 고분자 전해질 수전해가 있다. 고분자 전해질 수전해는 고가의 귀금속 촉매[양극(anode) : IrOx, 음극(cathode) : Pt/C]를 이용하여 물을 전기분해 하는 시스템이다. Water electrolysis is largely divided into alkaline water electrolysis using an alkaline electrolyte and polymer electrolyte water electrolysis using an acidic electrolyte membrane. Polymer electrolyte water electrolysis is a system that electrolyzes water using an expensive precious metal catalyst [anode: IrO x , cathode: Pt/C].

종래에 귀금속 촉매의 제조는 Adam's Fusion 방법을 주로 사용하였으며, 일반 열처리 도가니에서 열처리하여 합성했기 때문에 입자의 크기가 크고 비표면적이 50 m2 이하였다. 또한, 안정한 촉매 담지체가 많지 않아 촉매의 비율을 70% 이하로 낮추기가 어렵고, 대부분의 상용 수전해에는 담지체가 사용되고 있지 못하며, 이로 인해 귀금속 촉매의 사용량이 2~4 mg/cm2 수준이다. 이에, 촉매의 사용량을 줄이기 위해서는 담지체와 고효율 촉매 개발이 필요한 실정이다.Conventionally, the Adam's Fusion method was mainly used for the manufacture of noble metal catalysts, and since they were synthesized by heat treatment in a general heat treatment crucible, the particle size was large and the specific surface area was less than 50 m 2 . In addition, since there are not many stable catalyst supports, it is difficult to lower the proportion of the catalyst to 70% or less, and most of the supports are not used for commercial water electrolysis, and therefore, the amount of noble metal catalyst used is 2 to 4 mg/cm 2 level. Therefore, in order to reduce the amount of catalyst used, it is necessary to develop a support and a high-efficiency catalyst.

고분자 전해질 수전해는 알칼리 수전해보다 전류밀도가 5 내지 10배 정도 높은 장점이 있으나, 고가의 촉매 사용으로 인해 초기 비용이 50% 정도 더 높고, 시스템 단가가 높아 상용화가 어려운 단점이 있다. 특히, 양극에는 4 mg/cm2 정도의 많은 촉매 사용량을 필요로 하는 바, 이를 줄여야 경제성을 확보할 수 있다. 또한, 고분자 전해질 수전해의 양극은 높은 산성 조건과 높은 전압으로 인해 적절한 지지체 확보가 어려운 단점이 있다. 이에, 고분자 전해질 수전해에 적절한 지지체의 사용은 귀금속 촉매의 사용량을 감소시킬 수 있으며, 소재의 단가를 낮추어야 고분자 전해질 수전해의 상업화가 가능하다. Polyelectrolyte water electrolysis has the advantage of having a current density 5 to 10 times higher than that of alkaline water electrolysis, but has disadvantages in that the initial cost is about 50% higher due to the use of an expensive catalyst and the system cost is high, making commercialization difficult. In particular, the anode requires a large amount of catalyst, such as about 4 mg/cm 2 , so that economic feasibility can be secured only by reducing this amount. In addition, the anode of polymer electrolyte water electrolysis has a disadvantage in that it is difficult to secure an appropriate support due to high acid conditions and high voltage. Therefore, the use of a suitable support for polymer electrolyte water electrolysis can reduce the amount of noble metal catalyst used, and commercialization of polymer electrolyte water electrolysis is possible only when the unit price of the material is lowered.

따라서 귀금속 촉매의 사용량을 줄여 수전해 단위전지의 효율을 높일 수 있는 귀금속 촉매 및 지지체의 제조 및 이의 제조방법에 대한 연구가 필요한 실정이다.Therefore, there is a need for research into the production of a noble metal catalyst and a support capable of increasing the efficiency of a water electrolysis unit cell by reducing the amount of noble metal catalyst used, and a manufacturing method thereof.

대한민국 공개특허 제10-2011-0084225호 (2011.07.21 공개)Republic of Korea Patent Publication No. 10-2011-0084225 (published on July 21, 2011)

본 발명은 기존의 고분자 전해질 수전해 시스템과 비교하여 귀금속 사용량을 줄인 고효율의 고분자 전해질 수전해용 촉매를 제조하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for preparing a high-efficiency polymer electrolyte water electrolysis catalyst that uses less precious metals compared to conventional polymer electrolyte water electrolysis systems.

상기 목적을 달성하기 위하여, 본 발명의 고분자 전해질 수전해용 촉매는 초음파 분무 열분해 방법을 이용하여 고효율 이리듐-루테늄 산화물(IrRuO4)를 제조하였다. 또한, IrRuOx 촉매와 안티몬주석산화물(Antimony doped Tin Oxide; ATO) 지지체를 일정 질량비율로 혼합 후 볼밀을 이용하여 혼합하여 고효율 IrRuOx/ATO 촉매를 제조하였으며, 이를 통해 귀금속 사용량을 줄이고자 하였다.In order to achieve the above object, the catalyst for water electrolysis of a polymer electrolyte according to the present invention was prepared by high-efficiency iridium-ruthenium oxide (IrRuO 4 ) using an ultrasonic spray pyrolysis method. In addition, a high-efficiency IrRuOx/ATO catalyst was prepared by mixing the IrRuOx catalyst and an antimony tin oxide (ATO) support at a certain mass ratio and mixing using a ball mill, thereby reducing the amount of precious metal used.

본 발명에서는 초음파 분무 열분해법을 이용하여 고분자 전해질 수전해용 촉매를 제조하였으며, 초음파 발생기를 이용하여 분무 입자의 크기를 줄여 촉매의 크기를 감소시켰다.In the present invention, a catalyst for polymer electrolyte water electrolysis was prepared using ultrasonic spray pyrolysis, and the size of the catalyst was reduced by reducing the size of spray particles using an ultrasonic generator.

또한, 본 발명은 전도성 산화물 지지체인 안티몬주석산화물(antimony doped tin oxide; ATO)에 이리듐-루테늄 산화물(Iridium Ruthenium oxide, IrRuOx) 촉매를 담지하여 귀금속 촉매의 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 얻을 수 있다.In addition, the present invention supports the Iridium Ruthenium oxide (IrRuOx) catalyst on antimony doped tin oxide (ATO), which is a conductive oxide support, to reduce the amount of precious metal catalyst used and to achieve high current density unit cell performance. can be obtained.

또한, 본 발명의 고분자 전해질 수전해용 촉매는 귀금속 촉매의 사용량을 감소시켜 단위 전지의 효율을 높일 수 있어 경제적이다.In addition, the polymer electrolyte water electrolysis catalyst of the present invention is economical because it can increase the efficiency of a unit cell by reducing the amount of noble metal catalyst used.

도 1은 고분자 전해질 수전해용 촉매의 질소 흡탈착 곡선이다.
도 2는 고분자 전해질 수전해용 촉매의 X선 회절분석 결과이다.
도 3은 고분자 전해질 수전해용 촉매의 투과전자현미경(TEM) 촬영 이미지이다.
도 4는 이리듐-루테늄 산화물(IrRuOx) 촉매와 안티몬주석산화물(ATO) 지지체를 7:3의 질량비로 합성한 후, 수전해 단위전지 성능을 평가한 결과를 나타낸 것이다.
1 is a nitrogen adsorption/desorption curve of a polymer electrolyte water electrolysis catalyst.
2 is an X-ray diffraction analysis result of a polymer electrolyte water electrolysis catalyst.
3 is a transmission electron microscope (TEM) image of a polymer electrolyte water electrolysis catalyst.
FIG. 4 shows the result of evaluating the performance of a water electrolysis unit cell after synthesizing an iridium-ruthenium oxide (IrRuO x ) catalyst and an antimony tin oxide (ATO) support at a mass ratio of 7:3.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 고분자 전해질 양극에 사용할 수 있는 촉매의 제조방법으로 초음파 분무 열분해법을 이용하여 고비표면적의 이리듐-루테늄 산화물(IrRuOx)과 전도성 산화물인 ATO 지지체를 합성하여 수전해용 IrRuOx/ATO 촉매를 제조하였으며, 상기 IrRuOx/ATO 촉매는 촉매 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 나타내어 수전해 전지에 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention synthesized a high specific surface area iridium-ruthenium oxide (IrRuO x ) and a conductive oxide ATO support using ultrasonic spray pyrolysis as a method for preparing a catalyst usable for a polymer electrolyte anode, and IrRuO x /ATO for water electrolysis. A catalyst was prepared, and the present invention was completed by finding that the IrRuO x /ATO catalyst exhibits high current density unit cell performance even with a reduced amount of catalyst and can be usefully used in a water electrolysis cell.

본 발명은 이리듐 전구체 및 루테늄 전구체를 혼합한 혼합물에 초음파 분무 열분해법을 이용하여 다공성의 이리듐-루테늄 산화물을 제조하는 단계; 초음파 분무 열분해법을 이용하여 안티주석산화물 지지체를 제조하는 단계; 및 상기 이리듐-루테늄 산화물을 안티몬주석 산화물 지지체에 담지하여 촉매를 제조하는 단계를 포함하고, 상기 이리듐-루테늄 산화물(IrRuOx)의 x는 2이하인 것을 특징으로 하는 수전해용 촉매의 제조방법을 제공한다.The present invention includes preparing a porous iridium-ruthenium oxide by using an ultrasonic spray pyrolysis method in a mixture of an iridium precursor and a ruthenium precursor; preparing an anti-tin oxide support using an ultrasonic spray pyrolysis method; and preparing a catalyst by supporting the iridium-ruthenium oxide on an antimony tin oxide support, wherein x of the iridium-ruthenium oxide (IrRuO x ) is 2 or less. .

이때, 상기 다공성의 이리듐-루테늄 산화물을 제조하는 단계는 (a) 상기 이리듐 전구체 및 루테늄 전구체를 용매에 용해시켜 전구체 용액을 제조하는 단계; (b) 상기 전구체 용액을 초음파 발생기가 장착된 용액조에 주입하여 1 내지 5㎛ 크기의 입자로 분무하는 단계; 및 (c) 상기 형성된 입자를 열분해 후 건조하는 단계;를 포함할 수 있으며, 상기 입자는 메쉬 초음파를 이용하여 1 내지 30kHz의 초음파 범위에서 형성되고, 상기 열분해는 300 내지 600℃의 온도에서 수행될 수 있다.In this case, preparing the porous iridium-ruthenium oxide may include (a) preparing a precursor solution by dissolving the iridium precursor and the ruthenium precursor in a solvent; (b) spraying the precursor solution into particles having a size of 1 to 5 μm by injecting the precursor solution into a solution bath equipped with an ultrasonic generator; and (c) drying the formed particles after pyrolysis, wherein the particles are formed in the ultrasonic range of 1 to 30 kHz using mesh ultrasonic waves, and the pyrolysis is performed at a temperature of 300 to 600 ° C. can

상기 이리듐 전구체는 이리듐(Ⅲ)클로라이드 수화물(IrCl3·xH2O), 이리듐(Ⅳ)클로라이드 수화물(IrCl4·xH2O), 암모늄 헥사클로로이리데이트((NH4)2IrCl6) 및 디수소헥사클로로이리드염(H2IrCl6)으로 이루어진 군에서 선택된 1종 이상을 포함한다.The iridium precursor is iridium(III) chloride hydrate (IrCl 3 xH 2 O), iridium(IV) chloride hydrate (IrCl 4 xH 2 O), ammonium hexachloroiridate ((NH 4 ) 2 IrCl 6 ) and di It includes at least one selected from the group consisting of hydrogen hexachloro iride salt (H 2 IrCl 6 ).

상기 루테늄 전구체는 염화루테늄 수화물(RuCl3·xH2O), 루테늄(III)아세틸아세토네이트(Ru(C5H7O2)3), 아이오딘화루테늄 수화물(RuI3·H2O) 및 헥사암미네루테늄(III) 염화물([Ru(NH3)6]Cl2)으로 이루어진 군에서 선택된 1종 이상을 포함한다.The ruthenium precursor is ruthenium chloride hydrate (RuCl 3 .xH 2 O), ruthenium(III)acetylacetonate (Ru(C 5 H 7 O 2 ) 3 ), ruthenium iodide hydrate (RuI 3 .H 2 O), and It includes at least one selected from the group consisting of hexaammineruthenium (III) chloride ([Ru(NH 3 ) 6 ]Cl 2 ).

상기와 같이 초음파 분무 열분해법으로 생성된 다공성 이리듐-루테늄 산화물(IrRuOx)의 평균 기공 크기는 1 내지 5nm 이며, BET 표면적은 200 내지 300 m2/g 일 수 있다.The average pore size of the porous iridium-ruthenium oxide (IrRuO x ) produced by the ultrasonic spray pyrolysis method as described above may be 1 to 5 nm, and the BET surface area may be 200 to 300 m 2 /g.

상기 안티주석산화물 지지체를 제조하는 단계는 (i) 안티몬 전구체 및 주석 전구체를 혼합한 지지체 전구체 용액을 제조하는 단계; (ii) 상기 지지체 전구체 용액을 초음파 발생기가 장착된 용액조에 주입하여 1 내지 5㎛ 크기의 입자로 분무하는 단계; 및 (iii) 상기 형성된 입자를 열분해 후 건조하는 단계;를 포함할 수 있으며, 상기 입자는 메쉬 초음파를 이용하여 1 내지 30kHz의 초음파 범위에서 형성되고, 상기 열분해는 300 내지 600℃의 온도에서 수행될 수 있다.The preparing of the anti-tin oxide support may include (i) preparing a support precursor solution in which an antimony precursor and a tin precursor are mixed; (ii) injecting the support precursor solution into a solution bath equipped with an ultrasonic generator and spraying it into particles having a size of 1 to 5 μm; and (iii) drying the formed particles after pyrolysis, wherein the particles are formed in the ultrasonic range of 1 to 30 kHz using mesh ultrasonic waves, and the pyrolysis is performed at a temperature of 300 to 600 ° C. can

상기 촉매를 제조하는 단계는 다공성 이리듐-루테늄 산화물(IrRuOx) 촉매 및 안티주석산화물(antimony doped tin oxide) 지지체를 7~3:3~7 또는 7~5:3~5의 질량비율로 유성형 볼밀을 이용하여 혼합할 수 있다.The step of preparing the catalyst is a planetary ball mill in which a porous iridium-ruthenium oxide (IrRuO x ) catalyst and an antimony doped tin oxide support are mixed in a mass ratio of 7 to 3:3 to 7 or 7 to 5:3 to 5. can be mixed using

이때, 상기와 같은 초음파 분무 열분해법의 조건 및 상기와 같은 다공성 이리듐-루테늄 산화물(IrRuOx)와 안티주석산화물(antimony doped tin oxide) 지지체의 질량비를 벗어나면 본 발명에 따른 표면적이 넓으며, 나노 크기를 갖는 IrRuOx 촉매 및 안티주석산화물(antimony doped tin oxide) 지지체가 제대로 형성되지 않으며, 수전해 단위전지에서의 효율 및 성능이 우수한 수전해용 촉매가 제조될 수 없는 문제가 야기될 수 있다.At this time, if the conditions of the ultrasonic spray pyrolysis method as described above and the mass ratio of the porous iridium-ruthenium oxide (IrRuOx) and anti-tin oxide (antimony doped tin oxide) support are out of the range, the surface area according to the present invention is large, and the nano-sized The IrRuOx catalyst and the anti-tin oxide (antimony doped tin oxide) support are not properly formed, and a water electrolysis catalyst having excellent efficiency and performance in a water electrolysis unit cell cannot be manufactured.

상기 초음파 분무 열분해법으로 형성된 이리듐-루테늄 산화물(IrOx)은 열처리에 의해 다공성 구조를 가지게 되어 표면적이 증가됨으로써 산소 발생 활성을 더욱 증가시킬 수 있으며, 상기 안티몬주석산화물(antimony doped tin oxide) 지지체를 사용할 경우, 상기 다공성 산화이리듐(IrOx) 촉매끼리 뭉치는 현상을 방지할 수 있고 전도도를 증가시킬 수 있어, 상기 안티몬주석산화물(antimony doped tin oxide) 지지체를 사용하지 않을 경우에 비해 수전해용 단위전지의 성능 및 효율이 더 뛰어날 수 있다.The iridium-ruthenium oxide (IrOx) formed by the ultrasonic spray pyrolysis method has a porous structure by heat treatment, so that the oxygen generation activity can be further increased by increasing the surface area, and the antimony doped tin oxide support can be used. In this case, it is possible to prevent the porous iridium oxide (IrOx) catalysts from aggregating together and to increase the conductivity, thereby improving the performance of the unit cell for water electrolysis compared to the case where the antimony doped tin oxide support is not used. and more efficient.

구체적으로, 상기 촉매를 제조하는 단계는 다공성 이리듐-루테늄 산화물(IrRuOx) 촉매와 안티주석산화물(antimony doped tin oxide) 지지체를 유성형 볼밀을 이용하여 200 내지 700 rpm 조건에서 2시간 내지 8시간 동안 혼합하여 수행할 수 있다.Specifically, the step of preparing the catalyst is mixing a porous iridium-ruthenium oxide (IrRuO x ) catalyst and an anti-tin oxide (antimony doped tin oxide) support using a planetary ball mill at 200 to 700 rpm for 2 to 8 hours. can be done by

상기 촉매를 제조하는 단계를 통해 제조된 촉매의 안티몬주석 산화물 지지체는 전체 촉매를 기준으로 30 내지 70 중량% 또는 30 내지 50 중량%으로 포함될 수 있다.Antimony tin oxide support of the catalyst prepared through the step of preparing the catalyst may be included in 30 to 70% by weight or 30 to 50% by weight based on the total catalyst.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이며 본 발명의 내용을 예시하는 것일 뿐이므로 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, examples will be described in detail to aid understanding of the present invention. However, the following examples are provided to more completely explain the present invention to those skilled in the art and are merely illustrative of the contents of the present invention, so that the scope of the present invention is not limited to the following examples. no.

<제조예 1> IrRuOx(iridium Ruthenium oxide)/ATO(antimony doped tin oxide) 수전해 촉매의 제조 <Preparation Example 1> Preparation of I rRuOx (iridium ruthenium oxide)/ATO (antimony doped tin oxide) water electrolysis catalyst

1-1. IrRuOx(iridium Ruthenium oxide) 촉매의 제조1-1. Preparation of IrRuO x (iridium Ruthenium oxide) catalyst

염화이리듐(IrCl3·xH2O) 및 염화루테늄(RuCl3·xH2O)을 메쉬 초음파 발생기를 이용한 초음파 분무 열분해(ultrasonic spray pyrolysis)방법을 이용하여 24 kHz의 초음파 하에서 5㎛의 입자로 분무하고, 300℃의 공기와 혼합한 후 500℃의 전기로에 주입해 순간적으로 열처리하여 IrRuOx 촉매를 제조하였다.Iridium chloride (IrCl 3 xH 2 O) and ruthenium chloride (RuCl 3 xH 2 O) are sprayed into 5㎛ particles under ultrasonic waves at 24 kHz using the ultrasonic spray pyrolysis method using a mesh ultrasonic generator. Then, after mixing with air at 300 ° C, it was injected into an electric furnace at 500 ° C and instantly heat treated to prepare an IrRuO x catalyst.

1-2. ATO 지지체의 제조1-2. Preparation of ATO scaffold

염화안티몬(Antimony Chloride)과 염화주석(Tin chloride)을 1:9 몰비로 순수에 용해 시켜 제조한 지지체 전구체 용액을 이용한 것을 제외하고는, 상기 제조예 1과 동일한 조건으로 전도성 산화물 ATO 지지체를 제조하였다.A conductive oxide ATO support was prepared under the same conditions as in Preparation Example 1, except that a support precursor solution prepared by dissolving antimony chloride and tin chloride in pure water at a molar ratio of 1:9 was used. .

1-3. IrRuOx/ATO 수전해 촉매의 제조1-3. Preparation of IrRuO x /ATO water electrolysis catalyst

상기 제조예 1-1에서 제조한 IrRuOx 촉매 1g을 제조예 1-2에서 제조한 ATO 지지체에 질량비가 7:3의 비율이 되도록 담지하여 수전해 촉매(이하 'IrRuOx/ATO (7:3) 를 제조하였다. 제조시 유성형 볼밀(Planetary ball mill)을 이용하였으며, 400rpm 조건에서 4시간 동안 혼합하였다.1 g of the IrRuO x catalyst prepared in Preparation Example 1-1 was supported on the ATO support prepared in Preparation Example 1-2 at a mass ratio of 7:3 to form a water electrolysis catalyst (hereinafter referred to as 'IrRuO x /ATO (7:3 ) was prepared, a planetary ball mill was used during manufacture, and mixing was performed at 400 rpm for 4 hours.

<실시예 1> IrRuO<Example 1> IrRuO xx /ATO 수전해 촉매의 특성Characteristics of /ATO water electrolysis catalyst

상기 제조예 1에서 제조한 고분자 전해질 수전해용 촉매 IrRuOx/ATO (7:3)의 특성을 확인하기 위해 질소 흡탈착 실험, X선 회절분석 및 투과전자현미경 이미지 촬영을 수행하였으며, 그 결과는 도 1 내지 도 3에 나타냈다.In order to confirm the characteristics of the polymer electrolyte water electrolysis catalyst IrRuO x /ATO (7:3) prepared in Preparation Example 1, nitrogen adsorption and desorption experiments, X-ray diffraction analysis, and transmission electron microscopy were performed. The results are shown in FIG. 1 to 3 are shown.

도 1은 IrRuOx 촉매의 질소 흡탈착 곡선을 나타낸다. Support인 ATO의 전기전도도가 0.52 S/cm를 보유하고 있으며, 수전해 촉매에서의 반응 활성과 관련한 것은 IrRuOx촉매의 표면적이 중요하다. 해당 촉매의 Single point 세공부피는 0.154cm3/g이며, t-Plot에 의한 micropore와 meso-macro pore의 부피비는 1.5 : 1 의 비율이다. BET 표면적은 200m2/g 임을 나타내었다. H2O가 촉매와 접촉하기에 용이한 넓은 표면적을 보유하고 있다.Figure 1 shows the nitrogen adsorption and desorption curve of the IrRuOx catalyst. The electrical conductivity of ATO, which is a support, has 0.52 S/cm, and the surface area of the IrRuOx catalyst is important in relation to the reaction activity in the water electrolysis catalyst. The single point pore volume of the catalyst is 0.154 cm 3 /g, and the volume ratio of micropores and meso-macropores by t-Plot is 1.5: 1. The BET surface area was shown to be 200 m 2 /g. H 2 O has a large surface area that is easy to contact with the catalyst.

도 2은 IrRuOx/ATO의 X선 회절분석 결과를 나타낸다. 청색선은 IrO2의 XRD pattern (COD 1548817)이며, 적색선은 RuO2의 XRD pattern (COD 2101852), 녹색선은 SnO2 의 XRD pattern (COD 5000224)을 나타낸다. ATO의 주 물질은 SnO2로써, XRD pattern 에서도 SnO2와 겹치는 것을 확인할 수 있었으며, 합성된 IrRu 및 ATO가 파괴되지 않고 섞여있다는 것을 알 수 있다. 합성 도중 응집(Aggregation)에 의해 IrRu의 크기가 성장했다면, XRD peak의 띠나비가 넓어졌어야 하나, 해당되는 피크(Peak)가 넓어지지 않은 것으로 확인되며, 이는 형성된 IrOx와 RuOx의 합성 전후로 바뀌지 않았다는 것을 의미한다.2 shows the result of X-ray diffraction analysis of IrRuOx/ATO. The blue line is the XRD pattern of IrO 2 (COD 1548817), the red line is the XRD pattern of RuO 2 (COD 2101852), and the green line is the XRD pattern of SnO 2 (COD 5000224). The main material of ATO is SnO 2 , and it was confirmed that it overlaps with SnO 2 in the XRD pattern, and it can be seen that the synthesized IrRu and ATO are mixed without being destroyed. If the size of IrRu grew by aggregation during the synthesis, the band width of the XRD peak should have widened, but it was confirmed that the corresponding peak did not widen, which indicates that the formed IrOx and RuOx did not change before and after synthesis. means that

도 3는 IrRuOx/ATO의 투과전자현미경(TEM) 촬영 이미지를 나타낸 것이다. 제조예1에 의해 제조된 촉매의 입자의 크기는 1~5nm로 형성되어 있으며, 50nm scale에 확인할 수 있듯이 균일하게 촉매가 분포되어 있는 것을 확인할 수 있다. 작은 입자의 크기는 표면적의 증가와 촉매의 활성을 증가시키는 요인이 된다. 본 발명에 의해 제조되는 IrRuOx/ATO 촉매는 입자의 크기를 5nm 이하로 유지시킨다.3 shows a transmission electron microscope (TEM) image of IrRuOx/ATO. The particle size of the catalyst prepared in Preparation Example 1 is formed to be 1 to 5 nm, and it can be seen that the catalyst is uniformly distributed as can be seen on the 50 nm scale. The size of the small particles is a factor that increases the surface area and the activity of the catalyst. The IrRuOx/ATO catalyst prepared according to the present invention maintains a particle size of 5 nm or less.

<실시예 2> IrRuO<Example 2> IrRuO xx /ATO 수전해 촉매의 단위전지 측정/Unit cell measurement of ATO water electrolysis catalyst

상기 제조예 1에서 제조한 고분자 전해질 수전해용 촉매 IrRuOx/ATO (7:3)를 이용하여 수전해 단위전지를 제조하고, 성능을 측정하였고, 그 결과를 도 4에 나타냈다.A water electrolysis unit cell was prepared using the polymer electrolyte water electrolysis catalyst IrRuO x /ATO (7:3) prepared in Preparation Example 1, and its performance was measured. The results are shown in FIG. 4 .

단위전지는 활성면적 5cm2으로 제조하였으며, 전해질막은 Dupont사의 Nafion 212를 이용하였고, 음극(Cathode, 수소전극)은 GDL(Gas diffution layer)에 상용 Pt/C 촉매를 코팅하여 제조하였다. 양극(Anode, 산소극)에는 GDL(Gas diffution layer)에 상기 제조예 1에서 제조한 IrRuOx/ATO(7:3) 촉매를 0.51 mg/cm2 으로 담지한 후, 음극, 전해질막, 양극의 순으로 단위전지를 조립하였으며, 80 oC 조건에서 전압-전류 분석을 수행하였다.The unit cell was manufactured with an active area of 5 cm 2 , the electrolyte membrane was made of Dupont's Nafion 212, and the negative electrode (Cathode, hydrogen electrode) was prepared by coating a commercially available Pt/C catalyst on a gas diffusion layer (GDL). After supporting the IrRuO x /ATO (7:3) catalyst prepared in Preparation Example 1 at 0.51 mg/cm 2 on a gas diffusion layer (GDL) on the anode (anode, oxygen electrode), the cathode, electrolyte membrane, and anode Unit cells were assembled in this order, and voltage-current analysis was performed under the condition of 80 o C.

이를 통해 본 발명에 따라 초음파 분무 열분해(ultrasonic spray pyrolysis) 방법과 볼밀을 이용하여 제조된 IrRuOx/ATO 촉매는 IrOx 촉매의 사용량을 0.36 mg/cm2 으로 줄이고도 기존 수전해 단위전지와 비슷한 성능을 얻을 수 있어, IrOx 촉매보다 촉매 효율이 높음을 확인하였다.Through this, the IrRuO x /ATO catalyst prepared using the ultrasonic spray pyrolysis method and the ball mill according to the present invention has similar performance to the existing water electrolysis unit cell even though the amount of IrO x catalyst used is reduced to 0.36 mg/cm 2 can be obtained, confirming that the catalytic efficiency is higher than that of the IrO x catalyst.

따라서, 본 발명에서는 초음파 분무 열분해법을 이용하여 고비표면적의 IrRuOx 촉매 및 전도성 산화물인 ATO 지지체 제조하였으며, 이를 이용하여 고분자 전해질 수전해 단위전지를 평가한 결과, 귀금속 촉매(IrOx)의 담지량을 0.36 mg/cm2까지 감소시키고도 높은 전류밀도의 단위전지 성능을 얻을 수 있었다. 즉, 본 발명에서는 고가의 귀금속 촉매의 사용량을 감소시켜도 단위전지의 성능을 유지시킬 수 있어 고분자 전해질 수전해의 효율성 및 경제성을 향상시킬 수 있었다.Therefore, in the present invention, an IrRuO x catalyst with a high specific surface area and an ATO support, which is a conductive oxide, were prepared using ultrasonic spray pyrolysis, and as a result of evaluating a polymer electrolyte water electrolysis unit cell using this, the loading amount of the noble metal catalyst (IrO x ) Unit cell performance with high current density was obtained even when the concentration was reduced to 0.36 mg/cm 2 . That is, in the present invention, the efficiency and economic efficiency of polymer electrolyte water electrolysis can be improved because the performance of the unit cell can be maintained even when the amount of expensive noble metal catalyst used is reduced.

이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it is clear that these specific techniques are only preferred embodiments for those skilled in the art, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.

Claims (6)

이리듐 전구체 및 루테늄 전구체를 혼합한 혼합물에 초음파 분무 열분해법을 이용하여 다공성의 이리듐-루테늄 산화물을 제조하는 단계;
초음파 분무 열분해법을 이용하여 안티주석산화물 지지체를 제조하는 단계; 및
상기 이리듐-루테늄 산화물을 안티몬주석 산화물 지지체에 담지하여 촉매를 제조하는 단계를 포함하고,
상기 이리듐-루테늄 산화물(IrRuOx)의 x는 2이하인 것을 특징으로 하는 고분자 전해질 수전해용 촉매의 제조방법.
preparing a porous iridium-ruthenium oxide by using an ultrasonic spray pyrolysis method in a mixture of an iridium precursor and a ruthenium precursor;
preparing an anti-tin oxide support using an ultrasonic spray pyrolysis method; and
Preparing a catalyst by supporting the iridium-ruthenium oxide on an antimony tin oxide support,
Method for producing a catalyst for polymer electrolyte water electrolysis, characterized in that x of the iridium-ruthenium oxide (IrRuO x ) is 2 or less.
제1항에 있어서,
상기 촉매를 제조하는 단계는 상기 이리듐-루테늄 산화물 및 안티몬주석 산화물 지지체를 7~3:3~7의 질량비율로 혼합하여 수행하는 것을 특징으로 하는 고분자 전해질 수전해용 촉매의 제조방법.
According to claim 1,
The method of preparing a catalyst for polymer electrolyte water electrolysis, characterized in that the step of preparing the catalyst is performed by mixing the iridium-ruthenium oxide and the antimony tin oxide support in a mass ratio of 7 to 3: 3 to 7.
제1항에 있어서,
상기 다공성의 이리듐-루테늄 산화물을 제조하는 단계는 (a) 상기 이리듐 전구체 및 루테늄 전구체를 용매에 용해시켜 전구체 용액을 제조하는 단계; (b) 상기 전구체 용액을 초음파 발생기가 장착된 용액조에 주입하여 1 내지 5㎛ 크기의 입자로 분무하는 단계; 및 (c) 상기 형성된 입자를 열분해 후 건조하는 단계; 를 포함하는 고분자 전해질 수전해용 촉매의 제조방법.
According to claim 1,
The preparing of the porous iridium-ruthenium oxide may include (a) preparing a precursor solution by dissolving the iridium precursor and the ruthenium precursor in a solvent; (b) spraying the precursor solution into particles having a size of 1 to 5 μm by injecting the precursor solution into a solution bath equipped with an ultrasonic generator; and (c) drying the formed particles after thermal decomposition; Method for producing a catalyst for polymer electrolyte water electrolysis comprising a.
제3항에 있어서,
상기 입자는 초음파 1 내지 30 kHz 범위에서 형성되는 것을 특징으로 하는 고분자 전해질 수전해용 촉매의 제조방법.
According to claim 3,
The method of producing a catalyst for polymer electrolyte water electrolysis, characterized in that the particles are formed in the ultrasonic range of 1 to 30 kHz.
제3항에 있어서,
상기 열분해는 300 내지 600℃의 온도에서 수행되는 것을 특징으로 하는 고분자 전해질 수전해용 촉매의 제조방법.
According to claim 3,
The thermal decomposition is a method for producing a catalyst for polymer electrolyte water electrolysis, characterized in that carried out at a temperature of 300 to 600 ℃.
제1항에 있어서,
상기 이리듐-루테늄 산화물의 평균 기공 크기는 1 내지 5nm이며, BET 표면적을 200 내지 300 m2/g 고분자 전해질 수전해용 촉매의 제조방법.
According to claim 1,
The iridium-ruthenium oxide has an average pore size of 1 to 5 nm and a BET surface area of 200 to 300 m 2 /g Polymer electrolyte water electrolysis catalyst manufacturing method.
KR1020220132281A 2021-10-28 2022-10-14 Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis KR20230062374A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210145678 2021-10-28
KR1020210145678 2021-10-28

Publications (1)

Publication Number Publication Date
KR20230062374A true KR20230062374A (en) 2023-05-09

Family

ID=86408412

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220132281A KR20230062374A (en) 2021-10-28 2022-10-14 Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis

Country Status (1)

Country Link
KR (1) KR20230062374A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084225A (en) 2008-10-08 2011-07-21 메사추세츠 인스티튜트 오브 테크놀로지 Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084225A (en) 2008-10-08 2011-07-21 메사추세츠 인스티튜트 오브 테크놀로지 Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques

Similar Documents

Publication Publication Date Title
KR102569084B1 (en) An electrocatalyst composition comprising a noble metal oxide supported on tin oxide
US8946116B2 (en) Nanometer powder catalyst and its preparation method
Cruz et al. Nanosized Pt/IrO2 electrocatalyst prepared by modified polyol method for application as dual function oxygen electrode in unitized regenerative fuel cells
Xie et al. Ultrathin platinum nanowire based electrodes for high-efficiency hydrogen generation in practical electrolyzer cells
EP2634850B1 (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
Kang et al. Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis
KR101726575B1 (en) Ultra-low Loading of Pt-decorated Ni Electrocatalyst, Manufacturing Method of the Same and Anion Exchange Membrane Water Electrolyzer Using the Same
JP2009545114A (en) catalyst
CN1801514A (en) Pt/Ru alloy catalyst for fuel cell
Wu et al. In-situ generation of Ru-catechol coordinative polymer precursor for high-performance hydrogen evolution reaction doped carbon catalyst
KR101901223B1 (en) Multifunctional non-platinum supported catalyst for automotive fuel cells and method for manufacturing the same
US20240044027A1 (en) Iridium-containing catalyst for water electrolysis
Meng et al. Factors Influencing the Growth of Pt Nanowires via Chemical Self‐Assembly and their Fuel Cell Performance
EP3825443A1 (en) Method of preparing catalyst for pem water electrolysis and catalyst for pem water electrolysis
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
KR102607597B1 (en) Oxygen electrode comprising a dual plating catalyst, water electrolysis device, regenerative fuel cell including the same and method for preparing the oxygen electrode
Kim et al. Leveraging metal alloy-hybrid support interaction to enhance oxygen evolution kinetics and stability in proton exchange membrane water electrolyzers
Li et al. Highly active and stable IrO2 and IrO2–Ta2O5 catalysts for oxygen evolution reaction
Kim et al. Synthesis and electrochemical properties of nano-composite IrO2/TiO2 anode catalyst for SPE electrolysis cell
KR20220091753A (en) Catalyst for fuel cell and method for preparing the same
Lv et al. N/C doped nano-size IrO2 catalyst of high activity and stability in proton exchange membrane water electrolysis
KR102180882B1 (en) Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis
RU2421850C1 (en) Method of producing nano-sized platinum-nickel catalyst
KR20230062374A (en) Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis
Baglio et al. Investigation of IrO 2/Pt electrocatalysts in unitized regenerative fuel cells