KR20230053900A - Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same - Google Patents

Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same Download PDF

Info

Publication number
KR20230053900A
KR20230053900A KR1020210137238A KR20210137238A KR20230053900A KR 20230053900 A KR20230053900 A KR 20230053900A KR 1020210137238 A KR1020210137238 A KR 1020210137238A KR 20210137238 A KR20210137238 A KR 20210137238A KR 20230053900 A KR20230053900 A KR 20230053900A
Authority
KR
South Korea
Prior art keywords
oil
water separation
separation material
water
sponge
Prior art date
Application number
KR1020210137238A
Other languages
Korean (ko)
Other versions
KR102646829B1 (en
Inventor
곽무영
곽노길
구인모
장윤영
최유림
Original Assignee
주식회사 드림바이오스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 드림바이오스 filed Critical 주식회사 드림바이오스
Priority to KR1020210137238A priority Critical patent/KR102646829B1/en
Publication of KR20230053900A publication Critical patent/KR20230053900A/en
Application granted granted Critical
Publication of KR102646829B1 publication Critical patent/KR102646829B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a preparation method of a superhydrophobic oil/water separation material and a method for collecting a non-aqueous phase liquid (NAPL) sample in soil using the same. The superhydrophobic oil/water separation material can be utilized as an oil/water separation material by utilizing the properties of both highly porous melamine sponge and highly hydrophobic polydimethylsiloxane at the same time. When being utilized, the oil/water separation material can be directly infused into a probe for collecting a soil sample to allow the NAPL such as gasoline, diesel and the like to be collected along with the soil sample through drilling the ground. Accordingly, unlike a conventional method using a bailer, the soil sample and the NAPL sample can be collected at the same time without the process of installing a groundwater observation well and continuous measurement can be facilitated, thereby leading to economic and efficient effects.

Description

초수성 유수 분리소재 제조방법 및 이를 이용한 지중 유류 오염 시료 채취방법{Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same} Manufacturing method for superhydrophobic oil/water separation material and sampling method for NAPL in soil using the same}

본 발명은 초수성 유수 분리소재 제조방법 및 이를 이용한 지중 유류 오염 시료 채취방법에 관한 것이다.The present invention relates to a method for manufacturing a superaqueous oil-water separation material and a method for collecting samples from underground oil contamination using the same.

연료계 탄화수소 화합물이나 유기용매와 같은 비-수용성 액상 오염물질(Non-aqueous Phase Liquid, 이하 NAPL)들은 지상으로부터 유출되어 지중에 유입되어 각 형태에 따라 1) 비포화대 토양 내에 흡착되거나, 2) 포화대의 지하수 내에 용해되거나, 3) 포화대의 지하수 상부에 자유상으로 존재하거나, 4)지하수 하부의 단열암반층의 단열로 유입될 수 있다. Non-aqueous phase liquids (NAPLs), such as fuel-based hydrocarbon compounds and organic solvents, flow out from the ground and enter the ground, and depending on each type, are 1) adsorbed in the soil in the non-saturated zone, or 2) saturated. It can dissolve in the groundwater of the zone, 3) exist as a free phase in the upper part of the groundwater in the saturated zone, or 4) flow into the insulation of the insulating rock layer below the groundwater.

한편, 자유상으로 존재하거나 단열에 유입된 NAPL은 정화가 어려울 뿐만 아니라, 잠재적인 오염원으로 계속 작용하기 때문에 정확한 위치 및 총량을 파악하여 신속하게 정화하는 것이 무엇보다 중요하다. On the other hand, since NAPL, which exists in the free phase or flows into the insulation, is not only difficult to purify, but also continues to act as a potential pollutant, it is most important to quickly purify it by identifying the exact location and total amount.

미국 EPA(1996)에서 30,000 gal.의 가솔린(Gasoline) 누유 시 오염상태 분포 예측 자료에 의하면 지중에 누출된 가솔린(Gasoline) 중 유동유분(LNAPL) 형태로 62% 정도가 지하수 위 상부 토양 공극 사이에 존재하고, 1 ~ 5% 정도의 누출 가솔린이 전체 오염 부피의 80%에 가까운 지하수를 오염시키는 것으로 예측된 바 있다. According to the US EPA (1996) prediction data on the distribution of contamination in case of leakage of 30,000 gal. of gasoline, about 62% of the gasoline leaked into the ground is in the form of LNAPL between the upper soil pores above the groundwater. It has been estimated that 1 to 5% of leaked gasoline contaminates groundwater by close to 80% of the total contaminated volume.

한편, 국내에서 NAPL 시료를 채취하기 위한 장비 및 방식으로는 베일러(bailer)를 이용하여 지하수와 함께 시료를 채취하는 방식이 주로 이용된다. 베일러를 이용한 NAPL 시료 채취 방식은 먼저 지하수 관측정을 설치하고 인력에 의하여 관정 내에 삽입하여 채취하는 형태로서, 이러한 방식의 경우 현장에서 토양 시료 채취 작업과 동시에 NAPL을 측정하기 어려우며, 특히 연속 측정을 위해서는 다시 지하수와 NAPL이 스며들 때까지 기다렸다가 측정하여야 하는 번거로움이 있다. On the other hand, as an equipment and method for collecting NAPL samples in Korea, a method of collecting samples together with groundwater using a bailer is mainly used. The NAPL sampling method using a baler is a form of first installing a groundwater observation well and inserting it into the well by manpower. In this case, it is difficult to measure NAPL at the same time as collecting soil samples in the field. There is a hassle of waiting until the groundwater and NAPL permeate before measuring.

이러한 베일러 방식의 번거로움을 해결하기 위한 방법으로서 유수 분리소재를 토양 시료 채취용 프로브(probe)에 삽입하고 지중 천공과 함께 NAPL을 직접 채취하는 방식이 제안되고 있다. As a method to solve the hassle of the baler method, a method of inserting an oil-water separation material into a probe for collecting soil samples and directly collecting NAPL with underground drilling has been proposed.

멜라민 스펀지(Melamine)는 낮은 가격, 높은 공극률, 낮은 밀도 등 여러가지 장점이 있으나, 재질 고유 특성인 양쪽 친매성으로 인해 유수 분리소재로는 적합하지 않다. 관련하여, 표면 열처리를 통해 멜라민 스펀지의 표면을 소수성으로 변환시키는 것에 대한 연구가 진행된 바 있으나, 이 경우 표면 내구성이 저하되어 재사용이 어렵게 되는 등 여러가지 문제가 존재하였다. Melamine sponge has various advantages such as low price, high porosity, and low density, but is not suitable as an oil-water separation material due to amphiphilicity, which is a characteristic of the material. In this regard, research on converting the surface of the melamine sponge to hydrophobicity through surface heat treatment has been conducted, but in this case, various problems such as poor surface durability and difficulty in reuse have existed.

한편, 폴리디메틸실록산(polydimethylsiloxane, 이하 PDMS)은 실리콘 기반의 고분자 물질로서 우수한 성형성, 저렴한 가격 등의 장점을 가지며, 소수성을 가져 방수 소재 제조 분야에 널리 활용되는 물질이다. On the other hand, polydimethylsiloxane (hereinafter referred to as PDMS) is a silicone-based polymer material that has advantages such as excellent formability and low price, and is a material widely used in the field of manufacturing waterproof materials due to its hydrophobicity.

본 발명은, 종래 기술의 문제점을 해결하기 위해 안출한 것으로, 베일러 방식의 NAPL 채취의 문제점을 해결하기 위하여, 토양 시료 채취용 프로브(probe)에 삽입되어 지중 천공과 함께 NAPL을 직접 채취할 수 있는 유수 분리소재로서, 양쪽 친매성을 가진 멜라민 스펀지 표면을 폴리디메틸실록산으로 개질하여, 멜라민 수지 고유 특성에 기인한 높은 다공성 및 폴리디메틸실록산 고유 특성에 기인한 높은 소수성을 동시에 활용한 유수 분리소재를 제공하고, 또한, 이를 이용하여 비-수용성 액상 오염물질(Non-aqueous Phase, Liquid) 등 지중 유류 오염 시료를 효과적으로 채취하기 위한 방법을 제공하기 위한 것이다. The present invention was made to solve the problems of the prior art, and in order to solve the problems of NAPL collection in the baler method, it is inserted into a probe for collecting soil samples and directly collects NAPL along with drilling in the ground. As an oil-water separation material, by modifying the surface of a melamine sponge with amphiphilicity with polydimethylsiloxane, we provide an oil-water separation material that simultaneously utilizes high porosity due to the inherent characteristics of melamine resin and high hydrophobicity due to the inherent characteristics of polydimethylsiloxane. And, also, by using this, it is to provide a method for effectively collecting underground oil contamination samples such as non-aqueous phase (Liquid).

또한, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. In addition, the technical problem to be solved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned above will become clear to those skilled in the art from the description below. You will be able to understand.

본 명세서에서는, a) 폴리디메틸실록산(polydimethylsiloxane) 및 사이클로헥산(cyclohexane)을 혼합하여, 코팅 용액을 제조하는 단계; b) 준비된 스펀지 상에 상기 a 단계의 코팅 용액을 코팅하는 단계; 및 c) 스펀지에 코팅된 코팅 용액을 양생하는 단계; 를 포함하는, 초수성 유수 분리소재 제조방법을 제공한다. In the present specification, a) preparing a coating solution by mixing polydimethylsiloxane and cyclohexane; b) coating the coating solution of step a on the prepared sponge; and c) curing the coating solution coated on the sponge; It provides a method for producing a superaqueous oil-water separation material comprising a.

상기 a 단계의 코팅 용액은 폴리디메틸실록산 베이스 용액과 경화제(curing agent)를 10 : 1 중량부 비로 혼합하여 폴리디메틸실록산 용액을 제조한 다음, 상기 폴리디메틸실록산 용액과 사이클로헥산을 1 : 20 내지 80의 중량부 비로 혼합하여 제조되는 것일 수 있다.The coating solution in step a is prepared by mixing a polydimethylsiloxane base solution and a curing agent in a ratio of 10:1 by weight, and then mixing the polydimethylsiloxane solution and cyclohexane in a ratio of 1:20 to 80 It may be prepared by mixing in a weight part ratio of.

상기 b 단계는 세척된 스펀지를 코팅 용액에 0.5 내지 1.5 시간 침지시켜 스펀지에 코팅 용액을 흡수시킨 후, 진공 조건 하에서 1 내지 3 시간 동안 디개싱(degassing)하여 수행되는 것일 수 있다. Step b may be performed by immersing the washed sponge in the coating solution for 0.5 to 1.5 hours to absorb the coating solution into the sponge, and then degassing for 1 to 3 hours under vacuum conditions.

상기 c 단계는 b 단계에서 얻어진 스펀지를 100 내지 140 ℃ 온도 범위에서 1 내지 3 시간 동안 양생하여 수행되는 것일 수 있다. Step c may be performed by curing the sponge obtained in step b at a temperature range of 100 to 140 ° C for 1 to 3 hours.

상기 스펀지는 멜라민(Melamine)계 또는 폴리우레탄(Polyurethane)계 다공성 스펀지일 수 있다. The sponge may be a melamine-based or polyurethane-based porous sponge.

또한, 본 명세서에서는, 상기 방법에 따라 제조된 초수성 유수 분리소재로서, 상기 유수 분리소재의 표면은 접촉각 150 °이상의 초수성 특성을 발현하는, 초수성 유수 분리소재를 제공한다.In addition, in the present specification, as a superaqueous oil-water separation material manufactured according to the above method, the surface of the oil-water separation material provides a superaqueous oil-water separation material that expresses a superaqueous property with a contact angle of 150 ° or more.

상기 유수 분리소재는 상기 유수 분리소재를 유류 오염수에 10초간 침지시켰을 때, 수중 경유에 대한 흡수 용량이 26 g/g 이상인 것일 수 있다.The oil-water separation material may have an absorption capacity for light oil in water of 26 g/g or more when the oil-water separation material is immersed in oil-contaminated water for 10 seconds.

상기 유수 분리소재는 상기 유수 분리소재를 유류 오염수에 10초간 침지시켜 수중 경유를 흡수시키고, 이를 손으로 스퀴즈(Squeeze)하는 흡착 실험을 10회 반복 시, 수중 경유에 대한 흡착 성능을 88% 이상 유지하는 것일 수 있다.The oil-water separation material absorbs light oil in water by immersing the material for oil-water separation in oil-contaminated water for 10 seconds, and when an adsorption experiment of squeezing it by hand is repeated 10 times, the adsorption performance for light oil in water is 88% or more. may be to keep

또한, 본 명세서에서는, 상기 초수성 유수 분리소재를 토양 시료 채취 프로브(probe)에 삽입하고, 지중 천공과 함께 비-수용성 액상 오염물질(Non-aqueous Phase Liquid, NAPL)을 채취하는 단계를 포함하는, 지중 유류 오염 시료 채취방법을 제공한다.In addition, in the present specification, including the step of inserting the superaqueous oil-water separation material into a soil sampling probe and collecting non-aqueous phase liquid (NAPL) with underground drilling In addition, it provides a sampling method for geologic oil contamination.

본 발명에 따른 초수성 유수 분리소재는 높은 다공성을 가진 멜라민 스펀지의 특성 및 높은 소수성을 가진 폴리디메틸실록산의 특성을 동시에 활용하여 유수 분리소재로 활용이 가능하며, 상기 유수 분리소재를 활용하는 경우, 토양 시료 채취 프로브(probe)에 직접 삽입하여 지중 천공과 함께 가솔린, 경유 등 비-수용성 액상 오염물질(Non-aqueous Phase, Liquid)을 토양 시료 채취와 함께 채취할 수 있다. The superaqueous oil-water separation material according to the present invention can be used as an oil-water separation material by simultaneously utilizing the characteristics of a melamine sponge with high porosity and the characteristics of polydimethylsiloxane with high hydrophobicity. In the case of using the oil-water separation material, By directly inserting into the soil sampling probe, it is possible to collect non-aqueous phase (Liquid) contaminants such as gasoline and diesel along with soil sampling along with drilling the soil.

이에, 종래 베일러(bailer)를 이용한 방식과 달리 지하수 관측정을 설치하는 과정 없이 토양 시료 채취와 NAPL 채취가 동시 실행 가능하다는 점 및 연속 측정이 용이하다는 점에서 보다 경제적이고 효율적이다. Therefore, unlike the conventional method using a bailer, it is more economical and efficient in that soil sample collection and NAPL collection can be performed simultaneously and continuous measurement is easy without installing a groundwater observation well.

도 1은 본 발명의 일실시예에 따른 초수성 유수 분리소재 제조방법을 개략적으로 나타낸 것이다.
도 2는 본 발명의 일실시예에 따른 초수성 유수 분리소재 제조단계를 개략적으로 나타낸 것이다.
도 3은 본 발명의 일실시예에 따라 제조된 초수성 유수 분리소재의 표면 접촉각 측정 실험 결과를 나타낸 것이다.
도 4는 본 발명의 일실시예에 따라 제조된 초수성 유수 분리소재의 유수 분리 성능을 확인하기 위해 수중의 경유를 상기 유수 분리소재로 흡수하는 실험을 수행한 결과를 나타낸 것이다.
도 5는 본 발명의 일실시예에 따라 제조된 초수성 유수 분리소재의 유류 흡수 효율과 재사용성을 확인하기 위해 도 4의 실험을 10회 반복 수행한 결과를 나타낸 것이다.
도 6은 본 발명의 일실시예에 따라 제조된 초수성 유수 분리소재가 적용된 NAPL 채취 프로브(probe)의 개념도이다.
1 schematically shows a method for manufacturing a superaqueous oil-water separation material according to an embodiment of the present invention.
Figure 2 schematically shows a step of manufacturing a superaqueous oil-water separation material according to an embodiment of the present invention.
Figure 3 shows the surface contact angle measurement test results of the superaqueous oil-water separation material prepared according to an embodiment of the present invention.
4 shows the results of an experiment in which light oil in water is absorbed into the oil-water separation material to confirm the oil-water separation performance of the superaqueous oil-water separation material manufactured according to an embodiment of the present invention.
Figure 5 shows the results of repeating the experiment of Figure 4 10 times to confirm the oil absorption efficiency and reusability of the superaqueous oil-water separation material manufactured according to an embodiment of the present invention.
6 is a conceptual diagram of a NAPL sampling probe to which a superaqueous oil-water separation material manufactured according to an embodiment of the present invention is applied.

이하, 첨부된 도면을 참조하여 본 발명의 구현예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present description, descriptions of already known functions or configurations will be omitted to clarify the gist of the present description.

상술한 바와 같이, 지중에 유입된 연료계 탄화수소 화합물이나 유기용매 등과 같은 비-수용성 액상 오염물질(Non-aqueous Phase Liquid, NAPL)이 자유상으로 존재하거나 단열에 유입되는 경우 정화가 어려울 뿐 아니라, 잠재적인 오염원으로 계속 작용하기 때문에, 정확한 위치 및 총량을 파악하여 신속하게 정화하는 것이 중요하다. 한편, 종래 기술에 따른 베일러(bailer)를 이용한 NAPL 시료 채취 방식은, 먼저 지하수 관측정을 설치하고 인력에 의하여 관정 내에 삽입하여 채취하는 형태로 수행되었으나, 이러한 방식의 경우 토양 시료 채취 작업과 동시에 NAPL을 채취하기 어려운 문제점이 있고 연속 측정 시 다시 지하수와 NAPL이 스며들때까지 기다렸다가 측정해야 하는 번거로움이 있었다. As described above, when non-aqueous phase liquid (NAPL) such as fuel-based hydrocarbon compounds or organic solvents introduced into the ground exists in the free phase or flows into the insulation, it is difficult to purify, Because they continue to act as potential contaminants, it is important to know the exact location and total amount to clean up quickly. On the other hand, the NAPL sampling method using a bailer according to the prior art was carried out in the form of first installing a groundwater observation well and then inserting it into the well by manpower, but in this method, NAPL was collected simultaneously with soil sampling There was a problem in that it was difficult to collect, and in the case of continuous measurement, there was the inconvenience of waiting until the groundwater and NAPL permeated again before measuring.

본 발명자들은 유수 분리소재를 토양 시료 채취 프로브(probe)에 직접 삽입하고, 지중 천공과 함께 토양 시료 및 NAPL을 채취하는 경우, 종래 베일러 방식에서 요구된 별도의 지하수 관측정을 설치하는 과정 없이, 토양 시료 채취와 NAPL 채취를 동시에 실행할 수 있고, 연속 측정이 가능하다는 점 및 유수 분리소재로서 폴리디메틸실록산(PDMS) 표면 처리된 멜라민 수지를 채택하는 경우, 저렴한 가격, 높은 공극률, 낮은 밀도를 가지는 멜라민 스펀지의 장점과 우수한 소수성, 성형성 및 저렴한 가격 등 폴리디메틸실록산의 장점을 동시에 얻을 수 있어, 유수 분리소재로 적합하다는 점을 실험을 통하여 확인하고, 본 발명을 완성하게 되었다(도 6 참조). When the present inventors directly insert the oil-water separation material into a soil sampling probe and collect soil samples and NAPL with underground drilling, the soil samples are obtained without installing a separate groundwater observation well required in the conventional baler method. The fact that sampling and NAPL sampling can be performed at the same time and continuous measurement is possible, and when polydimethylsiloxane (PDMS) surface-treated melamine resin is adopted as an oil-water separation material, is a melamine sponge having a low price, high porosity, and low density. Advantages and advantages of polydimethylsiloxane, such as excellent hydrophobicity, moldability, and low price, can be obtained at the same time, and it was confirmed through experiments that it is suitable as an oil-water separation material, and the present invention was completed (see FIG. 6).

초수성 유수 분리소재 및 그 제조방법Superaqueous oil-water separation material and its manufacturing method

구체적으로 본 발명의 일실시예에 따른 초수성 유수 분리소재 제조방법은, a) 폴리디메틸실록산(polydimethylsiloxane) 및 사이클로헥산(cyclohexane)을 혼합하여, 코팅 용액을 제조하는 단계; b) 준비된 스펀지 상에 상기 a 단계의 코팅 용액을 코팅하는 단계; 및 c) 스펀지에 코팅된 코팅 용액을 양생하는 단계; 를 포함할 수 있다(도 1 내지 2 참조). Specifically, the method for manufacturing a superaqueous oil-water separation material according to an embodiment of the present invention includes the steps of: a) preparing a coating solution by mixing polydimethylsiloxane and cyclohexane; b) coating the coating solution of step a on the prepared sponge; and c) curing the coating solution coated on the sponge; It may include (see FIGS. 1 and 2).

먼저, 폴리디메틸실록산(polydimethylsiloxane) 및 사이클로헥산(cyclohexane)을 혼합하여, 코팅 용액을 제조한다(단계 a).First, a coating solution is prepared by mixing polydimethylsiloxane and cyclohexane (step a).

구체적으로 상기 a 단계의 코팅 용액은 폴리디메틸실록산 베이스 용액과 경화제(curing agent)를 10 : 1의 중량부 비로 혼합하여 약 10 분간 믹싱함으로써, 폴리디메틸실록산 용액을 제조한 다음, 상기 폴리디메틸실록산 용액과 사이클로헥산을 1 : 20 내지 80의 중량부 비, 상세하게는 1 : 40의 중량부 비로 혼합하여 약 10 분간 믹싱함으로써 제조되는 것일 수 있다. Specifically, the coating solution of step a is prepared by mixing a polydimethylsiloxane base solution and a curing agent in a weight part ratio of 10: 1 and mixing for about 10 minutes to prepare a polydimethylsiloxane solution, and then the polydimethylsiloxane solution and cyclohexane in a weight part ratio of 1:20 to 80, specifically 1:40, and mixing for about 10 minutes.

한편, 본 발명에서 폴리디메틸실록산(polydimethylsiloxane, PDMS)은 다음의 구조식을 가지는 실리콘 기반의 고분자 물질로서, 우수한 성형성, 저렴한 가격 등을 특징으로 하며, 소수성을 가져 방수 소재 제조 분야에 이용된다. On the other hand, polydimethylsiloxane (PDMS) in the present invention is a silicone-based polymeric material having the following structural formula, characterized by excellent formability, low cost, etc., and has hydrophobicity and is used in the field of manufacturing waterproof materials.

Figure pat00001
[구조식 1]
Figure pat00001
[Structural Formula 1]

한편, 상기 폴리디메틸실록산 베이스 용액과 혼합되는 경화제(curing agent)는 액상 형태의 폴리디메틸실록산을 고상으로 변환시키기 위해 첨가되는 것으로서 구체적으로 폴리디메틸실록산 베이스 용액과 혼합 시 10 : 1 중량부 비로 혼합되는 것일 수 있다. 구체적으로 상기 과정을 통해 제조된 폴리디메틸실록산 용액은 Sylgard 184(제품명)일 수 있다. On the other hand, the curing agent mixed with the polydimethylsiloxane base solution is added to convert the liquid polydimethylsiloxane into a solid phase, and is specifically mixed with the polydimethylsiloxane base solution at a 10:1 weight part ratio. it could be Specifically, the polydimethylsiloxane solution prepared through the above process may be Sylgard 184 (product name).

한편, 상기 혼합을 통해 얻어진 폴리디메틸실록산 용액은 사이클로헥산(cyclohexane)과 혼합하되, 폴리디메틸실록산 용액 1 중량부 대 사이클로헥산 20 내지 80 중량부, 상세하게는 1 : 40 중량부로 혼합하고, 약 10분간 믹싱하여 코팅 용액을 제조할 수 있다. 한편, 상기 사이클로헥산은 폴리디메틸실록산을 희석하기 위한 목적으로 사용되는 것이다.On the other hand, the polydimethylsiloxane solution obtained through the mixing is mixed with cyclohexane, but 1 part by weight of the polydimethylsiloxane solution to 20 to 80 parts by weight of cyclohexane, specifically 1: 40 parts by weight, and about 10 minutes to prepare a coating solution. Meanwhile, the cyclohexane is used for the purpose of diluting polydimethylsiloxane.

다음으로, 준비된 스펀지 상에 상기 a 단계의 코팅 용액을 코팅한다(단계 b).Next, the coating solution of step a is coated on the prepared sponge (step b).

본 발명의 일실시예에서 사용되는 스펀지(sponge)는 다공성 재질을 가지는 것으로서, 일례로 멜라민(Melamine)계 또는 폴리우레탄(Polyurethane)계 재질일 수 있으며, 더욱 상세하게는 멜라민계 수지로 제조된 것일 수 있다. The sponge used in one embodiment of the present invention has a porous material, for example, it may be a melamine-based or polyurethane-based material, and more specifically, it may be made of a melamine-based resin. can

한편, 상기 단계는 깨끗이 세척된 스펀지를 상기 a 단계에서 제조된 코팅 용액에 0.5 내지 1.5 시간, 상세하게는 1 시간 동안 침지시켜 다공성 재질의 스펀지 표면 및 내부에 코팅 용액을 흡수시킨 후, 진공 조건 하에서, 구체적으로 진공 데시케이터(desiccator) 내에서 1 내지 3시간, 상세하게는 2시간 동안 진공 처리하여 수행되는 것일 수 있다. 한편, 상기 진공 데시케이터 내에서는 디개싱(degassing)이 진행될 수 있다. 한편, 상기 진공 데시케이터 내에서 상기 진공 처리가 진행되는 동안 스펀지 표면에 코팅층이 균일하게 형성될 수 있다. On the other hand, in the step, the cleaned sponge is immersed in the coating solution prepared in step a for 0.5 to 1.5 hours, specifically for 1 hour to absorb the coating solution on the surface and inside of the porous sponge, and then under vacuum conditions. , Specifically, it may be performed by vacuum treatment for 1 to 3 hours, specifically 2 hours in a vacuum desiccator. Meanwhile, degassing may proceed in the vacuum desiccator. Meanwhile, a coating layer may be uniformly formed on the surface of the sponge while the vacuum treatment is performed in the vacuum desiccator.

다음으로, 스펀지에 코팅된 코팅 용액을 양생한다(단계 c).Next, the coating solution coated on the sponge is cured (step c).

구체적으로, 상기 단계는 상기 b 단계에서 얻어진 스펀지를 100 내지 140 ℃ 온도 범위, 상세하게는 120 ℃ 온도 범위에서 진공 오븐에 두고, 1 내지 3시간 동안, 상세하게는 2 시간 동안 양생하여 진행되는 것일 수 있다. 상기 단계를 통해, 스펀지 표면이 소수성을 가진 폴리디메틸실록산(PDMS)으로 개질된다. Specifically, the step is carried out by curing the sponge obtained in step b in a vacuum oven at a temperature range of 100 to 140 ° C., specifically at a temperature of 120 ° C., for 1 to 3 hours, specifically for 2 hours. can Through the above steps, the surface of the sponge is modified with polydimethylsiloxane (PDMS) having hydrophobicity.

상술한 방법에 의해 제조된 유수 분리소재는 초수성을 가지며, 구체적으로, 상기 유수 분리소재의 표면은 접촉각 150 °이상, 상세하게는 151.5 °의 초수성 특성을 발현한다. The oil-water separation material produced by the above method has superhydrophobic properties, and specifically, the surface of the oil-water separation material exhibits superhydrophobic characteristics with a contact angle of 150 ° or more, in detail 151.5 °.

한편, 본 발명의 일실시예에 따르면, 상기 유수 분리소재는 상기 유수 분리소재를 수중에 10초간 침지시켰을 때, 수중 경유에 대한 흡수 용량이 26 g/g 이상, 상세하게는 26.35 g/g 이상일 수 있다.On the other hand, according to an embodiment of the present invention, when the oil-water separation material is immersed in water for 10 seconds, the water absorption capacity for light oil in water is 26 g/g or more, specifically 26.35 g/g or more. can

또한, 본 발명의 또 다른 일실시예에 따르면, 상기 유수 분리소재를 수중에 10초간 침지시켜 수중 경유를 흡수시키고, 이를 손으로 스퀴즈(Squeeze)하는 흡착 실험을 10회 반복 시, 수중 경유에 대한 흡착 성능을 88% 이상 유지하는 것일 수 있다. In addition, according to another embodiment of the present invention, when the adsorption experiment of immersing the oil-water separation material in water for 10 seconds to absorb light oil in water and squeezing it by hand 10 times, It may be to maintain an adsorption performance of 88% or more.

지중 유류 오염 시료 채취방법Geological oil contamination sampling method

한편, 본 발명의 일실시예에 따라 상술한 바와 같은 초수성 유수 분리소재를 토양 시료 채취 프로브(probe)에 삽입하고, 지중 천공과 함께 비-수용성 액상 오염물질(Non-aqueous Phase Liquid, NAPL)을 채취하는 단계;를 포함하는, 지중 유류 오염 시료 채취방법이 제공된다. 한편, 상기 단계에서 비-수용성 액상 오염물질을 채취하는 과정은 토양 시료 채취 과정과 동시에 진행되는 것일 수 있다. On the other hand, according to an embodiment of the present invention, the superaqueous oil-water separation material as described above is inserted into a soil sampling probe, and non-aqueous phase liquid (NAPL) There is provided a method for collecting underground oil contamination samples, including the step of collecting. Meanwhile, in the above step, the process of collecting the non-water-soluble liquid pollutant may be performed simultaneously with the process of collecting soil samples.

구체적으로, 상기 비-수용성 액상 오염물질은 가솔린, 경유 등과 같은 연료계 탄화수소 화합물이나 유기용매일 수 있다. Specifically, the non-aqueous liquid contaminants may be fuel-based hydrocarbon compounds or organic solvents such as gasoline and light oil.

실시예Example

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 구현예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can have various changes and various forms, specific embodiments are exemplified and described in detail below. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.

실시예 1Example 1

먼저 PDMS 베이스 용액과 경화제가 10 : 1의 중량부 비로 혼합된 폴리디메틸실록산 용액을 준비한 다음(제품명: Sylgard 184), 이를 사이클로헥산과 1 : 40 중량부 비로 혼합하고, 10 분간 균질해지도록 믹싱하여 코팅 용액(coating agent)을 제조하였다. First, prepare a polydimethylsiloxane solution in which a PDMS base solution and a curing agent are mixed in a weight ratio of 10: 1 (product name: Sylgard 184), then mix it with cyclohexane in a weight ratio of 1: 40, and mix for 10 minutes to become homogeneous. A coating agent was prepared.

한편, 멜라민 스펀지를 준비하고, 증류수 및 에틸알코올을 이용하여 깨끗하게 세척하였다. Meanwhile, a melamine sponge was prepared and washed clean using distilled water and ethyl alcohol.

다음으로, 세척된 멜라민 스펀지를 상기 제조된 코팅 용액에 1시간 동안 침지시켜 코팅 용액이 멜라민 스펀지 기공 및 표면에 흡착되도록 하였다. Next, the washed melamine sponge was immersed in the prepared coating solution for 1 hour so that the coating solution was adsorbed to the pores and surface of the melamine sponge.

다음으로, 멜라민 스펀지를 진공 데시케이터에 넣고 2 시간 동안 디개싱(degassing)을 수행하여 기포를 제거하고, 멜라민 스펀지 표면에 폴리디메틸실록산 용액이 균일하게 층을 형성하도록 하였다. Next, the melamine sponge was placed in a vacuum desiccator and degassed for 2 hours to remove air bubbles, and the polydimethylsiloxane solution was uniformly layered on the surface of the melamine sponge.

다음으로, 상기 멜라민 스펀지를 120 ℃ 온도의 진공 오븐 내에서 2시간 동안 양생하여 폴리디메틸실록산으로 표면 개질된 멜라민 스펀지(PDMS@MS)를 제조하였다(도 1 및 도 2 참조). Next, the melamine sponge was cured in a vacuum oven at 120 ° C. for 2 hours to prepare a melamine sponge (PDMS@MS) surface-modified with polydimethylsiloxane (see FIGS. 1 and 2).

[실험 1: 표면 접촉각 측정 실험][Experiment 1: Surface contact angle measurement experiment]

상기 실시예 1에 따라 제조된 폴리디메틸실록산 표면 개질된 멜라민 스펀지의 소수성 발현 여부를 확인하기 위하여, 표면 접촉각 실험을 수행하였다. 표면 접촉각 측정 실험은 구체적으로 소재 표면 위에 3차 증류수를 한 방울 떨어뜨린 후 형성되는 물방울의 각도를 측정하는 방법에 의해 수행되었다. In order to confirm the hydrophobicity of the polydimethylsiloxane surface-modified melamine sponge prepared according to Example 1, a surface contact angle experiment was performed. The surface contact angle measurement experiment was specifically performed by a method of measuring the angle of a water droplet formed after dropping a drop of tertiary distilled water on the material surface.

도 3의 결과를 참조하면, 본 발명의 실시예 1에 따른 초수성 유수 분리소재(폴리디메틸실록산 표면 개질된 멜라민 스펀지)의 표면 접촉각은 151.5 °로서, 초소수성 특성을 가지는 것을 확인할 수 있었다. Referring to the results of FIG. 3, the surface contact angle of the superhydrophobic oil-water separation material (polydimethylsiloxane surface-modified melamine sponge) according to Example 1 of the present invention was 151.5 °, confirming that it had superhydrophobic properties.

[실험 2: 유수 분리 성능 측정 실험][Experiment 2: Oil-water separation performance measurement experiment]

본 발명 실시예 1에 따른 초수성 유수 분리소재의 유수 분리 성능을 확인하기 위해 수중 경유를 선택적으로 흡수하는 실험을 수행하였다. 구체적으로 상기 실험은 55 mL의 증류수 위에 경유를 5 mL 떨어뜨려 인공적인 유류 오염수를 제조하고, 상기 제조된 분리소재를 유류 오염수 내에 10초간 침지시켜 유류 오염수에 형성된 유류층을 제거하는 방식으로 수행하였다. In order to confirm the oil-water separation performance of the superaqueous oil-water separation material according to Example 1 of the present invention, an experiment of selectively absorbing light oil in water was performed. Specifically, in the experiment, 5 mL of light oil was dropped on 55 mL of distilled water to prepare artificial oil-contaminated water, and the prepared separation material was immersed in the oil-contaminated water for 10 seconds to remove the oil layer formed in the oil-contaminated water. performed with

도 4의 결과를 참조하면, 본 발명 실시예 1에 따른 초수성 유수 분리소재(폴리디메틸실록산 표면 개질된 멜라민 스펀지)는 수중에서 비-수용성 액상 오염물질(NAPL)인 연료계 탄화수소 화합물로서 경유(Diesel)를 선택적으로 흡수하는 것을 확인할 수 있었다. Referring to the results of FIG. 4, the superaqueous oil-water separation material (polydimethylsiloxane surface-modified melamine sponge) according to Example 1 of the present invention is a fuel-based hydrocarbon compound that is a non-water-soluble liquid pollutant (NAPL) in water, and diesel ( Diesel) was confirmed to be selectively absorbed.

또한, 55 mL의 증류수 위에 경유를 5 mL 떨어뜨려 인공적인 유류 오염수를 제조하고, 상기 제조된 분리소재를 유류 오염수 내에 10초간 침지시켜 유류 오염수에 형성된 유류층을 제거한 다음, 분리소재를 손으로 스퀴즈(Squeeze)하는 흡착 실험을 10회 반복 시, 1회 사용 시 흡수 용량(absorption capacity)이 약 26.35 g/g으로 확인되었으며, 10회 반복 사용 시 수중 경유에 대한 흡착 성능을 88% 이상 유지하는 것을 확인하여, 본 발명에 따른 초수성 유수 분리소재는 재사용이 가능한 것을 확인할 수 있었다(도 5 참조).In addition, 5 mL of light oil is dropped on 55 mL of distilled water to prepare artificial oil-contaminated water, and the prepared separation material is immersed in oil-contaminated water for 10 seconds to remove the oil layer formed in the oil-contaminated water, and then the separation material When the adsorption experiment of squeezing by hand was repeated 10 times, the absorption capacity was confirmed to be about 26.35 g/g when used once, and the adsorption performance for diesel in water was more than 88% when used 10 times repeatedly. By confirming that it was maintained, it was confirmed that the superaqueous oil-water separation material according to the present invention was reusable (see FIG. 5).

앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 구현예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 구현예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.In the foregoing, although specific embodiments of the present invention have been described and illustrated, it is common knowledge in the art that the present invention is not limited to the described embodiments, and that various modifications and variations can be made without departing from the spirit and scope of the present invention. It is self-evident to those who have Therefore, such modifications or variations should not be individually understood from the technical spirit or viewpoint of the present invention, and modified implementations should belong to the claims of the present invention.

Claims (9)

a) 폴리디메틸실록산(polydimethylsiloxane) 및 사이클로헥산(cyclohexane)을 혼합하여, 코팅 용액을 제조하는 단계;
b) 준비된 스펀지 상에 상기 a 단계의 코팅 용액을 코팅하는 단계; 및
c) 스펀지에 코팅된 코팅 용액을 양생하는 단계; 를 포함하는, 초수성 유수 분리소재 제조방법.
a) preparing a coating solution by mixing polydimethylsiloxane and cyclohexane;
b) coating the coating solution of step a on the prepared sponge; and
c) curing the coating solution coated on the sponge; Containing, superaqueous oil-water separation material manufacturing method.
제 1 항에 있어서,
상기 a 단계의 코팅 용액은 폴리디메틸실록산 베이스 용액과 경화제(curing agent)를 10 : 1 중량부 비로 혼합하여 폴리디메틸실록산 용액을 제조한 다음, 상기 폴리디메틸실록산 용액과 사이클로헥산을 1 : 20 내지 80의 중량부 비로 혼합하여 제조되는 것인, 초수성 유수 분리소재 제조방법.
According to claim 1,
The coating solution in step a is prepared by mixing a polydimethylsiloxane base solution and a curing agent in a ratio of 10:1 by weight, and then mixing the polydimethylsiloxane solution and cyclohexane in a ratio of 1:20 to 80 A method for producing a superaqueous oil-water separation material that is prepared by mixing in a weight part ratio of.
제 1 항에 있어서,
상기 b 단계는 세척된 스펀지를 코팅 용액에 0.5 내지 1.5 시간 침지시켜 스펀지에 코팅 용액을 흡수시킨 후, 진공 조건 하에서 1 내지 3 시간 동안 디개싱(degassing)하여 수행되는, 초수성 유수 분리소재 제조방법.
According to claim 1,
The step b is performed by immersing the washed sponge in the coating solution for 0.5 to 1.5 hours to absorb the coating solution in the sponge, and then degassing for 1 to 3 hours under vacuum conditions. .
제 1 항에 있어서,
상기 c 단계는 b 단계에서 얻어진 스펀지를 100 내지 140 ℃ 온도 범위에서 1 내지 3 시간 동안 양생하여 수행되는, 초수성 유수 분리소재 제조방법.
According to claim 1,
The step c is performed by curing the sponge obtained in step b at a temperature range of 100 to 140 ° C. for 1 to 3 hours.
제 1 항에 있어서,
상기 스펀지는 멜라민(Melamine)계 또는 폴리우레탄(Polyurethane)계 다공성 스펀지인, 초수성 유수 분리소재 제조방법.
According to claim 1,
The sponge is a melamine-based or polyurethane-based porous sponge, a method for producing a superhydrophobic oil-water separation material.
제 1 항에 따라 제조된 초수성 유수 분리소재로서,
상기 유수 분리소재의 표면은 접촉각 150 °이상의 초수성 특성을 발현하는, 초수성 유수 분리소재.
A superaqueous oil-water separation material prepared according to claim 1,
The surface of the oil-water separation material expresses a super-hydrophobic characteristic with a contact angle of 150 ° or more, a super-hydrophobic oil-water separation material.
제 6 항에 있어서,
상기 유수 분리소재는 상기 유수 분리소재를 유류 오염수에 10초간 침지시켰을 때, 수중 경유에 대한 흡수 용량이 26 g/g 이상인, 초수성 유수 분리소재.
According to claim 6,
The oil-water separation material has an absorption capacity for light oil in water of 26 g / g or more when the oil-water separation material is immersed in oil-contaminated water for 10 seconds.
제 6 항에 있어서,
상기 유수 분리소재는 상기 유수 분리소재를 유류 오염수에 10초간 침지시켜 수중 경유를 흡수시키고, 이를 손으로 스퀴즈(Squeeze)하는 흡착 실험을 10회 반복 시, 수중 경유에 대한 흡착 성능을 88% 이상 유지하는, 초수성 유수 분리소재.
According to claim 6,
The oil-water separation material absorbs light oil in water by immersing the material for oil-water separation in oil-contaminated water for 10 seconds, and when an adsorption experiment of squeezing it by hand is repeated 10 times, the adsorption performance for light oil in water is 88% or more. Maintaining, superhydrophobic oil-water separation material.
제 6 항의 초수성 유수 분리소재를 토양 시료 채취 프로브(probe)에 삽입하고, 지중 천공과 함께 비-수용성 액상 오염물질(Non-aqueous Phase Liquid, NAPL)을 채취하는 단계를 포함하는, 지중 유류 오염 시료 채취방법. Ground oil contamination, including the step of inserting the superaqueous oil-water separation material of claim 6 into a soil sampling probe and collecting non-aqueous phase liquid (NAPL) along with ground drilling Sample collection method.
KR1020210137238A 2021-10-15 2021-10-15 Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same KR102646829B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210137238A KR102646829B1 (en) 2021-10-15 2021-10-15 Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210137238A KR102646829B1 (en) 2021-10-15 2021-10-15 Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same

Publications (2)

Publication Number Publication Date
KR20230053900A true KR20230053900A (en) 2023-04-24
KR102646829B1 KR102646829B1 (en) 2024-03-12

Family

ID=86141664

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210137238A KR102646829B1 (en) 2021-10-15 2021-10-15 Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same

Country Status (1)

Country Link
KR (1) KR102646829B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046699A (en) * 2010-08-30 2012-03-08 Toyo Seikan Kaisha Ltd Adsorptive silicone resin composition
KR101867135B1 (en) * 2015-05-22 2018-06-14 단국대학교 산학협력단 Method of fabricating sponge having superhydrophobic and superoleophilic
KR101871073B1 (en) * 2016-12-29 2018-06-25 인천대학교 산학협력단 Method for forming superhydrophobic coating layer using pdms and micropowders
KR102187089B1 (en) * 2019-01-31 2020-12-04 한밭대학교 산학협력단 Hydrophobic absorber and method for manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046699A (en) * 2010-08-30 2012-03-08 Toyo Seikan Kaisha Ltd Adsorptive silicone resin composition
KR101867135B1 (en) * 2015-05-22 2018-06-14 단국대학교 산학협력단 Method of fabricating sponge having superhydrophobic and superoleophilic
KR101871073B1 (en) * 2016-12-29 2018-06-25 인천대학교 산학협력단 Method for forming superhydrophobic coating layer using pdms and micropowders
KR102187089B1 (en) * 2019-01-31 2020-12-04 한밭대학교 산학협력단 Hydrophobic absorber and method for manufacturing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Peng Hong et al, Fabricated of Superhydrophobic Silanized Melamine Sponge ~ Efficiency Oil/Water Separation, Advances in Polymer Technology 2019, 9536320, 1~8쪽, 2019.11.13.발행 *
Qiangying Wang et al, Fluorine-free superhydrophobic coatings from polydimethylsiloxane ~ and applications, Chemical Engineering Journal 426, 130829, 2021.6.15.온라인 공개 *

Also Published As

Publication number Publication date
KR102646829B1 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
Li et al. Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge
Li et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion
EP2641642B1 (en) Oil-water separating device and floating oil collecting system comprising same
Müller et al. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system
Wu et al. Continuous oil–water separation with surface modified sponge for cleanup of oil spills
US20170036190A1 (en) Superhydrophobic sponge as an efficient oil absorbent material for oil spill cleanup applications
US11656160B2 (en) Apparatus for solid phase microextraction
King et al. The application of solid-phase micro-extraction (SPME) to the analysis of polycyclic aromatic hydrocarbons (PAHs)
Mahgoub Extraction techniques for determination of polycyclic aromatic hydrocarbons in water samples
Zhang et al. Continuous separation of oil from water surface by a novel tubular unit based on graphene coated polyurethane sponge
KR20230053900A (en) Manufacturing method for superhydrophobic oil/water seperation material and Sampling method for NAPL in soil using the same
Ouyang et al. 3D flexible superhydrophobic polyphosphazene coated melamine sponge for oil–water separation
Piperopoulos et al. Bentonite‐PDMS composite foams for oil spill recovery: Sorption performance and kinetics
ITMI20122254A1 (en) PROCESS FOR REMOVING HYDROCARBONS FROM A WATER BODY THROUGH SELECTIVE PERMEATION, AND ITS APPARATUS
KR101766750B1 (en) The dosimeter for qualitatively absorbing organic contaminant in soil or on underground water
KR20230053901A (en) Superhydrophobic PDMS sponge filter for purification of oil-contaminated groundwater and the manufacturing method thereof
Voinea et al. Experimental study of biodegradable materials in environmental physics classes
CN111318179A (en) MnO with superstrong oil stain resistance2/carbon fiber cloth composite filtering membrane and preparation method thereof
KR102012945B1 (en) The dosimeter for qualitatively absorbing organic contaminant on underground water
JP2007064815A (en) Tool for detecting and/or recovering oils
Jácome et al. Comparative study of the impacts of soil wettability during entrapped LNAPL removal by surfactant flooding in two different sand media
CN114534700B (en) Durable super-hydrophobic metal-organic framework sponge material and preparation method and application thereof
Lee et al. Effect of NAPL exposure on the wettability and two‐phase flow in a single rock fracture
Tonziello et al. Enhanced Oil Spill Remediation by Adsorption with Interlinked Multilayered Graphene
Tung et al. Passive Sampling of Polycyclic Aromatic Hydrocarbons in Johor Strait by Sol–gel Polydimethylsiloxane

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant