KR20230050367A - 무선 통신 시스템에서 빔 보고 방법 및 장치 - Google Patents

무선 통신 시스템에서 빔 보고 방법 및 장치 Download PDF

Info

Publication number
KR20230050367A
KR20230050367A KR1020237007411A KR20237007411A KR20230050367A KR 20230050367 A KR20230050367 A KR 20230050367A KR 1020237007411 A KR1020237007411 A KR 1020237007411A KR 20237007411 A KR20237007411 A KR 20237007411A KR 20230050367 A KR20230050367 A KR 20230050367A
Authority
KR
South Korea
Prior art keywords
information
measurement information
event
resource
terminal
Prior art date
Application number
KR1020237007411A
Other languages
English (en)
Inventor
강지원
양석철
김선욱
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20230050367A publication Critical patent/KR20230050367A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 빔 보고 방법 및 장치가 개시된다. 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말에 의해서 빔 보고를 수행하는 방법은, 복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 기지국으로부터 수신하는 단계; 및 상기 설정 정보에 기초하여, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 기지국으로 전송하는 단계를 포함하고, 상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고, 상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며, 상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보일 수 있다.

Description

무선 통신 시스템에서 빔 보고 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 무선 통신 시스템에서 빔 보고 방법 및 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 개시의 기술적 과제는 무선 통신 시스템에서 향상된 이동성(mobility)을 지원하는 빔 보고 방법 및 장치를 제공하는 것이다.
본 개시의 추가적인 기술적 과제는 무선 통신 시스템에서 고속의 이벤트 기반 빔 보고 방법 및 장치를 제공하는 것이다.
본 개시의 추가적인 기술적 과제는 무선 통신 시스템에서 자원 사용 및 시그널링을 최소화하는 빔 보고 방법 및 장치를 제공하는 것이다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 양상에 따른 무선 통신 시스템에서 단말에 의해서 빔 보고를 수행하는 방법은, 복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 기지국으로부터 수신하는 단계; 및 상기 설정 정보에 기초하여, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 기지국으로 전송하는 단계를 포함하고, 상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고, 상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며, 상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보일 수 있다.
본 개시의 추가적인 양상에 따른 무선 통신 시스템에서 기지국에 의해서 빔 보고를 수신하는 방법은, 복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 단말로 전송하는 단계; 및 상기 설정 정보에 기초하여 상기 단말로부터 전송되는, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 수신하는 단계를 포함하고, 상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고, 상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며, 상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보일 수 있다.
본 개시에 따르면, 무선 통신 시스템에서 향상된 이동성(mobility)을 지원하는 빔 보고 방법 및 장치가 제공될 수 있다.
본 개시에 따르면, 무선 통신 시스템에서 고속의 이벤트 기반 빔 보고 방법 및 장치가 제공될 수 있다.
본 개시에 따르면,무선 통신 시스템에서 자원 사용 및 시그널링을 최소화하는 빔 보고 방법 및 장치가 제공될 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 개시에 대한 실시예를 제공하고, 상세한 설명과 함께 본 개시의 기술적 특징을 설명한다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다.
도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
도 7은 본 개시가 적용될 수 있는 무선 통신 시스템에서 하향링크 빔 관리 동작을 예시하는 도면이다.
도 8은 본 개시가 적용될 수 있는 무선 통신 시스템에서 SSB를 이용한 하향링크 빔 관리 절차를 예시하는 도면이다.
도 9는 본 개시가 적용될 수 있는 무선 통신 시스템에서 CSI-RS를 이용한 하향링크 빔 관리 동작을 예시하는 도면이다.
도 10은 본 개시가 적용될 수 있는 무선 통신 시스템에서 단말의 수신 빔 결정 과정을 예시하는 도면이다.
도 11은 본 개시가 적용될 수 있는 무선 통신 시스템에서 기지국의 전송 빔 결정 과정을 예시하는 도면이다.
도 12는 본 개시가 적용될 수 있는 무선 통신 시스템에서 하향링크 빔 관리의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당을 예시하는 도면이다.
도 13은 본 개시가 적용될 수 있는 무선 통신 시스템에서 SRS를 이용한 상향링크 빔 관리 동작을 예시하는 도면이다.
도 14는 본 개시가 적용될 수 있는 무선 통신 시스템에서 상향링크 빔 관리 절차를 예시하는 도면이다.
도 15는 본 개시의 일 실시예에 따른 단말의 빔 보고 방법을 설명하기 위한 도면이다.
도 16은 본 개시의 일 실시예에 따른 기지국의 단말로부터 빔 보고를 수신하는 방법을 설명하기 위한 도면이다.
도 17은 본 개시의 일 실시예에 따른 기지국과 단말 간의 시그널링 방법을 설명하기 위한 도면이다.
도 18은 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시하는 도면이다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 개시의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 개시가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 개시의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계 뿐만 아니라, 그 사이에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 본 개시에서 용어 "포함한다" 또는 "가진다"는 언급된 특징, 단계, 동작, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 단계, 동작, 요소, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
본 개시에 있어서, "제 1", "제 2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되고 구성요소들을 제한하기 위해서 사용되지 않으며, 특별히 언급되지 않는 한 구성요소들 간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제 1 구성요소는 다른 실시예에서 제 2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제 2 구성요소를 다른 실시예에서 제 1 구성요소라고 칭할 수도 있다.
본 개시에서 사용된 용어는 특정 실시예에 대한 설명을 위한 것이며 청구범위를 제한하려는 것이 아니다. 실시예의 설명 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 명백하게 다르게 나타내지 않는 한 복수 형태도 포함하도록 의도한 것이다. 본 개시에 사용된 용어 "및/또는"은 관련된 열거 항목 중의 하나를 지칭할 수도 있고, 또는 그 중의 둘 이상의 임의의 및 모든 가능한 조합을 지칭하고 포함하는 것을 의미한다. 또한, 본 개시에서 단어들 사이의 "/"는 달리 설명되지 않는 한 "및/또는"과 동일한 의미를 가진다.
본 개시는 무선 통신 네트워크 또는 무선 통신 시스템을 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 동작은 해당 무선 통신 네트워크를 관할하는 장치(예를 들어 기지국)에서 네트워크를 제어하고 신호를 송신(transmit) 또는 수신(receive)하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 네트워크와의 또는 단말간의 신호를 송신 또는 수신하는 과정에서 이루어질 수 있다.
본 개시에서, 채널을 송신 또는 수신한다는 것은 해당 채널을 통해서 정보 또는 신호를 송신 또는 수신한다는 의미를 포함한다. 예를 들어, 제어 채널을 송신한다는 것은, 제어 채널을 통해서 제어 정보 또는 신호를 송신한다는 것을 의미한다. 유사하게, 데이터 채널을 송신한다는 것은, 데이터 채널을 통해서 데이터 정보 또는 신호를 송신한다는 것을 의미한다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제1 통신 장치로, 단말은 제2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예를 들어, LTE-A, NR)을 기반으로 설명하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS(Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE의 경우, TS 36.211(물리 채널들 및 변조), TS 36.212(다중화 및 채널 코딩), TS 36.213(물리 계층 절차들), TS 36.300(전반적인 설명), TS 36.331(무선 자원 제어)을 참조할 수 있다.
3GPP NR의 경우, TS 38.211(물리 채널들 및 변조), TS 38.212(다중화 및 채널 코딩), TS 38.213(제어를 위한 물리 계층 절차들), TS 38.214(데이터를 위한 물리 계층 절차들), TS 38.300(NR 및 NG-RAN(New Generation-Radio Access Network) 전반적인 설명), TS 38.331(무선 자원 제어 프로토콜 규격)을 참조할 수 있다.
본 개시에서 사용될 수 있는 용어들의 약자는 다음과 같이 정의된다.
- BM: 빔 관리(beam management)
- CQI: 채널 품질 지시자(channel quality indicator)
- CRI: 채널 상태 정보 - 참조 신호 자원 지시자(channel state information - reference signal resource indicator)
- CSI: 채널 상태 정보(channel state information)
- CSI-IM: 채널 상태 정보 - 간섭 측정(channel state information - interference measurement)
- CSI-RS: 채널 상태 정보 - 참조 신호(channel state information - reference signal)
- DMRS: 복조 참조 신호(demodulation reference signal)
- FDM: 주파수 분할 다중화(frequency division multiplexing)
- FFT: 고속 푸리에 변환(fast Fourier transform)
- IFDMA: 인터리빙된 주파수 분할 다중 액세스(interleaved frequency division multiple access)
- IFFT: 역 고속 푸리에 변환(inverse fast Fourier transform)
- L1-RSRP: 제1 레이어 참조 신호 수신 파워(Layer 1 reference signal received power)
- L1-RSRQ: 제1 레이어 참조 신호 수신 품질(Layer 1 reference signal received quality)
- MAC: 매체 액세스 제어(medium access control)
- NZP: 논-제로 파워(non-zero power)
- OFDM: 직교 주파수 분할 다중화(orthogonal frequency division multiplexing)
- PDCCH: 물리 하향링크 제어 채널(physical downlink control channel)
- PDSCH: 물리 하향링크 공유 채널(physical downlink shared channel)
- PMI: 프리코딩 행렬 지시자(precoding matrix indicator)
- RE: 자원 요소(resource element)
- RI: 랭크 지시자(Rank indicator)
- RRC: 무선 자원 제어(radio resource control)
- RSSI: 수신 신호 강도 지시자(received signal strength indicator)
- Rx: 수신(Reception)
- QCL: 준-동일 위치(quasi co-location)
- SINR: 신호 대 간섭 및 잡음비(signal to interference and noise ratio)
- SSB (또는 SS/PBCH block): 동기 신호 블록(프라이머리 동기 신호(PSS: primary synchronization signal), 세컨더리 동기 신호(SSS: secondary synchronization signal) 및 물리 방송 채널(PBCH: physical broadcast channel)을 포함)
- TDM: 시간 분할 다중화(time division multiplexing)
- TRP: 전송 및 수신 포인트(transmission and reception point)
- TRS: 트래킹 참조 신호(tracking reference signal)
- Tx: 전송(transmission)
- UE: 사용자 장치(user equipment)
- ZP: 제로 파워(zero power)
시스템 일반
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(RAT: radio access technology)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC(Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR이라고 부른다. NR은 5G RAT의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예를 들어, 100MHz)를 지원할 수 있다. 또는 하나의 셀이 복수 개의 numerology들을 지원할 수도 있다. 즉, 서로 다른 numerology로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
numerology는 주파수 영역에서 하나의 서브캐리어 간격(subcarrier spacing)에 대응한다. 참조 서브캐리어 간격(Reference subcarrier spacing)을 정수 N으로 스케일링(scaling)함으로써, 상이한 numerology가 정의될 수 있다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 1을 참조하면, NG-RAN은 NG-RA(NG-Radio Access) 사용자 평면(즉, 새로운 AS(access stratum) 서브계층/PDCP(Packet Data Convergence Protocol)/RLC(Radio Link Control)/MAC/PHY) 및 UE에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다. 상기 gNB는 Xn 인터페이스를 통해 상호 연결된다. 상기 gNB는 또한, NG 인터페이스를 통해 NGC(New Generation Core)로 연결된다. 보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
NR 시스템은 다수의 뉴머롤로지(numerology)들을 지원할 수 있다. 여기서, numerology는 서브캐리어 간격(subcarrier spacing)과 순환 전치(CP: Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이때, 다수의 서브캐리어 간격은 기본(참조) 서브캐리어 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 numerology는 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 numerology에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM numerology 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM numerology들은 아래 표 1과 같이 정의될 수 있다.
μ Δf=2μ·15 [kHz] CP
0 15 일반(Normal)
1 30 일반
2 60 일반, 확장(Extended)
3 120 일반
4 240 일반
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 서브캐리어 간격(SCS: subcarrier spacing))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(mmW: millimeter wave)를 의미할 수 있다.
주파수 범위 지정(Frequency Range designation) 해당 주파수 범위(Corresponding frequency range) 서브캐리어 간격(Subcarrier Spacing)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는 Tc=1/(Δfmax·Nf) 의 시간 단위의 배수로 표현된다. 여기에서, Δfmax=480·103 Hz 이고, Nf=4096 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 Tf=1/(ΔfmaxNf/100)·Tc=10ms 의 구간을 가지는 무선 프레임(radio frame)으로 구성(organized)된다. 여기에서, 무선 프레임은 각각 Tsf=(ΔfmaxNf/1000)·Tc=1ms 의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 또한, 단말로부터의 상향링크 프레임 번호 i에서의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 TTA=(NTA+NTA,offset)Tc 이전에 시작해야 한다. 서브캐리어 간격 구성 μ 에 대하여, 슬롯(slot)들은 서브프레임 내에서 ns μ∈{0,..., Nslot subframe,μ-1} 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 ns,f μ∈{0,..., Nslot frame,μ-1} 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 Nsymb slot 의 연속하는 OFDM 심볼들로 구성되고, Nsymb slot 는, CP에 따라 결정된다. 서브프레임에서 슬롯 ns μ 의 시작은 동일 서브프레임에서 OFDM 심볼 ns μNsymb slot 의 시작과 시간적으로 정렬된다. 모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다. 표 3은 일반 CP에서 슬롯 별 OFDM 심볼의 개수(Nsymb slot), 무선 프레임 별 슬롯의 개수(Nslot frame,μ), 서브프레임 별 슬롯의 개수(Nslot subframe,μ)를 나타내며, 표 4는 확장 CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
μ Nsymb slot Nslot frame,μ Nslot subframe,μ
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
μ Nsymb slot Nslot frame,μ Nslot subframe,μ
2 12 40 4
도 2는, μ=2인 경우(SCS가 60kHz)의 일례로서, 표 3을 참고하면 1 서브프레임(subframe)은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1 subframe={1,2,4} slot은 일례로서, 1 subframe에 포함될 수 있는 slot(들)의 개수는 표 3 또는 표 4와 같이 정의된다. 또한, 미니 슬롯(mini-slot)은 2, 4 또는 7 심볼들을 포함하거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다. 이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 3을 참조하면, 자원 그리드가 주파수 영역 상으로 NRB μNsc RB 서브캐리어들로 구성되고, 하나의 서브프레임이 14·2μ OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다. NR 시스템에서, 전송되는 신호(transmitted signal)는 NRB μNsc RB 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 2μNsymb (μ) 의 OFDM 심볼들에 의해 설명된다. 여기서, NRB μ≤NRB max,μ 이다. 상기 NRB max,μ 는 최대 전송 대역폭을 나타내고, 이는, numerology들 뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 이 경우, μ 및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다. μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 (k,l')에 의해 고유적으로 식별된다. 여기에서, k=0,...,NRB μNsc RB-1 는 주파수 영역 상의 인덱스이고, l'=0,...,2μNsymb (μ)-1 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 (k,l) 이 이용된다. 여기서, l=0,...,Nsymb μ-1 이다. μ 및 안테나 포트 p에 대한 자원 요소 (k,l') 는 복소 값(complex value) ak,l' (p,μ) 에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 numerology가 특정되지 않은 경우에는, 인덱스들 p 및 μ 는 드롭(drop)될 수 있으며, 그 결과 복소 값은 ak,l' (p) 또는 ak,l' 이 될 수 있다. 또한, 자원 블록(resource block, RB)은 주파수 영역 상의 Nsc RB=12 연속적인 서브캐리어들로 정의된다.
포인트(point) A는 자원 블록 그리드의 공통 기준 포인트(common reference point)로서 역할을 하며 다음과 같이 획득된다.
- 프라이머리 셀(PCell: Primary Cell) 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 단말에 의해 사용된 SS/PBCH block과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타낸다. FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현된다.
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정 μ 에 대한 주파수 영역에서 0부터 위쪽으로 numbering된다. 서브캐리어 간격 설정 μ 에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호 nCRB μ 와 서브캐리어 간격 설정 μ 에 대한 자원 요소(k,l)와의 관계는 아래 수학식 1과 같이 주어진다.
Figure pct00001
수학식 1에서, k는 k=0이 point A를 중심으로 하는 서브캐리어에 해당하도록 point A에 상대적으로 정의된다. 물리 자원 블록들은 대역폭 파트(BWP: bandwidth part) 내에서 0부터 NBWP,i size,μ-1 까지 번호가 매겨지고, i는 BWP의 번호이다. BWP i에서 물리 자원 블록 nPRB 와 공통 자원 블록 nCRB 간의 관계는 아래 수학식 2에 의해 주어진다.
Figure pct00002
NBWP,i start,μ 는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록이다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다. 그리고, 도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 4 및 도 5를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예를 들어, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (물리) 자원 블록으로 정의되며, 하나의 numerology(예를 들어, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(RE: Resource Element)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
NR 시스템은 하나의 컴포넌트 캐리어(CC: Component Carrier) 당 최대 400 MHz까지 지원될 수 있다. 이러한 광대역 CC(wideband CC)에서 동작하는 단말이 항상 CC 전체에 대한 무선 주파수(RF: radio frequency) 칩(chip)를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 광대역 CC 내에 동작하는 여러 활용 케이스들(예를 들어, eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology(예를 들어, 서브캐리어 간격 등)가 지원될 수 있다. 혹은 단말 별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 광대역 CC의 전체 bandwidth이 아닌 일부 bandwidth에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 bandwidth를 편의상 대역폭 부분(BWP: bandwidth part)로 정의한다. BWP는 주파수 축 상에서 연속한 RB들로 구성될 수 있으며, 하나의 numerology(예를 들어, 서브캐리어 간격, CP 길이, 슬롯/미니-슬롯 구간)에 대응될 수 있다.
한편, 기지국은 단말에게 설정된 하나의 CC 내에서도 다수의 BWP를 설정할 수 있다. 예를 들어, PDCCH 모니터링 슬롯에서는 상대적으로 작은 주파수 영역을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH는 그보다 큰 BWP 상에 스케줄링될 수 있다. 혹은, 특정 BWP에 UE 들이 몰리는 경우 로드 밸런싱(load balancing)을 위해 일부 단말들을 다른 BWP로 설정할 수 있다. 혹은, 이웃 셀 간의 주파수 도메인 셀간 간섭 제거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 bandwidth 중 가운데 일부 스펙트럼(spectrum)을 배제하고 양쪽 BWP들을 동일 슬롯 내에서도 설정할 수 있다. 즉, 기지국은 광대역 CC와 연관된(association) 단말에게 적어도 하나의 DL/UL BWP를 설정할 수 있다. 기지국은 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 또는 MAC CE(Control Element) 또는 RRC 시그널링 등에 의해) 활성화시킬 수 있다. 또한, 기지국은 다른 설정된 DL/UL BWP로 스위칭을 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시할 수 있다. 또는, 타이머 기반으로 타이머 값이 만료되면 정해진 DL/UL BWP로 스위칭될 수도 있다. 이때, 활성화된 DL/UL BWP를 활성(active) DL/UL BWP로 정의한다. 하지만, 단말이 최초 접속(initial access) 과정을 수행하는 중이거나, 혹은 RRC 연결이 셋업(set up)되기 전 등의 상황에서는 DL/UL BWP에 대한 설정을 수신하지 못할 수 있으므로, 이러한 상황에서 단말이 가정하는 DL/UL BWP는 최초 활성 DL/UL BWP라고 정의한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(PSS: Primary Synchronization Signal) 및 부 동기 채널(SSS: Secondary Synchronization Signal)을 수신하여 기지국과 동기를 맞추고, 셀 식별자(ID: Identifier) 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(PDCCH: Physical Downlink Control Channel) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(PDSCH: Physical Downlink Control Channel)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(RACH: Random Access Procedure)을 수행할 수 있다(단계 S603 내지 단계 S606). 이를 위해, 단말은 물리 임의 접속 채널(PRACH: Physical Random Access Channel)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S604 및 S606). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(PUSCH: Physical Uplink Shared Channel)/물리 상향링크 제어 채널(PUCCH: Physical Uplink Control Channel) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(DCI: Downlink Control Information)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK(Acknowledgement/Non-Acknowledgement) 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
표 5는 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.
DCI 포맷 활용
0_0 하나의 셀 내 PUSCH의 스케줄링
0_1 하나의 셀 내 하나 또는 다중 PUSCH의 스케줄링, 또는 UE에게 셀 그룹(CG: cell group) 하향링크 피드백 정보의 지시
0_2 하나의 셀 내 PUSCH의 스케줄링
1_0 하나의 DL 셀 내 PDSCH의 스케줄링
1_1 하나의 셀 내 PDSCH의 스케줄링
1_2 하나의 셀 내 PDSCH의 스케줄링
표 5를 참조하면, DCI format 0_0, 0_1 및 0_2는 PUSCH의 스케줄링에 관련된 자원 정보(예를 들어, UL/SUL(Supplementary UL), 주파수 자원 할당, 시간 자원 할당, 주파수 호핑 등), 전송 블록(TB: Transport Block) 관련 정보(예를 들어, MCS(Modulation Coding and Scheme), NDI(New Data Indicator), RV(Redundancy Version) 등), HARQ(Hybrid - Automatic Repeat and request) 관련 정보(예를 들어, 프로세스 번호, DAI(Downlink Assignment Index), PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, DMRS 시퀀스 초기화 정보, 안테나 포트, CSI 요청 등), 전력 제어 정보(예를 들어, PUSCH 전력 제어 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI 포맷 0_0에 포함된 정보는 C-RNTI(Cell RNTI: Cell Radio Network Temporary Identifier) 또는 CS-RNTI(Configured Scheduling RNTI) 또는 MCS-C-RNTI(Modulation Coding Scheme Cell RNTI)에 의해 CRC(cyclic redundancy check) 스크램블링되어 전송된다.
DCI format 0_1은 하나의 셀에서 하나 이상의 PUSCH의 스케줄링, 또는 설정된 그랜트(CG: configure grant) 하향링크 피드백 정보를 단말에게 지시하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI(Semi-Persistent CSI RNTI) 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 0_2는 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI format 0_2에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
다음으로, DCI format 1_0, 1_1 및 1_2는 PDSCH의 스케줄링에 관련된 자원 정보(예를 들어, 주파수 자원 할당, 시간 자원 할당, VRB(virtual resource block)-PRB(physical resource block) 매핑 등), 전송블록(TB) 관련 정보(예를 들어, MCS, NDI, RV 등), HARQ 관련 정보(예를 들어, 프로세스 번호, DAI, PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, 안테나 포트, TCI(transmission configuration indicator), SRS(sounding reference signal) 요청 등), PUCCH 관련 정보(예를 들어, PUCCH 전력 제어, PUCCH 자원 지시자 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.
DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_2는 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_2에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
빔 관리(BM: beam management)
BM 절차는 다운링크(DL: downlink) 및 업링크(UL: uplink) 송/수신에 사용될 수 있는 기지국(예를 들어, gNB, TRP 등) 및/또는 단말(예를 들어, UE) 빔들의 세트(set)를 획득하고 유지하기 위한 L1(layer 1)/L2(layer 2) 절차들로서, 아래와 같은 절차 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): 기지국 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): 기지국 또는 UE가 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 일정 시간 간격 동안 송신 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
BM 절차는 (1) SS(synchronization signal)/PBCH(physical broadcast channel) Block 또는 CSI-RS를 이용하는 DL BM 절차와, (2) SRS(sounding reference signal)을 이용하는 UL BM 절차로 구분할 수 있다.
또한, 각 BM 절차는 전송 빔(Tx beam)을 결정하기 위한 전송 빔 스위핑(Tx beam sweeping)과 수신 빔(Rx beam)을 결정하기 위한 수신 빔 스위핑(Rx beam sweeping)을 포함할 수 있다.
이하, DL BM 절차에 대하여 기술한다.
DL BM 절차는 (1) 기지국의 빔포밍된(beamformed) DL RS(reference signal)들(예를 들어, CSI-RS 또는 SS Block(SSB))에 대한 전송과, (2) 단말의 빔 보고(beam reporting)를 포함할 수 있다.
여기서, beam reporting은 선호되는(preferred) DL RS ID(identifier)(s) 및 이에 대응하는 L1-RSRP(Reference Signal Received Power)를 포함할 수 있다.
상기 DL RS ID는 SSBRI(SSB Resource Indicator) 또는 CRI(CSI-RS Resource Indicator)일 수 있다.
이하, SSB를 이용한 DL BM 절차에 대하여 기술한다.
도 7은 본 개시가 적용될 수 있는 무선 통신 시스템에서 하향링크 빔 관리 동작을 예시하는 도면이다.
도 7을 참조하면, SSB beam과 CSI-RS beam은 빔 측정(beam measurement)을 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 L1-RSRP이다. SSB는 대략적(coarse) 빔 측정(beam measurement)을 위해 사용되며, CSI-RS는 정밀한(fine) beam measurement를 위해 사용될 수 있다. SSB는 Tx beam sweeping과 Rx beam sweeping 모두에 사용될 수 있다.
SSB를 이용한 Rx beam sweeping은 다수의 SSB 버스트들(bursts)에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx beam을 변경하면서 수행될 수 있다. 여기서, 하나의 SS burst는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS 버스트 세트(burst set)ㄴ,ㄴ 하나 또는 그 이상의 SSB burst들을 포함한다.
도 8은 본 개시가 적용될 수 있는 무선 통신 시스템에서 SSB를 이용한 하향링크 빔 관리 절차를 예시하는 도면이다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC 연결 상태(connected state)(또는 RRC 연결 모드(RRC connected mode))에서 CSI/빔 설정(beam configuration) 시에 수행된다.
도 8을 참조하면, 단말은 BM을 위해 사용되는 SSB 자원(resource)들을 포함하는 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 기지국으로부터 수신한다(S410).
표 6은 CSI-ResourceConfig IE의 일례를 나타내며, 표 6과 같이, SSB를 이용한 BM configuration은 별도로 정의되지 않고, SSB를 CSI-RS resource처럼 설정한다.
-- ASN1START
-- TAG-CSI-RESOURCECONFIG-START

CSI-ResourceConfig ::= SEQUENCE {
csi-ResourceConfigId CSI-ResourceConfigId,
csi-RS-ResourceSetList CHOICE {
nzp-CSI-RS-SSB SEQUENCE {
nzp-CSI-RS-ResourceSetList SEQUENCE (SIZE (1..maxNrofNZP-CSI-RS-ResourceSetsPerConfig)) OF NZP-CSI-RS-ResourceSetId OPTIONAL,
csi-SSB-ResourceSetList SEQUENCE (SIZE (1..maxNrofCSI-SSB-ResourceSetsPerConfig)) OF CSI-SSB-ResourceSetId OPTIONAL
},
csi-IM-ResourceSetList SEQUENCE (SIZE (1..maxNrofCSI-IM-ResourceSetsPerConfig)) OF CSI-IM-ResourceSetId
},

bwp-Id BWP-Id,
resourceType ENUMERATED { aperiodic, semiPersistent, periodic },
...
}

-- TAG-CSI-RESOURCECONFIGTOADDMOD-STOP
-- ASN1STOP
표 6에서, csi-SSB-ResourceSetList 파라미터(parameter)는 하나의 자원 세트(resource set)에서 빔 관리(beam management) 및 보고(reporting)를 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트(resource set)는 {SSBx1, SSBx2, SSBx3, SSBx4, ...}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.단말은 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원을 상기 기지국으로부터 수신한다(S420).
SSBRI 및 L1-RSRP에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 단말은 최적의(best) SSBRI 및 이에 대응하는 L1-RSRP를 기지국으로 (빔) 보고한다(S430).
이하, CSI-RS를 이용한 DL BM 절차에 대하여 기술한다.
CSI-RS 용도에 대해 살펴보면, i) 특정 CSI-RS 자원 세트(resource set)에 반복(repetition) 파라미터가 설정되고, TRS_info가 설정되지 않은 경우, CSI-RS는 빔 관리(beam management)를 위해 사용된다. ii) repetition 파라미터가 설정되지 않고, TRS_info가 설정된 경우, CSI-RS는 TRS(tracking reference signal)을 위해 사용된다. iii) repetition 파라미터가 설정되지 않고, TRS_info가 설정되지 않은 경우, CSI-RS는 CSI 획득(acquisition)을 위해 사용된다.
이러한, repetition 파라미터는 L1 RSRP 또는 ‘No Report(또는 None)’의 보고(report)를 가지는 CSI-ReportConfig와 연계된 CSI-RS resource set들에 대해서만 설정될 수 있다.
만약 단말이 reportQuantity가 ‘cri-RSRP’ 또는 ‘none’으로 설정된 CSI-ReportConfig를 설정받고, 채널 측정을 위한 CSI-ResourceConfig (상위 계층 파라미터 resourcesForChannelMeasurement)가 상위 계층 파라미터 ‘trs-Info’를 포함하지 않고, 상위 계층 파라미터 ‘repetition’이 설정된 NZP-CSI-RS-ResourceSet를 포함하는 경우, 상기 단말은 NZP-CSI-RS-ResourceSet 내의 모든 CSI-RS resource들에 대해 상위 계층 파라미터 ‘nrofPorts’를 가지는 동일한 번호의 포트(1-port 또는 2-port)로만 구성될 수 있다.
(상위 계층 파라미터) repetition이 'ON'으로 설정된 경우, 단말의 Rx beam sweeping 절차와 관련된다. 이 경우, 단말이 NZP-CSI-RS-ResourceSet을 설정받으면, 상기 단말은 NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 동일한 하향링크 공간 도메인 전송 필터(downlink spatial domain transmission filter)로 전송된다고 가정할 수 있다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 동일한 Tx beam을 통해 전송된다. 여기서, NZP-CSI-RS-ResourceSet 내 적어도 하나의 CSI-RS resource는 서로 다른 OFDM 심볼로 전송될 수 있다. 또한, 단말은 NZP-CSI-RS-Resourceset 내의 모든 CSI-RS resource들에서 periodicityAndOffset에 서로 다른 주기(periodicity)를 수신할 것으로 기대하지 않는다.
반면, Repetition이 ‘OFF’로 설정된 경우는 기지국의 Tx beam sweeping 절차와 관련된다. 이 경우, repetition이 'OFF'로 설정되면, 단말은 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource가 동일한 하향링크 공간 도메인 전송 필터(downlink spatial domain transmission filter)로 전송된다고 가정하지 않는다. 즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS resource는 서로 다른 Tx beam을 통해 전송된다.
즉, 상기 CSI-RS reportConfig IE의 reportQuantity가 ‘ssb-Index-RSRP’로 설정된 경우, 단말은 기지국으로 best SSBRI 및 이에 대응하는 L1-RSRP를 보고한다.
그리고, 단말은 SSB(SS/PBCH Block)와 동일한 OFDM 심볼(들)에서 CSI-RS resource가 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 단말은 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 준-동일 위치(quasi co-located)라고 가정할 수 있다.
여기서, 상기 QCL TypeD는 공간 수신 파라미터(spatial Rx parameter) 관점에서 안테나 포트(antenna port)들 간에 QCL되어 있음을 의미할 수 있다. 단말이 QCL Type D 관계에 있는 복수의 DL 안테나 포트(antenna port)들을 수신 시에는 동일한 수신 빔을 적용하여도 무방하다. 또한, 단말은 SSB의 RE와 중첩하는 RE에서 CSI-RS가 설정될 것으로 기대하지 않는다.
도 9는 본 개시가 적용될 수 있는 무선 통신 시스템에서 CSI-RS를 이용한 하향링크 빔 관리 동작을 예시하는 도면이다.
도 9(a)는 단말의 Rx beam 결정(또는 개선(refinement)) 절차를 나타내며, 도 9(b)는 기지국의 Tx beam sweeping 절차를 나타낸다. 또한, 도 9(a)는, repetition parameter가 ‘ON’으로 설정된 경우이고, 도 9(b)는, repetition parameter가 ‘OFF’로 설정된 경우이다.
도 10은 본 개시가 적용될 수 있는 무선 통신 시스템에서 단말의 수신 빔 결정 과정을 예시하는 도면이다.
도 9(a) 및 도 10을 참조하여, 단말의 Rx beam 결정 과정에 대해 살펴본다.
단말은 상위 계층 파라미터 repetition을 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 기지국으로부터 수신한다(S610). 여기서, 상기 repetition 파라미터는 ‘ON’으로 설정된다.
단말은 repetition ‘ON’으로 설정된 CSI-RS resource set 내의 resource(들)을 기지국의 동일 Tx beam(또는 DL 공간 도메인 전송 필터(spatial domain transmission filter))을 통해 서로 다른 OFDM 심볼에서 반복 수신한다(S620).
단말은 자신의 Rx beam을 결정한다(S630).
단말은 CSI 보고를 생략한다(S640). 이 경우, CSI 보고 설정의 reportQuantity는 ‘No report(또는 None)’로 설정될 수 있다.
즉, 상기 단말은 repetition ‘ON’으로 설정된 경우, CSI 보고를 생략할 수 있다.
도 11은 본 개시가 적용될 수 있는 무선 통신 시스템에서 기지국의 전송 빔 결정 과정을 예시하는 도면이다.
도 9(b) 및 도 11을 참조하여, 기지국의 Tx beam 결정 과정에 대하여 살펴본다.
단말은 상위 계층 파라미터 repetition을 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 기지국으로부터 수신한다(S710). 여기서, 상기 repetition 파라미터는 ‘OFF’로 설정되며, 기지국의 Tx beam sweeping 절차와 관련된다.
단말은 repetition ‘OFF’로 설정된 CSI-RS resource set 내의 resource들을 기지국의 서로 다른 Tx beam(DL 공간 도메인 전송 필터(spatial domain transmission filter))을 통해 수신한다(S720).
단말은 최상의(best) beam을 선택(또는 결정)한다(S740)
단말은 선택된 빔에 대한 ID 및 관련 품질 정보(예: L1-RSRP)를 기지국으로 보고한다(S740). 이 경우, CSI 보고 설정의 reportQuantity는 ‘CRI + L1-RSRP’로 설정될 수 있다.
즉, 상기 단말은 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 L1-RSRP를 기지국으로 보고한다.
도 12는 본 개시가 적용될 수 있는 무선 통신 시스템에서 하향링크 빔 관리의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당을 예시하는 도면이다.
도 12를 참조하면, CSI-RS resource set에 repetition ‘ON’이 설정된 경우, 복수의 CSI-RS resource들이 동일한 송신 빔을 적용하여 반복하여 사용되고, CSI-RS resource set에 repetition ‘OFF’가 설정된 경우, 서로 다른 CSI-RS resource들이 서로 다른 송신 빔으로 전송되는 것을 볼 수 있다.
이하, 하향링크 BM 관련 빔 지시(beam indication) 방법에 대하여 기술한다.
단말은 적어도 QCL(Quasi Co-location) 지시의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (TCI: Transmission Configuration Indication) 상태(state)들에 대한 리스트를 RRC 설정받을 수 있다. 여기서, M은 64일 수 있다.
각 TCI 상태(state)는 하나의 RS set으로 설정될 수 있다. 적어도 RS set 내의 공간 QCL(spatial QCL) 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P(periodic)-CSI RS, SP(semi-persistent)-CSI RS, A(aperiodic)-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다.
최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다.
표 7은 TCI-State 정보 요소(IE: information element)를 예시한다.
TCI-State IE는 하나 또는 두 개의 DL 참조 신호(RS: reference signal) 대응하는 quasi co-location (QCL) 타입과 연관시킨다.
-- ASN1START
-- TAG-TCI-STATE-START

TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId,
qcl-Type1 QCL-Info,
qcl-Type2 QCL-Info OPTIONAL, -- Need R
...
}

QCL-Info ::= SEQUENCE {
cell ServCellIndex OPTIONAL, -- Need R
bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated
referenceSignal CHOICE {
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD},
...
}

-- TAG-TCI-STATE-STOP
-- ASN1STOP
표 7에서, bwp-Id 파라미터는 RS가 위치되는 DL BWP(bandwidth part)를 나타내며, cell 파라미터는 RS가 위치되는 캐리어(carrier)를 나타내며, referencesignal 파라미터는 해당 타겟 안테나 포트(들)(target antenna port(s))에 대해 quasi co-location의 소스(source)가 되는 참조 안테나 포트(들)(reference antenna port(s)) 혹은 이를 포함하는 참조 신호를 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP(non-zero power) CSI-RS에 대한 QCL reference RS 정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID(identifier)를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.
이하, 상향링크 빔 관리에 대하여 기술한다.
UL BM은 단말 구현에 따라 Tx 빔(beam) - Rx 빔(beam) 간 빔 상호성(beam reciprocity)(또는 빔 상관(beam correspondence))가 성립할 수 있거나 또는, 성립하지 않을 수 있다. 만약 기지국과 단말 모두에서 Tx beam - Rx beam 간 reciprocity가 성립하는 경우, DL 빔 쌍(beam pair)를 통해 UL beam pair를 맞출 수 있다. 하지만, 기지국과 단말 중 어느 하나라도 Tx beam - Rx beam 간 reciprocity가 성립하지 않는 경우, DL beam pair 결정과 별개로 UL beam pair 결정 과정이 필요하다.
또한, 기지국과 단말 모두 beam correspondence를 유지하고 있는 경우에도, 단말이 선호(preferred) beam의 보고를 요청하지 않고도 기지국은 DL Tx beam 결정을 위해 UL BM 절차를 사용할 수 있다.
UL BM은 빔포밍됨(beamformed) UL SRS 전송을 통해 수행될 수 있으며, SRS resource set의 UL BM의 적용 여부는 (상위 계층 파라미터) usage에 의해 설정된다. usage가 'BeamManagement(BM)'로 설정되면, 주어진 시간 인스턴스(time instant)에 복수의 SRS resource set들 각각에 하나의 SRS resource만 전송될 수 있다.
단말은 (상위 계층 파라미터) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 SRS(Sounding Reference Symbol) resource set들을 (상위 계층 시그널링, RRC 시그널링 등을 통해) 설정받을 수 있다. 각각의 SRS resource set에 대해, UE는 K≥1 SRS resource들 (상위 계층 파라미터 SRS-resource)이 설정될 수 있다. 여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다.
DL BM과 마찬가지로, UL BM 절차도 단말의 Tx beam sweeping과 기지국의 Rx beam sweeping으로 구분될 수 있다.
도 13은 본 개시가 적용될 수 있는 무선 통신 시스템에서 SRS를 이용한 상향링크 빔 관리 동작을 예시하는 도면이다.
도 13(a)는 기지국의 Rx beam 결정 동작을 예시하고, 도 13(b)는 단말의 Tx beam sweeping 동작을 예시한다.
도 14는 본 개시가 적용될 수 있는 무선 통신 시스템에서 상향링크 빔 관리 절차를 예시하는 도면이다.
단말은 'beam management'로 설정된 (상위 계층 파라미터) usage 파라미터를 포함하는 RRC 시그널링(예를 들어, SRS-Config IE)를 기지국으로부터 수신한다(S1010).
표 8은 SRS-Config IE(Information Element)의 일례를 나타내며, SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS resource set는 SRS-resource들의 set를 의미한다.
네트워크는 설정된 aperiodicSRS-ResourceTrigger (L1 DCI)를 사용하여 SRS resource set의 전송을 트리거할 수 있다.
-- ASN1START
-- TAG-MAC-CELL-GROUP-CONFIG-START

SRS-Config ::= SEQUENCE {
srs-ResourceSetToReleaseList SEQUENCE (SIZE(1..maxNrofSRS-ResourceSets)) OF SRS-ResourceSetId OPTIONAL, -- Need N
srs-ResourceSetToAddModList SEQUENCE (SIZE(1..maxNrofSRS-ResourceSets)) OF SRS-ResourceSet OPTIONAL, -- Need N

srs-ResourceToReleaseList SEQUENCE (SIZE(1..maxNrofSRS-Resources)) OF SRS-ResourceId OPTIONAL, -- Need N
srs-ResourceToAddModList SEQUENCE (SIZE(1..maxNrofSRS-Resources)) OF SRS-Resource OPTIONAL, -- Need N

tpc-Accumulation ENUMERATED {disabled} OPTIONAL, -- Need S
...
}

SRS-ResourceSet ::= SEQUENCE {
srs-ResourceSetId SRS-ResourceSetId,
srs-ResourceIdList SEQUENCE (SIZE(1..maxNrofSRS-ResourcesPerSet)) OF SRS-ResourceId OPTIONAL, -- Cond Setup

resourceType CHOICE {
aperiodic SEQUENCE {
aperiodicSRS-ResourceTrigger INTEGER (1..maxNrofSRS-TriggerStates-1),
csi-RS NZP-CSI-RS-ResourceId OPTIONAL, -- Cond NonCodebook
slotOffset INTEGER (1..32) OPTIONAL, -- Need S
...
},
semi-persistent SEQUENCE {
associatedCSI-RS NZP-CSI-RS-ResourceId OPTIONAL, -- Cond NonCodebook
...
},
periodic SEQUENCE {
associatedCSI-RS NZP-CSI-RS-ResourceId OPTIONAL, -- Cond NonCodebook
...
}
},
usage ENUMERATED {beamManagement, codebook, nonCodebook, antennaSwitching},
alpha Alpha OPTIONAL, -- Need S
p0 INTEGER (-202..24) OPTIONAL, -- Cond Setup
pathlossReferenceRS CHOICE {
ssb-Index SSB-Index,
csi-RS-Index NZP-CSI-RS-ResourceId


SRS-SpatialRelationInfo ::= SEQUENCE {
servingCellId ServCellIndex OPTIONAL, -- Need S
referenceSignal CHOICE {
ssb-Index SSB-Index,
csi-RS-Index NZP-CSI-RS-ResourceId,
srs SEQUENCE {
resourceId SRS-ResourceId,
uplinkBWP BWP-Id
}
}
}


SRS-ResourceId ::= INTEGER (0..maxNrofSRS-Resources-1)
표 8에서, usage는 SRS resource set이 빔 관리를 위해 사용되는지, 코드북(codebook) 기반 또는 비-코드북(non-codebook) 기반 전송을 위해 사용되는지를 지시하는 상위 계층 파라미터를 나타낸다. usage 파라미터는 L1 parameter 'SRS-SetUse'에 대응한다. 'spatialRelationInfo'는 참조 RS(reference RS)와 타겟 SRS(target SRS) 사이의 공간 관계(spatial relation)의 설정을 나타내는 파라미터이다. 여기서, reference RS는 L1 파라미터 'SRS-SpatialRelationInfo'에 해당하는 SSB, CSI-RS 또는 SRS가 될 수 있다. 상기, usage는 SRS resource set 별로 설정된다.단말은 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS resource에 대한 Tx beam을 결정한다(S1020). 여기서, SRS-SpatialRelation Info는 SRS resource 별로 설정되고, SRS resource 별로 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용할지를 나타낸다. 또한, 각 SRS resource에 SRS-SpatialRelationInfo가 설정되거나 또는 설정되지 않을 수 있다.
만약 SRS resource에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용하여 전송한다. 하지만, SRS resource에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 단말은 임의로 Tx beam을 결정하여 결정된 Tx beam을 통해 SRS를 전송한다(S1030).
보다 구체적으로, 'SRS-ResourceConfigType'가 'periodic'으로 설정된 P-SRS에 대해:
i) SRS-SpatialRelationInfo가 'SSB/PBCH'로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 공간 도메인 수신 필터(spatial domain Rx filter)와 동일한 (혹은 해당 필터로부터 생성된) 공간 도메인 전송 필터(spatial domain transmission filter)를 적용하여 해당 SRS resource를 전송한다; 또는
ii) SRS-SpatialRelationInfo가 'CSI-RS'로 설정되는 경우, UE는 periodic CSI-RS 또는 SP(semi-persistent) CSI-RS의 수신을 위해 사용되는 동일한 공간 도메인 전송 필터(spatial domain transmission filter)를 적용하여 SRS resource를 전송한다; 또는
iii) SRS-SpatialRelationInfo가 'SRS'로 설정되는 경우, UE는 periodic SRS의 전송을 위해 사용된 동일한 공간 도메인 전송 필터(spatial domain transmission filter)를 적용하여 해당 SRS resource를 전송한다.
'SRS-ResourceConfigType'이 'SP(semi-persistent)-SRS' 또는 'AP(aperiodic)-SRS'로 설정된 경우에도 위와 유사하게 빔 결정 및 전송 동작이 적용될 수 있다.
추가적으로, 단말은 기지국으로부터 SRS에 대한 feedback을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(S1040).
i) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되는 경우, 단말은 기지국이 지시한 빔으로 SRS를 전송한다. 예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, 단말은 동일 빔으로 SRS를 반복 전송한다. 이 경우는, 기지국이 Rx beam을 선택하는 용도로서 도 13(a)에 대응한다.
ii) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다. 이 경우, 단말은 자유롭게 SRS beam을 바꾸어가면서 전송할 수 있다. 즉, 이 경우는 단말이 Tx beam을 스위핑(sweeping)하는 용도로서, 도 13(b)에 대응한다.
iii) SRS resource set 내의 일부 SRS resource들에 대해서만 Spatial_Relation_Info가 설정될 수 있다. 이 경우, 설정된 SRS resource에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS resource에 대해서는 단말이 임의로 Tx beam을 적용해서 전송할 수 있다.
이벤트 기반 고속 빔 보고
본 개시에서 빔 보고는 RS(reference signal) 자원에 대한 단말의 측정(measurement) 정보를 포함할 수 있다. RS 자원은 CSI-RS 자원 또는 SSB 자원 중의 하나 이상을 포함할 수 있으며, 본 개시에서 RS 자원은 CSI-RS/SSB 자원에 제한되지 않고 빔에 대응하는 임의의 자원을 포함할 수 있다.
본 개시에서 단말의 빔 보고는 이벤트가 트리거됨에 기초하여 단말로부터 기지국으로 전송되는 이벤트-기반(또는 이벤트-트리거되는(event-triggered)) 빔 보고, 또는 이벤트에 의해 트리거되지 않고 소정의 설정에 기초하여 단말로부터 기지국으로 전송되는 비-이벤트-기반(또는 비-이벤트-트리거되는(non-event-triggered)) 빔 보고 중의 하나 이상을 포함할 수 있다. 이벤트-기반 빔 보고와 관련하여, 이벤트가 트리거되는 조건(criteria)은 기지국으로부터 단말에게 미리 설정되거나, 별도의 설정 시그널링 없이 기지국과 단말 간이 미리 정의될 수도 있다. 비-이벤트-기반 빔 보고와 관련하여, 소정의 설정은 주기적, 반-지속적(semi-presistent), 비주기적 빔 보고에 관련된 설정을 포함할 수 있다.
본 개시에서 단말의 빔 보고는 고속 빔 보고를 포함할 수 있다. 고속 빔 보고는 L1(layer 1, 예를 들어, PHY 계층)/L2(layer 2, 예를 들어, MAC 계층) 측정에 기반한 빔 보고를 포함할 수 있다. L3(layer 3, 예를 들어, RRC 계층) 측정(예를 들어, RRM(radio resource management) 측정/보고)에 기초한 빔 보고는, L1/L2 측정 기반 빔 보고에 비하여 레이턴시와 오버헤드가 크기 때문에, 고속 빔 보고에 해당하지 않을 수 있다. 예를 들어, L3 빔 보고 동작에서, 이벤트-기반 RRM 방식은 RACH 절차를 이용하므로 시그널링 오버헤드가 크다. 또한, L1/L2 빔 보고는 기지국(예를 들어, gNB)에 의해 개시(initiated) 또는 트리거되는 빔 보고 동작이 논의되고 있고, 이벤트-기반 L1/L2 빔 보고의 구체적인 동작은 마련되어 있지 않다.
본 개시에서는 이벤트-기반 고속(예를 들어, L1/L2 측정 기반) 빔 보고를 포함하는 빔 보고 동작의 다양한 예시들에 대해서 설명한다.
예를 들어, 본 개시의 예시들은 단말 이동시 빠른 TRP/셀(cell)/빔(beam) 변경, 핸드오버(handover) 등의 향상된 이동성(mobility)를 지원하기 위한 빔 보고 방법을 포함할 수 있다.
단말 이동 시 기지국이 서빙 TRP/cell/beam 변경을 수행하기 위해서, 단말은 특정 DL RS에 대한 측정값을 보고하는 동작을 수행할 수 있다. 예를 들어, handover 등 RRM 목적으로 L3에서 관리하는 값인 RRM 측정 값을 단말이 보고하는 동작을 수행할 수 있다. 예를 들어, 동일 cell내에서 TRP/패널(panel)/beam변경을 위해 L1(layer1)에서 관리하는 값인 CSI 측정 값을 단말이 보고하는 동작을 수행할 수 있다. L3 기반 빔 보고 동작은 L1 기반 빔 보고 동작에 비하여 일반적으로 시그널링 오버헤드 및 레이턴시가 크고, 이에 따라 단말의 전력 소비(power consumption)가 더 크다. 특히 고주파 대역, 단말의 이동성이 큰 환경, 밀집된 셀 환경에서 단말의 잦은 RRM 보고가 유발될 수 있고, 이는 단말 전력 소비 및 시그널링 오버헤드/레이턴시 문제를 발생시킬 수 있다. 이러한 문제를 경감하기 위해서, 본 개시에서는 L1 기반 빔 보고를 개선하기 위한 다양한 예시들에 대해서 설명한다.
이하에서는 이벤트-기반 빔 보고와 관련하여, 이벤트 트리거 조건(criteria)의 예시에 대해서 설명한다.
본 개시의 범위는 후술하는 특정 이벤트 트리거 조건에 제한되는 것은 아니며, 후술하는 예시적인 이벤트를 포함하는 다양한 이벤트가 트리거되는 조건에 대해서 적용될 수 있다. 또한, 후술하는 예시적인 이벤트 트리거 조건은 L3 빔 보고와 관련되어 적용되는 것으로 정의될 수 있으나, 본 개시에 따른 이벤트-기반 고속(예를 들어, L1/L2) 빔 보고에 대한 이벤트 트리거 조건으로 적용될 수도 있다.
이벤트-기반 빔 보고와 관련한 상위계층 파라미터를 포함하는 정보 요소(예를 들어, ReportConfigNR IE)가 정의될 수 있다. 예를 들어, ReportConfigNR IE는 NR 측정 보고 이벤트 또는 CHO(conditional handover) 또는 CPC(conditional PSCell(Primary Secondary cell) change) 등의 트리거링에 대한 기준(criteria)를 특정할 수 있다. 이하의 이벤트들(예를 들어, A1, A2, ...)에 대해서, 측정 보고 이벤트 및 CHO 또는 CPC 이벤트는 셀 측정 결과에 기초할 수 있다. 셀 측정 결과는 SSB 또는 CSI-RS에 기초하여 도출될 수 있다. 이하의 설명에서 개체는 TRP/cell/panel/beam를 포함할 수 있다.
이벤트 A1: 서빙 개체에 대한 측정 결과가 소정의 절대적 임계치보다 좋아지는 경우;
이벤트 A2: 서빙 개체에 대한 측정 결과가 소정의 절대적 임계치보다 나빠지는 경우;
이벤트 A3: 이웃 개체에 대한 측정 결과가 PCell/PSCell 보다 소정의 오프셋 만큼 좋아지는 경우;
이벤트 A4: 이웃 개체에 대한 측정 결과가 소정의 절대적 임계치보다 좋아지는 경우;
이벤트 A5: PCell/PSCell에 대한 측정 결과가 제 1 절대적 임계치보다 나빠지고, 또한 이웃 개체/SCell에 대한 측정 결과가 제 2 절대적 임계치 보다 좋아지는 경우;
이벤트 A6: 이웃 개체에 대한 측정 결과가 SCell보다 소정의 오프셋 만큼 좋아지는 경우;
조건부 이벤트 A3: 조건부(conditional) 재설정 후보가 PCell/PSCell 보다 소정의 오프셋 만큼 좋아지는 경우;
조건부 이벤트 A5: PCell/PSCell에 대한 측정 결과가 제 1 절대적 임계치보다 나빠지고, 또한 조건부 재설정 후보에 대한 측정 결과가 제 2 절대적 임계치보다 좋아지는 경우;
이벤트 I1: 간섭이 소정의 임계치보다 높아지는 경우.
이벤트 I1에 대해서, 측정 보고 이벤트는 CLI(cross link interference) 측정 결과에 기초하고, CLI 측정 결과는 SRS-RSRP 또는 CLI-RSSI에 기초하여 도출될 수 있다.
본 개시의 범위는 위와 같은 이벤트 트리거 조건에 제한되는 것은 아니며, 위와 같은 예시적인 이벤트를 포함하는 다양한 이벤트가 트리거되는 조건에 대해서 적용될 수 있다. 또한, 위와 같은 예시적인 이벤트 트리거 조건은 L3 빔 보고와 관련되어 적용되는 것으로 정의될 수 있으나, 본 개시에 따른 이벤트-기반 고속(예를 들어, L1/L2) 빔 보고에 대한 이벤트 트리거 조건으로 적용될 수도 있다.
이하에서는 L1/L2 빔 보고 파라미터 산출, 보고 세팅 및 보고 방안에 대해서 설명한다.
본 개시의 범위는 후술하는 L1/L2 빔 보고 파라미터의 예시들로 제한되는 것은 아니며, L1-RSRQ 등의 다양한 다른 빔 측정 결과 파라미터에 대해서도 적용될 수 있다.
먼저, L1-RSRP 및 L1-SINR 산출(computation)에 대한 CSI-RS에 대해서 설명한다.
상위 계층 파라미터 repetition이 'on'으로 설정된 특정 NZP-CSI-RS-ResourceSet가 단말에 대해서 설정되면, 단말은 상기 특정 NZP-CSI-RS-ResourceSet 내의 CSI-RS 자원들이 상이한 OFDM 심볼 상에서 전송되지만 동일한 하향링크 공간 도메인 전송 필터를 통하여 전송되는 것으로 가정할 수 있다. 만약 repetition 파라미터가 'off'로 설정되면, 단말은 상기 특정 NZP-CSI-RS-ResourceSet 내의 CSI-RS 자원들이 동일한 하향링크 공간 도메인 전송 필터를 통하여 전송되는 것으로 가정하지 않는다.
단말에 대해서 reportQuantity 파라미터가 "cri-RSRP", "cri-SINR" 또는 "none"으로 설정된 CSI-ReportConfig가 단말에 대해서 설정되고, 채널 측정에 대한 CSI-ResourceConfig(상위 계층 파라미터 resourcesForChannelMeasurement)가 NZP-CSI-RS-ResourceSet을 포함하고, NZP-CSI-RS-ResourceSet에 대해 상위 계층 파라미터 repetition이 설정되고 상위 계층 파라미터 trs-Info가 설정되지 않는 경우, 상기 세트 내의 모든 CSI-RS 자원들에 대한 포트 개수(예를 들어, nrofPorts) 파라미터가 동일한 개수(예를 들어, 1 또는 2)로 단말에게 설정될 수 있다. SS/PBCH 블록과 동일한 OFDM 심볼(들)의 CSI-RS 자원이 단말에 대해서 설정되면, 'QCL-TypeD'가 적용가능한 경우 단말은 상기 CSI-RS 및 SS/PBCH 블록이 'QCL-TypeD'로 QCL된 것으로 가정할 수 있다. 또한, 단말은 SS/PBCH 블록과 중첩되는 PRB들에 CSI-RS가 설정될 것으로 기대하지 않을 수 있다. 단말은 CSI-RS 및 SS/PBCH 블록에 대해서 동일한 서브캐리어 스페이싱이 적용되는 것으로 가정할 수 있다.
다음으로, 채널 상태 정보 프레임 워크에 대해서 설명한다.
비주기적 CSI 보고는 DCI 포맷 0_1 또는 0_2dp 의해서 트리거될 수 있으며, reportTriggerSize 또는 reportTriggerSize-ForDCIFormat0_2가 적용될 수 있다.
단말의 CSI 보고를 위해 사용될 수 있는 시간 및 주파수 자원들은 기지국에 의해서 제어될 수 있다. CSI는 CQI, PMI, CRI, SSBRI, LI(layer indicator), RI, L1-RSRP 또는 L1-SINR로 구성될 수 있다.
CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, L1-SINR에 대해서, 상위 계층에 의해서 N개(N은 1 이상)의 CSI-ReportConfig 보고 세팅, M개(M은 1 이상)의 CSI-ResourceConfig 자원 세팅, 및 트리거 상태에 대한 1개 또는 2개의 리스트(이는 상위 계층 파라미터 CSI-AperiodicTriggerStateList 및 CSI-SemiPersistentOnPUSCH-TriggerStateList에 의해 주어짐)가 단말에 대해 설정될 수 있다. CSI-AperiodicTriggerStateList의 각각의 트리거 상태는, 채널에 대한 그리고 선택적으로는 간섭에 대한 자원 세트 식별자(Resource Set IDs)를 지시하는 CSI-ReportConfig들에 연관된 리스트를 포함할 수 있다. CSI-SemiPersistentOnPUSCH-TriggerStateList의 각각의 트리거 상태는, 하나의 연관된 CSI-ReportConfig를 포함할 수 있다.
다음으로, 보고 세팅에 대해서 설명한다.
보고 세팅(Reporting Setting)인 CSI-ReportConfig의 각각은, 채널 특정에 대한 연관된 CSI-ResourceConfig에서 주어지는 하나의 하향링크 BWP(이는 상위 계층 파라미터 BWP-Id에 의해 지시됨)에 연관될 수 있고, 하나의 CSI 보고 대역에 대한 파라미터(들)을 포함할 수 있다. 이러한 파라미터(들)은, 코드북 서브셋 제한(restriction)을 포함하는 코드북 설정, 시간-도메인 동작(behavior), CQI 및 PMI에 대한 주파수 단위크기(granularity), 측정 제한 설정, 및 LI, L1-RSRP, L1-SINR, CRI, SSBRI와 같은 단말에 의해 보고될 CSI-관련 퀀터티(quantity)를 포함할 수 있다. CSI-관련 퀀터티는 어떤 종류의 보고 정보(예를 들어, CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, L1-SINR, L1-RSRQ 중의 하나 이상)이 보고되는지를 지시할 수 있다.
CSI-ReportConfig의 시간 도메인 동작은 상위 계층 파라미터 reportConfigType에 의해서 지시되고, 비주기적, PUCCH 상의 반-지속적, PUSCH 상의 반-지속적, 또는 주기적으로 설정될 수 있다. 주기적 및 반-지속적 CSI 보고에 대해서, CSI 보고가 전송되도록 설정된 UL BWP의 뉴머롤로지에 따른 주기 및 슬롯 오프셋이 적용될 수 있다. 상위 계층 파라미터 reportQuantity는, 보고될 CSI-관련, L1-RSRP-관련, 또는 L1-SINR-관련 퀀터티를 지시할 수 있다. reportFreqConfiguration는 CSI 보고 대역을 포함하는 주파수 도메인에서의 보고 단위크기(granularity)를 지시하고, PMI/QCI 보고가 광대역 또는 서브-대역인지를 지시할 수 있다. CSI-ReportConfig의 timeRestrictionForChannelMeasurements 파라미터는 채널 측정에 대한 시간 도메인 제한을 인에이블하도록 설정될 수 있고, timeRestrictionForInterferenceMeasurements 파라미터는 간섭 특측정에 대한 시간 도메인 제한을 인에이블하도록 설정될 수 있다. CSI-ReportConfig는 CodebookConfig를 포함할 수 있고, 이는 코드북 서브셋 제한을 포함하는 Type-I, Type II 또는 개선된(Enhanced) Type II CSI에 대한 설정 파라미터들, 및 그룹 기반 보고에 대한 설정을 포함할 수 있다.
다음으로, L1-RSRP 보고에 대해서 설명한다. 'QCL-Type C' 및 적용가능한 경우 'QCL-TypeD'로 자원-단위(resource-wise) QCL되는 경우, L1-RSRP 산출에 대해서 CSI-RS 자원, SS/PBCH 블록 자원, 또는 CSI-RS 자원 및 SS/PBCH 블록 자원 모두가 단말에 대해서 설정될 수 있다. 각각의 세트에 최대 64 개의 자원을 가지는, 최대 16 개의 CSI-RS 자원 세트의 CSI-RS 자원 세팅이 단말에 대해서 설정될 수 있다. 모든 자원 세트에 걸쳐 상이한 CSI-RS 자원의 총 개수는 128 개를 넘지 않을 수 있다.
L1-RSRP 보고에 대해서, CSI-ReportConfig에서 보고되는 RS의 개수에 대한 상위계층 파라미터(예를 들어, nrofReportedRS)가 1로 설정되면, 보고되는 L1-RSRP 값은 7-비트 값으로 정의되고 [-140, -44] dBm 범위에서 1dB 단위의 값을 가질 수 있다. 보고되는 RS 개수에 대한 상위계층 파라미터(예를 들어, nrofReportedRS)가 1 초과의 값으로 설정되거나, 또는 그룹 기반 빔 보고에 대한 상위계층 파라미터(예를 들어, groupBasedBeamReporting)가 인에이블로 설정되면, 단말은 차분(differential) L1-RSRP 기반 보고를 사용할 수 있다. 여기서, L1-RSRP의 가장 큰 측정된 값이 7-비트 값으로 정의되고 [-140, -44] dBm 범위에서 1dB 단위의 값을 가지며, 차분 L1-RSRP는 4-비트 값으로 정의될 수 있다. 차분 L1-RSRP 값은 가장 큰 측정된 L1-RSRP 값을 기준으로 2dB 단위의 값을 가지고, 이는 동일한 L1-RSRP 보고 인스턴스의 일부분에 해당할 수 있다. 보고되는 L1-RSRP 값과 측정된 값의 매핑은 별도로 정의될 수 있다.
다음으로, L1-SINR 보고에 대해서 설명한다. L1-SINR 산출에 대해서, 채널 측정에 대해서는 NZP CSI-RS 자원 및/또는 SS/PBCH 블록 자원이 단말에 대해서 설정될 수 있고, 간섭 측정에 대해서는 NZP CSI-RS 자원 또는 CSI-IM 자원이 단말에 대해서 설정될 수 있다.
채널 측정에 대해서, 총 최대 64 개의 CSI-RS 자원을 가지는 최대 16 개의 자원 세트의 CSI-RS 자원 세팅, 또는 최대 64 개의 SS/PBCH 블록 자원이 단말에 대해서 설정될 수 있다.
L1-SINR 보고에 대해서, CSI-ReportConfig에서 SINR에 대해서 보고되는 RS의 개수에 대한 상위계층 파라미터(예를 들어, nrofReportedRSForSINR)가 1로 설정되면, 보고되는 L1-SINR 값은 7-비트 값으로 정의되고 [-23, 40] dB 범위에서 0.5dB 단위의 값을 가질 수 있다. 보고되는 RS의 개수에 대한 상위계층 파라미터(예를 들어, nrofReportedRSForSINR)가 1 초과의 값으로 설정되거나, 또는 그룹 기반 빔 보고에 대한 상위계층 파라미터(예를 들어, groupBasedBeamReporting)가 인에이블로 설정되면, 단말은 차분(differential) L1-SINR 기반 보고를 사용할 수 있다. 여기서, L1-SINR의 가장 큰 측정된 값이 7-비트 값으로 정의되고 [-23, 40] dB 범위에서 0.5dB 단위의 값을 가지며, 차분 L1-SINR은 4-비트 값으로 정의될 수 있다. 차분 L1-SINR 값은 가장 큰 측정된 L1-SINR 값을 기준으로 1dB 단위의 값을 가지고, 이는 동일한 L1-SINR 보고 인스턴스의 일부분에 해당할 수 있다. 보고되는 L1-RSRP 값과 측정된 값의 매핑은 별도로 정의될 수 있다.
NZP CSI-RS가 채널 측정 및/또는 간섭 측정에 대해서 설정되는 경우, 보고되는 L1-SINR 값은 전력 제어에 대한 상위 계층 파라미터 (예를 들어, powerControlOffsetSS 또는 powerControlOffset)에 의해서 주어지는 전력 오프셋(들)에 의해서 보상되지 않도록 정의될 수 있다.
도 15는 본 개시의 일 실시예에 따른 단말의 빔 보고 방법을 설명하기 위한 도면이다.
전술한 L1/L2 빔 보고 파라미터 산출, 보고 세팅 및 보고 방안에 있어서, 하나의 RS 그룹(예를 들어, 특정 NZP CSI-RS-ResourceSet)이 단말에 대해서 설정되고 L1/L2 빔 보고 파라미터가 비-이벤트-기반(예를 들어, 주기적/반-지속적/비주기적)으로 보고되는 것과 달리, 이하의 예시들에서는 복수의 RS 그룹이 단말에 대해서 설정되고 L1/L2 빔 보고 파라미터가 이벤트-기반으로 보고될 수 있다.
전술한 이벤트-기반 빔 보고는 L3 빔 보고 파라미터인 RRM 측정 값을 보고하기 위해 추가적인 시그널링 오버헤드 및 레이턴시가 큰 것과 달리, 이하의 예시들에서는 L1/L2 빔 보고가 이벤트-기반으로 별도의 시그널링 및 레이턴시 증가 없이 수행될 수 있다.
단계 S1510에서 단말은 기지국으로부터 복수의 참조신호(RS) 그룹에 대한 설정 정보를 수신할 수 있다.
RS 그룹에 대한 설정 정보는 빔 보고의 대상이 되는 RS 그룹에 대한 설정 정보를 포함할 수 있다. 여기서 RS는 무선 통신 시스템의 다양한 종류의 RS 뿐만 아니라 동기 신호, SSB 등의 물리 계층 신호/채널을 포함할 수 있다. RS 그룹은 RS 자원 세트 또는 RS 자원 그룹에 해당할 수 있다. 예를 들어, RS 그룹은 CSI-RS 자원 세트/그룹 또는 SSB (자원) 세트/그룹에 해당할 수 있다. 본 개시의 다양한 예시들에 대한 설명에 있어서, RS 그룹은 단순히 자원 그룹 또는 자원 세트라고 칭할 수도 있다.
RS 그룹은 동일한 셀 식별자 및/또는 스크램블링 ID에/를 연관되는/가지는 RS(들)을 포함할 수 있다. 예를 들어, 제 1 RS 그룹은 제 1 개체에 연관될 수 있고, 제 2 RS 그룹은 제 2 개체에 연관될 수 있다. 여기서, 개체는 TRP, 셀, 패널, 또는 빔 중의 하나 또는 둘 이상의 조합에 의해 정의될 수 있다. 예를 들어, 제 1 RS 그룹은 서빙 셀에 연관될 수 있고, 제 2 RS 그룹은 이웃(neighboring) 셀에 연관될 수 있다.
RS 그룹에 대한 설정 정보는, 각각의 RS 그룹 별 보고 특성을 포함할 수 있다. 보고 특성은, 비-이벤트-기반 또는 이벤트-기반 보고 여부를 포함할 수 있다. 비-이벤트-기반 또는 이벤트-기반 보고 각각에 대한 주기/오프셋 등이 설정될 수 있다. 또한, 보고 특성은 보고될 RS 개수(또는 측정 정보 또는 빔 품질값의 개수)에 대한 정보를 포함할 수 있다. 또한, 서빙 셀이 아닌 셀(예를 들어, 이웃 셀)에서 전송되는 특정 RS 그룹은, RRM/이동성 목적의 RS(예를 들어, 다른 셀의 SSB, 이동성에 대한 CSI-RS(CSI-RS for mobility))를 포함할 수 있다.
RS 그룹에 대한 설정 정보는 이벤트 트리거에 대한 기준(criteria) 정보를 포함할 수 있다. 이벤트 트리거 기준은, 특정 RS 그룹과 다른 RS 그룹의 최적의(best) RS의 빔 품질값의 상대적인 비교, 또는 특정 RS 그룹의 최적의 RS의 빔 품질값에 대한 절대적인 임계치와의 비교 중의 하나 이상을 포함할 수 있다. 또한, 하나 또는 복수의 측정 샘플에 기반하여 이벤트가 정의될 수도 있다.
단계 S1520에서 단말은 복수의 RS 그룹 중 하나 이상의 RS 그룹에 대한 비-이벤트-기반 제 1 측정 정보 또는 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고를 기지국으로 전송할 수 있다.
여기서, 제 1 및 제 2 측정 정보는 L1-측정 정보이다. 예를 들어, L1-측정 정보는 L1-RSRP, L1-SINR, L1-RSRQ 등을 포함할 수 있다.
복수의 RS 그룹의 각각에 대한 측정 정보 중에서, 가장 우수한/양호한 측정 정보를 가지는 하나 이상의 RS 그룹이 단말에 의해서 선택될 수 있다. 선택된 하나 이상의 RS 그룹에 대해서 제 1 측정 정보 또는 제 2 측정 정보 중의 하나 이상이 단말에 의해서 보고될 수 있다.
이벤트-기반 제 2 측정 정보는 복수의 RS 그룹 중 특정 RS 그룹에 대해서 이벤트가 트리거되는 경우에 보고될 수 있다. 예를 들어, 특정 RS 그룹은 이웃(neighboring) RS 그룹일 수 있다.
비-이벤트-기반 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 보고될 수 있다. 즉, 복수의 RS 그룹 중에서 특정 RS 그룹을 제외한 나머지 RS 그룹에 대해서는 이벤트 트리거와 무관하게 제 1 측정 정보가 보고될 수 있다. 또한, 제 1 측정 정보는 보고 페이로드의 크기 제한에 기초하여, 일부/전부가 생략되어 전송될 수도 있다.
제 1 또는 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고는, 상향링크제어정보(UCI), MAC-CE, PUCCH, PUSCH, 그랜트-기반, 설정된-그랜트 중의 하나 이상에 기초하여 단말로부터 기지국으로 전송될 수 있다. 예를 들어, 특정 RS 그룹에 대한 이벤트-기반 제 2 측정 정보를 포함하는 빔 보고의 경우, PUCCH를 통해서 이벤트 발생 여부가 보고된 후, 후속하는 PUSCH를 통해서 빔 품질 정보 등의 구체적인 정보가 보고될 수 있다.
추가적으로 또는 대안적으로, 빔 보고는 제 1 또는 제 2 측정 정보가 어떤 RS 그룹에 대한 것인지를 나타내는 정보, 이벤트 발생 여부에 대한 정보 등을 더 포함할 수 있다.
추가적으로 또는 대안적으로, 비-이벤트-기반 제 1 측정 정보와 이벤트-기반 제 2 측정 정보는 멀티파트(multi-part) 인코딩되어 보고될 수도 있다. 예를 들어, 제 1 파트는 제 1 측정 정보를 포함하고, 추가적으로 제 2 측정 정보의 존재 여부 또는 제 2 측정 정보의 일부분 중의 하나 이상을 포함할 수 있다. 제 2 파트는, 제 2 측정 정보 전체, 또는 제 2 측정 정보의 나머지 부분을 포함할 수 있다.
추가적으로 또는 대안적으로, 이벤트 발생 여부와 무관하게, 제 2 측정 정보가 포함되는 것을 가정하거나 제 2 측정 정보가 포함되지 않는 것을 가정한 CSI 페이로드 크기(또는 크기의 제한)이 미리 설정/정의되고, 이에 기초하여 빔 보고 전송 자원(예를 들어, PUCCH 자원, PUSCH 피기백 자원요소 개수 등)이 결정될 수 있다.
추가적으로 또는 대안적으로, 비-이벤트 기반 제 1 측정 정보와 이벤트-기반 제 2 측정 정보의 전송을 위해서 동일한 전송 자원이 설정될 수 있다. 즉, 동일한 전송 자원 상에서 비-이벤트-기반 빔 보고만 전송되거나, 이벤트-기반 빔 보고만 전송되거나, 비-이벤트-기반 빔 보고 및 이벤트-기반 빔 보고가 함께 전송될 수도 있다.
추가적으로 또는 대안적으로, 비-이벤트-기반 제 1 측정 정보와 이벤트-기반 제 2 측정 정보에 대해서, 각각 별도의 전송 자원이 할당될 수도 있다. 즉, 비-이벤트-기반 빔 보고에 대해서 예비된(reserved) 제 1 자원과, 이벤트-기반 빔 보고에 대해서 예비된 제 2 자원이 별도로 설정/할당될 수 있다.
추가적으로 또는 대안적으로, 빔 보고가 가능한 최대 페이로드 크기보다 실제 빔 보고 정보의 페이로드 크기가 큰 경우, 빔 보고의 일부가 생략될 수도 있다.
추가적으로 또는 대안적으로, 이벤트-기반 빔 보고의 경우, 보고가 허용되는 시점과 허용되지 않는 시점이 별도로 설정될 수도 있다.
도 16은 본 개시의 일 실시예에 따른 기지국의 단말로부터 빔 보고를 수신하는 방법을 설명하기 위한 도면이다.
단계 S1610에서 기지국은 복수의 참조신호(RS) 그룹에 대한 설정 정보를 단말에게 전송할 수 있다.
RS 그룹에 대한 설정 정보에 대한 구체적인 사항은 도 15의 단계 S1510을 참조한 설명이 적용될 수 있으므로, 중복되는 설명은 생략한다.
단계 S1620에서 기지국은 복수의 RS 그룹 중 하나 이상의 RS 그룹에 대한 비-이벤트-기반 제 1 측정 정보 또는 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고를 단말로부터 수신할 수 있다.
제 1 측정 정보 및 제 2 측정 정보에 대한 구체적인 사항은 도 15의 단계 S1520을 참조한 설명이 적용될 수 있으므로, 중복되는 설명은 생략한다.
이하에서는 본 개시의 구체적인 예시들에 대해서 설명한다. 이하에서 설명하는 실시예들은 별도로 적용될 수도 있고, 둘 이상의 조합이 적용될 수도 있다.
실시예 1
본 실시예에 따르면, 기지국은 단말에게 하나의 RS 그룹 또는 복수의 RS 그룹들에 대한 L1 빔 보고를 설정할 수 있다. 이에 따라, 단말은 설정된 각각의 RS 그룹에 대해 측정 정보 또는 빔 품질값(예를 들어, L1-RSRP/L1-SINR)이 가장 우수한 하나 또는 복수의 RS(들)을 선택할 수 있다.
하나 이상의 RS 그룹 중에서 특정 RS 그룹(들) (또는 하나 이상의 RS 그룹 전부)에 대해서는, 미리 정의된 이벤트가 발생하는 경우에만 상기 특정 RS 그룹(들)에 대한 빔 정보(예를 들어, 이벤트 발생 여부, 단말이 선택한 RS ID(들), 및/또는 해당 빔 품질값(들))가 빔 보고 정보에 포함되거나, 단말이 빔 정보를 업데이트하여 보고할 수 있다.
상기 특정 RS 그룹(들) 이외의 나머지 RS 그룹(들)에 대해서는, 미리 정의된 이벤트가 발생하는지 여부와 무관하게 빔 보고가 수행될 수 있다. 이에 대해서는 실시예 1-2를 참조하여 후술한다. 이벤트가 발생하는 경우, 상기 나머지 RS 그룹(들)에 대한 빔 보고 정보가 생략되거나 빔 보고 정보 중 일부가 생략될 수 있다. 이는 빔 보고 정보의 페이로드 크기(또는 크기에 대한 제한)을 고려한 것이며, 이에 대해서는 실시예 1-5를 참조하여 후술한다.
이하의 설명에서는 간명함을 위해서 복수의 RS 그룹에 대한 L1 빔 보고가 단말에 대해서 설정되고, 복수의 RS 그룹 중에서 하나의 특정 RS 그룹(즉, 이벤트-기반 빔 보고와 연관되는 RS 그룹)이 포함되는 것을 가정하고, 나머지 RS 그룹(들)은 비-이벤트-기반 빔 보고와 연관되는 것으로 가정한다. 그러나, 본 개시의 범위는 이벤트-기반 빔 보고와 연관되는 특정 RS 그룹의 개수가 복수개인 경우, 또는 L1 빔 보고가 설정되는 복수의 RS 그룹 전부가 특정 RS 그룹에 해당하는 경우를 포함한다.
복수의 RS 그룹에 대한 설정 정보는, RS 그룹 별로 이벤트-기반 보고를 수행할지 또는 기지국의 지시/설정에 기초한 주기적(또는 반-지속적) 보고를 수행할지에 대한 설정 정보를 포함할 수 있다. 예를 들어, 복수의 RS 그룹에 대한 설정 정보는 상위 계층(예를 들어, RRC) 시그널링을 통하여 단말에게 제공될 수 있다.
또한, 복수의 RS 그룹에 대한 설정 정보는 비-이벤트-기반 빔 보고를 수행할 또는 이벤트-기반 빔 보고 수행이 가능한 주기, 슬롯/심볼 오프셋 등에 대한 설정 정보를 포함할 수 있다. 예를 들어, CSI 보고 관련 설정(예를 들어, CSI-ReportConfig)을 통하여 보고 설정 타입(reportconfigtype) 별로 설정되는 주기/슬롯(또는 심볼) 오프셋 값(즉, 비-이벤트-기반 빔 보고에 대한 주기/오프셋)에 추가적으로, 이벤트-기반 빔 보고에 대한 주기/슬롯(또는 심볼) 오프셋 값이 설정될 수 있다.
복수의 RS 그룹에 대한 설정 정보는, RS 그룹 별로 단말이 보고할 RS의 개수, 측정 정보(또는 빔 품질 값)의 개수 등을 포함할 수 있다. 예를 들어, 비-이벤트-기반 빔 보고에 대한 RS 개수/측정 정보의 개수에 추가적으로, 이벤트-기반 빔 보고에 대한 RS 개수/측정 정보의 개수가 설정될 수 있다.
하나의 동일한 RS 그룹 내의 RS(들)은 동일한 셀 식별자(예를 들어, 물리셀식별자(PCI), 서빙 셀 ID)에 해당하거나 연관될 수 있다. 추가적으로 또는 대안적으로, 하나의 동일한 RS 그룹 내의 RS(들)은 동일한 스크램블링 ID를 가지거나 이에 연관될 수도 있다.
이벤트-기반 빔 보고를 수행하는 특정 RS 그룹은, 서빙 셀이 아닌 셀(예를 들어, 이웃(neighboring) 셀)에서 전송될 수 있다. 추가적으로 또는 대안적으로, 이벤트-기반 빔 보고를 수행하는 특정 RS 그룹은, RRM/이동성(mobility) 목적으로 설정된 RS(예를 들어, 다른 셀의 SSB, 이동성에 대한 CSI-RS(CSI-RS for mobility))로 구성될 수 있다.
이벤트의 예시들은 다음과 같다.
이벤트 ex1: 해당 RS 그룹의 최적의(best) 품질을 가지는 것으로 측정되는 RS(즉, 최적의 RS)의 빔 품질 값이, 다른 RS 그룹의 최적의 RS의 빔 품질 값보다, 소정의 오프셋 값 이상만큼 좋은 경우. 예를 들어, 소정의 오프셋은 미리 정의되거나 기지국에 의해 설정될 수도 있으며, 오프셋 값은 0으로 설정될 수도 있고 0이 아닌 값으로 설정될 수도 있다. 예를 들어, 다른 RS 그룹은 지정된 또는 미리 정의된 RS 그룹일 수 있다.
이벤트 ex2: 해당 RS 그룹의 최적의 RS의 빔 품질 값이, 소정의 임계치보다 좋은 경우. 예를 들어, 소정의 임계치는 미리 정의되거나 기지국에 의해 설정될 수도 있다.
이벤트 ex3: 해당 RS 그룹의 최적의 RS의 빔 품질 값이, 소정의 제 1 임계치보다 좋고, 다른 RS 그룹의 최적의 RS의 빔 품질 값이 소정의 제 2 임계치보다 나쁜 경우. 예를 들어, 제 1 임계치 및/또는 제 2 임계치는 미리 정의되거나 기지국에 의해 설정될 수도 있다. 예를 들어, 다른 RS 그룹은 지정된 또는 미리 정의된 RS 그룹일 수 있다.
이벤트 ex4: 복수의 측정 인스턴스(또는 샘플)에서 상기 이벤트 ex1, ex2, 또는 ex3 중의 하나 이상이 발생하는 경우. 단일 측정 인스턴스(instance)만으로는 측정 정확성이 충분하지 않을 수 있으므로, 특정 시간 구간 또는 복수의 측정 샘플들을 기반으로 이벤트 트리거 여부가 정의될 수도 있다. 예를 들어, 이벤트 ex1/ex2/ex3에서 빔 품질을 특정 시간 구간 동안 혹은 복수의 측정 샘플들을 이용해 측정한 값에 기초하여 이벤트 발생 여부가 결정될 수 있다. 예를 들어, 이벤트 ex1/ex2/ex3가 N(N은 1이상의 값으로 미리 정의되거나 설정될 수 있음) 번 이상 발생한 경우, 이벤트 트리거 조건을 만족하는 것으로 결정될 수 있다. 나아가, 이벤트 ex1/ex2/ex3가 소정의 시간 구간 내에서 및/또는 연속적으로 N 번 이상 발생하는 경우, 이벤트 트리거 조건을 만족하는 것으로 결정될 수 있다.
전술한 바와 같은 이벤트 트리거 기준이 만족되는 경우, 단말은 이벤트가 트리거된 것으로 결정하고 이벤트-기반 빔 보고를 수행할 수 있다.
예를 들어, 전술한 이벤트 ex1, ex2, ex3, ex4에 대한 설명에서, "해당 RS 그룹"은 이벤트 발생 여부가 모니터링 되는 RS 그룹이며, 이웃 셀에 연관된 RS 그룹일 수 있다. 또한, "다른 RS 그룹"은 서빙 셀에 연관된 RS 그룹일 수 있다.
전술한 측정 정보 또는 빔 보고 정보는 L1 정보(예를 들어, UCI), L2 정보(예를 들어, MAC-CE)일 수 있다. 또한, 전술한 측정 정보 또는 빔 보고 정보는 PUCCH 또는 PUSCH를 통해 전송될 수 있다. PUSCH 전송은, 그랜트-기반 PUSCH 전송 또는 설정된 그랜트(configured grant) 기반 PUSCH 전송일 수 있다.
설정된 그랜트 기반 PUSCH를 통해 빔 정보가 보고되는 경우, 이벤트-기반 빔 보고만 허용되도록 정의될 수도 있다. 즉, 이벤트가 트리거되거나 발생하는 경우에, 미리 설정되어 있는 PUSCH를 통하여 빔 보고 정보가 전송될 수 있다.
PUCCH를 통하여 빔 정보가 보고되고 이벤트-기반 빔 보고가 허용/설정/정의되는 경우, PUCCH 자원 효율성을 위해서 특정 PUCCH 포맷(예를 들어, PUCCH 포맷 0/1)을 사용하여 이벤트 발생 여부를 적은 양의 정보(예를 들어, 1-비트 내지 수-비트)를 통해 알릴 수 있다. 그 후, 해당 이벤트에 대한 상세한 정보(예를 들어, 빔 ID, 품질 값 정보 등)은 PUSCH를 통해 UCI/MAC-CE 형태로 전송할 수 있다.
실시예 1-1
전술한 실시예 1에 따른 예시적인 동작은 다음과 같이 가정할 수 있다.
기지국이 단말에게 서빙 셀에 대한 SSB/CSI-RS 자원 그룹 하나(예를 들어, 제 1 자원 그룹(또는 제 1 RS 그룹)) 및 이웃 셀(들)에 대한 SSB/CSI-RS 자원 그룹 하나(예를 들어, 제 2 자원 그룹(또는 제 2 RS 그룹))에 대한 PUCCH를 통한 주기적 빔 보고(즉, 비-이벤트-기반 빔 보고)를 설정할 수 있다. 이에 추가적으로, 기지국이 단말에게 이웃 셀(들)에 대한 제 2 자원 그룹(또는 제 2 RS 그룹)에 대해서 이벤트-기반 빔 보고를 설정할 수 있다.
단말은 이벤트가 발생하지 않은 경우 보고 시점에서 서빙 셀에 대한 빔 정보(즉, 제 1 자원 그룹에 대한 N 개의 자원 ID(또는 RS ID)(들) 및 해당 자원(들)의 L1-RSRP/L1-SINR(들))를 보고할 수 있다.
단말은 이벤트가 발생한 경우 보고 시점에서 이웃 셀에 대한 빔 정보(즉, 제 2 자원 그룹에 대한 N 개의 자원 ID(또는 RS ID)(들) 및 해당 자원(들)의 L1-RSRP/L1-SINR(들))를 보고할 수 있다.
또는, 단말은 이벤트가 발생한 경우 N 개 중의 일부(예를 들어, N-1개)에 대해서는 제 1 자원 그룹에 대한 빔 보고를 수행하고, N 개중 나머지(예를 들어, 1개)에 대해서는 제 2 자원 그룹에 대한 빔 보고를 수행할 수도 있다.
여기서, 기지국은 단말이 어떤 자원 그룹(또는 RS 그룹)에서 자원(또는 RS)을 선택하였는지, 또는 N 개의 빔 보고들이 각각 어떤 자원 그룹(또는 RS 그룹)에 속한 것인지 명확하게 알 수 없는 문제가 발생할 수 있다.
이를 해결하기 위해, 단말이 보고하는 자원 그룹 정보(예를 들어, 자원 그룹 ID 또는 RS 그룹 ID) 또는 이벤트 발생 여부에 대한 정보를 추가로 보고할 수 있다.
또는, 단말이 보고하는 자원 그룹 정보(예를 들어, 자원 그룹 ID 또는 RS 그룹 ID) 또는 이벤트 발생 여부에 대한 정보가, 제 1 자원 그룹에 대한 보고 정보의 일부 또는 전부를 대체하여 보고될 수도 있다. 예를 들어, 이벤트 발생시, 단말은 제 1 자원 그룹에 대한 빔 보고 정보 필드(예를 들어,RS ID 필드 또는 L1-RSRP/L1-SINR/L1-RSRQ 필드)에서(또는 그 일부에서), 사용되지 않는(예를 들어, 예비된(reserved)) 상태를 이용하여 이벤트가 발생했음을 기지국에게 알릴 수 있다.
여기서, 제 2 자원 그룹에 대한 추가적인 빔 정보(예를 들어, 빔 RS ID(들) 빔 품질값(들))는, 제 1 자원 그룹에 대한 빔 보고 정보(이벤트 발생 여부 포함하거나 미포함)와 함께 동일한 상향링크 자원을 통하여 전송될 수도 있고, 제 1 자원 그룹에 대한 빔 보고 정보(이벤트 발생 여부 포함하거나 미포함)와 구별되는 다른 상향링크 자원을 통하여 전송될 수도 있다.
제 1 및 제 2 자원 그룹에 대한 빔 보고 정보가 동일한 상향링크 자원을 통하여 전송되는 경우, 단말이 보고하는 정보의 크기가 이벤트 발생 여부에 따라 달라지는 문제가 발생할 수 있다. 이를 해결하기 위해서, 멀티-파트 인코딩, 적응적 PUCCH 자원 할당, 보고 정보 생략 등의 방법이 적용될 수 있으며, 이에 대한 구체적인 설명은 후술한다.
제 1 및 제 2 자원 그룹에 대한 빔 보고 정보가 상이한 상향링크 자원을 통하여 전송되는 경우, 제 2 자원 그룹에 대한 추가적인 빔 정보는 이벤트 발생시에 한 번만, 즉, 비주기적으로 전송될 수 있다. 상기 추가적인 빔 정보는 물리계층 제어 정보인 UCI로서 전송될 수도 있고, 또는 UL-SCH(uplink-shared channel)을 통한 MAC-CE로서 전송될 수도 있다.
이벤트 발생 시 단말에게 할당된 UL-SCH가 존재하지 않는 경우, 해당 보고를 위해서 기지국이 단말에게 PUSCH를 할당할 수도 있다.
이벤트-기반 빔 정보의 비주기적인 보고는 단말에 의해서 이벤트 트리거 여부가 결정되고 기지국은 이벤트 트리거 여부를 결정하지 않는 점에서, 기지국의 요청에 따라서 단말이 전송하는 비-이벤트-기반 빔 정보의 비주기적인 보고와 구별될 수 있다.
이와 같이, 빔 보고 정보에는 어떤 자원 그룹(또는 RS 그룹)에 대한 빔 보고인지를 나타내는 정보(예를 들어, RS group ID)가 포함될 수 있다. 추가적으로 또는 대안적으로, 빔 보고 정보에는 이벤트 발생 여부에 대한 정보가 포함될 수 있다. 이벤트 발생 여부에 대한 정보는 자원 그룹(또는 RS 그룹) 별 이벤트 발생 여부에 대한 정보를 포함할 수 있다. 이벤트 발생 여부에 대한 정보는 추가적인 필드로서 구성되거나, 기설정된/기정의된 필드(예를 들어, RS ID 및/또는 L1-RSRP/L1-SINR/L1-RSRQ 필드)의 미사용되는 또는 예비된(reserved) 상태(또는 비트 값)을 활용하여 보고될 수도 있다.
실시예 1-2
전술한 바와 같이 L1 측정 정보를 포함하는 빔 보고를 수행하는 경우, 단말에서 이벤트 발생 여부에 따라 빔 보고 페이로드 크기가 가변할 수 있다. 이에 따라, 기지국이 해당 빔 보고를 디코딩하는 데에 문제가 발생할 수 있다. 특히 UCI를 통하여 빔 보고 정보가 전송되는 경우, 페이로드 크기가 미리 명확하게 정하여지지 않는 경우 기지국에서 빔 보고 정보를 디코딩하지 못할 수도 있다. 본 개시는 빔 보고 정보가 UCI로 구성되는 경우는 물론, MAC-CE 등의 다른 형태로 구성되는 경우에도 적용될 수 있다.
또한, 비-이벤트-기반 빔 보고를 위해 할당/설정되는 상향링크 자원과, 이벤트-기반 빔 보고를 위해 할당/설정되는 상향링크 자원이 동일한 상향링크 자원인 경우, 이벤트 발생 여부에 따라 페이로드 크기가 가변하는 경우에 기지국의 디코딩 문제가 발생할 수 있다.
위와 같은 문제를 해결하기 위해서, 빔 보고 정보를 복수의 파트로 나누어 별도로(separate) 인코딩하는 멀티-파트 인코딩이 적용될 수 있다. 멀티-파트 인코딩은 다음과 같은 예시를 포함할 수 있다.
첫 번째 예시로서, 제 1 파트는 비-이벤트-기반 보고(즉, 이벤트-기반 보고가 설정되지 않은 RS 자원 그룹(들)에 대한 빔 보고), 및 제 2 파트의 존재 여부를 나타내는 정보를 포함할 수 있다. 제 2 파트는 이벤트-기반 빔 보고를 포함할 수 있다.
예를 들어, 제 2 파트의 존재 여부는 1-비트 정보로서 포함될 수 있다. 제 2 파트의 존재 여부를 나타내는 1-비트 지시자는, 빔 보고 정보를 MAC-CE 형태로 구성하는 경우에도 적용될 수 있다. 상기 1-비트 정보가 이벤트-기반 보고 정보가 존재하지 않는 것을 나타내는 경우, 제 2 파트는 생략될 수 있다.
두 번째 예시로서, 제 1 파트는 비-이벤트-기반 보고, 및 이벤트-기반 보고의 부분(들)에 대한 N-비트 정보를 포함할 수 있다. 제 2 파트는 이벤트-기반 보고의 나머지 부분(들)을 포함할 수 있다.
예를 들어, 이벤트-기반 보고의 부분(들)에 대한 N-비트 정보는, 이벤트-기반 보고에 대한 RS ID(들)에 대한 보고 정보의 일부 또는 전부를 포함할 수 있다. 예를 들어, 이벤트-기반 보고 정보 중에서 최적의(best) RS ID만을 제 1 파트에 포함시켜서 보고하고, 두 번째 최적의(second best) RS ID를 포함하는 나머지 RS ID(들) 및 빔 품질 값들(즉, 최적의 RS ID 및 나머지 RS ID들에 대한 빔 품질 값들)을 제 2 파트에 포함시켜서 보고할 수 있다. 예를 들어, RS ID(들) 전부를 제 1 파트에 포함시켜서 보고하고, 빔 품질 값(들)은 제 2 파트에 포함시켜서 보고할 수도 있다.
예를 들어, 이벤트가 발생하지 않은 경우(즉, 이벤트-기반 빔 보고를 전송하지 않는 경우), 단말은 상기 N-비트 정보에 소정의 약속된 값(예를 들어, RS ID 필드의 예비된 코드포인트)를 보내도록 정의할 수도 있다. 이 경우, 제 2 파트는 생략될 수 있다.
세 번째 예시로서, 제 1 파트는 비-이벤트-기반 보고, 이벤트-기반 보고의 부분(들)에 대한 N-비트 정보, 및 제 2 파트의 존재 여부를 나타내는 1-비트 정보를 포함할 수 있다. 제 2 파트는 이벤트-기반 보고의 나머지 부분(들)을 포함할 수 있다.
예를 들어, 상기 1-비트 정보가 이벤트-기반 보고 정보가 존재하는 것을 나타내는 경우, 이벤트-기반 보고의 부분(들)에 대한 N-비트 정보는, 이벤트-기반 보고에 대한 RS ID(들)에 대한 보고 정보의 일부 또는 전부를 포함할 수 있다. 예를 들어, 이벤트-기반 보고 정보 중에서 최적의(best) RS ID만을 제 1 파트에 포함시켜서 보고하고, 두 번째 최적의(second best) RS ID를 포함하는 나머지 RS ID(들) 및 빔 품질 값들(즉, 최적의 RS ID 및 나머지 RS ID들에 대한 빔 품질 값들)을 제 2 파트에 포함시켜서 보고할 수 있다. 예를 들어, RS ID(들) 전부를 제 1 파트에 포함시켜서 보고하고, 빔 품질 값(들)은 제 2 파트에 포함시켜서 보고할 수도 있다.
예를 들어, 상기 1-비트 정보가 이벤트-기반 보고 정보가 존재하지 않는 것을 나타내는 경우, 제 2 파트는 생략될 수 있다.
세 번째 예시는 첫 번째 및 두 번째 예시를 함께 적용한 방식에 해당하며, N-비트 정보에 예비된 코드포인트/비트 값이 없는 경우에 적용할 수 있다.
실시예 1-3
단말에서 이벤트 발생 여부에 따라 빔 보고 페이로드 크기가 가변하는 경우, 이벤트 발생 여부에 따라 상향링크 전송 자원(예를 들어, PUCCH 자원)을 최적화하기 위해서, 이벤트가 발생하는 경우에 사용될 제 1 자원과, 이벤트가 발생하지 않는 경우에 사용될 제 2 자원을 별도로 기지국이 단말에게 설정/할당할 수 있다. 이에 따라, 단말은 이벤트 발생 여부에 따라서 상이한 자원을 통하여 빔 보고를 수행할 수 있다. 예를 들어, 비-이벤트-기반 빔 보고에 연관된 제 1 PUCCH 자원과, 이벤트-기반 빔 보고에 연관된 제 2 PUCCH 자원이 단말에 대해서 별도로 설정될 수 있다.
실시예 1-4
단말에서 이벤트 발생 여부에 따라 빔 보고 페이로드 크기가 가변하는 경우, 단말이 선택하여 전송하는 PUCCH 자원을 기지국이 정확하기 알지 못하면 기지국은 가능한 모든 PUCCH 자원에 대한 블라인드 디코딩을 수행해야 하거나, 단말에게 할당하는 PUCCH 자원에 제약이 발생하는 등의 문제가 있을 수 있다. 또한, UCI가 PUSCH에 피기백되어 전송되는 경우에도, UCI 페이로드 크기가 가변적이라면 UCI에 대한 코딩된 RE 개수를 기지국이 정확하게 알 수 없으므로, PUSCH 디코딩에 대한 문제가 발생할 수 있다. 즉, UCI 다중화 과정, 다중-CSI 용 PUCCH 자원 선택 과정 등에 있어서 빔 보고 페이로드 크기의 가변성으로 인한 문제가 발생할 수 있다.
이러한 문제를 해결하기 위해서, 빔 보고 페이로드의 크기를 실제 이벤트 발생 여부와 무관하게(또는 이벤트 발생 여부와 독립적으로) 소정의 크기로 가정하도록 정의할 수 있다. 이러한 소정의 크기에 기초하여, 단말은 UCI 전송을 위한 PUCCH 자원을 선택하거나, UCI 피기백을 위한 PUSCH에 대한 코딩된 RE 개수를 결정하도록 정의할 수 있다.
소정의 크기는 기지국과 단말 간의 시그널링에 의해서 미리 설정되거나, 별도의 시그널링 없이도 기지국과 단말 간이 미리 정의될 수도 있다. 예를 들어, 소정의 크기는 이벤트가 발생한 경우의 빔 보고 정보 페이로드 크기를 기준으로 결정될 수도 있다. 또는, 소정의 크기는 이벤트가 발생하지 않은 경우의 빔 보고 정보 페이로드 크기를 기준으로 결정될 수도 있다.
예를 들어, 단말은 '이벤트 발생' 또는 '이벤트 발생하지 않음' 중의 하나의 상태에 대응되는 CSI 페이로드 크기를 가정하고, 이에 기초하여 UCI 다중화를 위한 PUCCH 자원을 선택 및/또는 PUSCH에서의 UCI 피기백을 위한 코딩된 RE 개수를 결정하도록 정의할 수 있다.
구체적으로, 단말은 이벤트의 실제 발생 여부와 무관하게 항상 소정의 CSI 페이로드 크기를 가정한 상태에서, 해당 CSI 페이로드를 포함한 총 UCI 페이로드 크기(및 설정된 최대 UCI 코딩 레이트)를 기반으로, 이에 대응하는 PUCCH 자원을 선택하여 UCI 다중화 전송을 수행할 수 있다. 또한, 상기 소정의 CSI 페이로드 크기를 가정한 상태에서, 설정된 베타 오프셋을 기반으로 PUSCH 상에서 해당 CSI를 포함하는 UCI(즉, 코딩된 비트)의 매핑에 사용될 RE 개수를 산정하여, UCI 피기백 전송을 수행할 수 있다.
실시예 1-5
기지국이 단말에게 빔 보고를 위해 설정/할당한 PUCCH/PUSCH 자원에서, 해당 빔 보고 정보를 위해 사용가능한 최대 페이로드 크기보다, 실제 빔 보고 정보의 페이로드 크기가 큰 경우가 발생할 수 있다. 예를 들어, 이벤트 발생으로 인해서 이벤트-기반 빔 보고 정보의 추가적인 전송이 요구되는 경우에, 전송하려는 페이로드 크기가 최대 페이로드 크기를 초과할 수도 있다. 이 경우, 단말이 빔 보고 정보의 일부를 생략(omit)하도록 정의할 수 있다.
이와 관련하여, 생략되는 정보의 우선순위에 대한 규칙(omitting rule) 또는 전송되는 하는 정보의 우선순위에 대한 규칙(priority rule)이 정의될 수 있다.
예를 들어, 비-이벤트-기반 빔 보고와 이벤트-기반 빔 보고가 충돌(collide)하는 경우, 비-이벤트-기반 빔 보고의 일부 또는 전부가 생략될 수 있다. 예를 들어, 비-이벤트-기반 빔 보고에 연관되는 RS 그룹에 대한 복수의 빔 정보 중에서, 일부 빔 정보가 생략될 수 있다. 생략되는 빔 정보의 개수는 페이로드 크기(또는 최대 페이로드 크기 제한)을 기준으로 정해질 수도 있고, 전송될 또는 생략될 빔 정보의 개수가 미리 설정/정의될 수도 있다. 예를 들어, 비-이벤트-기반 빔 보고에 연관되는 RS 그룹에 대한 복수의 빔 정보 중에서, 빔 품질값(예를 들어, L1-RSRP/L1-SINR/L1-RSRQ) 중의 일부 또는 전부가 생략될 수도 있다.
추가적인 예시로서, 이벤트-기반 빔 보고 정보 중에서 일부 보고 정보를 생략하거나, 감소된(reduced) 정보/포맷으로 전송되도록 정의할 수도 있다. 예를 들어, 감소된 정보에는 이벤트 발생 여부에 대한 지시자가 필수적으로 포함될 수 있다. 예를 들어, 감소된 정보에는, 이벤트 발생 여부에 대한 지시자, 및 이벤트가 발생한 RS 그룹에 대한 최적의 RS ID 정보가 필수적으로 포함될 수 있다. 위와 같은 필수적인 정보 외의 나머지 정보(예를 들어, RS ID 정보, 빔 품질값 정보) 중에서 일부 또는 전부가 생략될 수 있다. 생략되는 정보의 개수는 페이로드 크기(또는 최대 페이로드 크기 제한)을 기준으로 정해질 수도 있고, 전송될 또는 생략될 빔 정보의 개수가 미리 설정/정의될 수도 있다.
추가적인 예시로서, 비-이벤트-기반 또는 이벤트-기반 RS 그룹을 구별하지 않고, 각각의 RS 그룹에 대한 보고 정보에서 빔 품질값(예를 들어, L1-RSRP/L1-SINR/L1-RSRQ)의 일부 또는 전부가 생략될 수도 있다. 생략되는 빔 품질값 정보의 개수는 페이로드 크기(또는 최대 페이로드 크기 제한)을 기준으로 정해질 수도 있고, 전송될 또는 생략될 빔 정보의 개수가 미리 설정/정의될 수도 있다.
실시예 1-6
이벤트-기반 빔 보고에 있어서, 빔 보고를 수행할 수 있는 시점과 수행할 수 없는 시점이 별도로 설정/지정될 수 있다.
예를 들어, 빔 보고 주기가 N 슬롯으로 설정되는 경우, N, 3N, 5N, 7N, ... 에 해당하는 시점에는 이벤트-기반 빔 보고는 허용되지 않고(즉, 비-이벤트-기반 빔 보고만이 허용되고), 2N, 4N, 6N, 8N, ... 시점에서는 이벤트-기반 빔 보고를 포함하는 빔 보고가 허용되도록 정의될 수 있다. 즉, 이벤트-기반 빔 보고가 허용되는 시점에서는, 비-이벤트-기반 빔 보고 및/또는 이벤트-기반 빔 보고가 수행될 수 있다.
이 경우, 단말은 0 시점 이후 2N의 시점 전의 구간에서 이벤트가 발생하는 경우, 2N 시점에서 이벤트-기반 빔 보고를 포함하는 빔 보고를 수행할 수 있다. 2N 시점 이후 4N 시점 전의 구간에서 이벤트가 발생하는 경우, 4N 시점에서 이벤트-기반 빔 보고를 포함하는 빔 보고를 수행할 수 있다.
또는, N의 홀수배 시점에서 이벤트-기반 빔 보고가 허용되고, N의 짝수배 시점에서는 이벤트-기반 빔 보고가 허용되지 않을 수도 있다.
이는 단지 예시에 불과하며, 단말의 빔 보고가 가능하도록 설정된 모든 시점 중에서 일부 시점들에서는 이벤트-기반 빔 보고가 허용되고, 나머지 시점들에서는 이벤트-기반 빔 보고가 허용되지 않을 수 있다.
예를 들어, 상기 이벤트-기반 빔 보고의 허용 시점과 관련된 정보는, 상위 계층 시그널링(예를 들어, RRC/MAC-CE)을 통해 기지국이 단말에게 전달할 수 있다.
도 17은 본 개시의 일 실시예에 따른 기지국과 단말 간의 시그널링 방법을 설명하기 위한 도면이다.
도 17에서 기지국(BS) 및 단말(UE)은 예시일 뿐이며, 전술한 설명 및 도 18에 기술된 것과 같이 다양한 장치로 대체 적용될 수 있다. 예를 들어, 기지국은 복수의 TRP를 포함하는 하나의 기지국일 수 있으며, 복수의 TRP를 포함하는 하나의 Cell일 수 있다. 도 17은 단지 설명의 편의를 위한 것일 뿐, 본 개시의 범위를 제한하는 것이 아니다. 또한, 도 17에 나타난 일부 단계(들)은 상황 및/또는 설정 등에 따라 생략될 수도 있다. 또한, 도 17의 기지국 및 단말의 동작에 있어서, 전술한 설명들이 참고/이용될 수 있다.
기지국은 단말과 데이터의 송수신을 수행하는 객체(object)를 총칭하는 의미일 수 있다. 예를 들어, 상기 기지국은 하나 이상의 TP(Transmission Point)들, 하나 이상의 TRP(Transmission and Reception Point)들 등을 포함하는 개념일 수 있다. 또한, TP 및/또는 TRP는 기지국의 패널, 송수신 유닛(transmission and reception unit) 등을 포함하는 것일 수 있다. 또한, TRP는 패널(panel), 안테나 어레이(antenna array), 셀(cell)(예: macro cell / small cell / pico cell 등), TP(transmission point), 기지국(base station, gNB 등) 등의 표현으로 대체되어 적용될 수 있다. 상술한 바와 같이, TRP는 CORESET 그룹(또는 CORESET 풀)에 대한 정보(예: 인덱스, ID)에 따라 구분될 수 있다. 일례로, 하나의 단말이 다수의 TRP(또는 셀)들과 송수신을 수행하도록 설정된 경우, 이는 하나의 단말에 대해 다수의 CORESET 그룹(또는 CORESET 풀)들이 설정된 것을 의미할 수 있다. 이와 같은 CORESET 그룹(또는 CORESET 풀)에 대한 설정은 상위 계층 시그널링(예: RRC 시그널링 등)을 통해 수행될 수 있다.
UE는 기지국으로부터 설정 정보(configuration information)를 수신할 수 있다(S105). 즉, 기지국은 UE로 설정 정보를 전송할 수 있다. 상기 설정 정보는 시스템 정보(system information, SI), 스케줄링 정보, 빔 관리(BM) 관련 설정(예를 들어, DL BM 관련 CSI-ResourceConfig IE / NZP CSI-RS resource set IE 등), 기지국의 구성(즉, TRP 구성)과 관련된 정보, CC/BWP 관련 설정, CORESET 관련 설정, CSI 관련 설정(예, CSI-reportConfig, CSI-reosurceConfig 등), 또는 상향링크 관련 설정(예, PUCCH-Config, PUSCH-Config 등) 중의 하나 이상을 포함할 수 있고, 필요에 따라 추가적인 정보를 더 포함할 수 있다. 상기 설정 정보는 상위 계층(예, RRC 또는 MAC CE) 시그널링을 통하여 전송될 수 있다. 또한, 상기 설정 정보가 미리 정의 또는 설정되어 있는 경우, 해당 단계는 생략될 수도 있다.
예를 들어, 상기 설정 정보는 CORESET 관련 설정 정보(예: ControlResourceSet IE)를 포함할 수 있다. 상기 CORESET 관련 설정 정보는 CORESET 관련 ID(예: controlResourceSetID), CORESET에 대한 CORESET pool의 인덱스 (예: CORESETPoolIndex), CORESET의 시간/주파수 자원 설정, 또는 CORESET과 관련된 TCI 정보 중의 하나 이상을 포함할 수 있고, 필요에 따라 추가적인 정보를 더 포함할 수 있다. 상기 CORESET pool의 인덱스 (예: CORESETPoolIndex)는 각 CORESET에 매핑되는/설정되는 특정 인덱스(예 CORESET group Index, HARQ Codebook index)를 의미할 수 있다.
예를 들어, 상기 설정 정보는 CSI 보고와 관련된 설정 정보(예, CSI-ReportConfig, CSI-ResourceConfig, NZP-CSI-RS-ResourceSet, NZP-CSI-RS-Resource 등), 자원 설정 정보, 프리코딩 행렬 관련 지시, 또는 코드북 관련 설정 중의 하나 이상을 포함할 수 있고, 필요에 따라 추가적인 정보를 더 포함할 수 있다 예를 들어, 단일 보고 세팅(예, CSI-ReportConfig)에 서로 다른 NZP CSI-RS resource가 설정될 수 있다. 예를 들어, CSI-ResourceConfig IE를 통해 하나 이상의 NZP-CSI-RS-ResourceSet, CSI-IM-ResourceSet and/or CSI-SSB-ResourceSet 의 그룹이 정의될 수 있다. 예를 들어, 상기 설정 정보에 기반하여 빔 보고를 위한 하나 이상의 RS 그룹들이 설정될 수 있다.
예를 들어, 전술한 이벤트-기반 고속(예, L1/L2 측정 기반) 빔 보고 방법(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6)에서 설명한 바와 같이, 상기 설정 정보는 이벤트-기반 빔 보고와 관련된 설정을 포함할 수 있다. 예를 들어, 상기 이벤트-기반 빔 보고와 관련된 설정은 이벤트-기반 보고를 수행할지 여부에 대한 정보, 이벤트-기반 보고를 위한 주기/슬롯(또는 심볼) 오프셋 정보, RS 그룹 별로 보고할 RS의 개수, 이벤트-기반 보고에 대한 보고 퀀터티(reportquantity), 또는 이벤트-기반 보고 시점에 대한 정보 중의 하나 이상을 포함할 수 있고, 필요에 따라 추가적인 정보를 더 포함할 수 있다. 예를 들어, 상기 설정 정보는 빔 보고를 위한 상향링크 채널 자원 정보를 포함할 수 있다. 일례로, 이벤트-기반 빔 보고를 위한 자원과 비-이벤트-기반 빔 보고를 위한 자원이 각각 설정될 수 있다. 예를 들어, 상기 설정 정보는 이벤트 발생 여부 판단과 관련된 임계치/오프셋 정보를 포함할 수도 있다.
예를 들어, S105 단계의 UE(도 18의 100/200)가 기지국 (도 18의 200/100)로부터 상기 설정 정보를 수신하는 동작은 이하 설명될 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 18를 참고하면, 하나 이상의 프로세서 102는 상기 설정 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로부터 상기 설정 정보를 수신할 수 있다.
UE는 기지국으로부터 제어 정보를 수신할 수 있다(S110). 즉, 기지국은 UE에게 제어 정보를 전송할 수 있다. 상기 제어 정보는 제어 채널(예, PDCCH)를 통해 수신될 수 있다. 일례로, 상기 제어 정보는 DCI 일 수 있다. 예를 들어, 상기 제어 정보는 하향링크 데이터 채널(예, PDSCH), 상향링크 채널(예 PUCCH/PUSCH) 등의 스케줄링 정보, CSI 보고의 트리거링 정보, MCS, 또는 프리코딩 정보 및 레이어 개수(Precoding information and number of layers) 필드 중의 하나 이상을 포함할 수 있고, 필요에 따라 추가적인 정보를 더 포함할 수 있다. 또한, 상기 제어 정보가 미리 정의 또는 설정되어 있는 경우, 해당 단계는 생략될 수도 있다.
예를 들어, S110 단계의 UE(도 18의 100/200)가 기지국 (도 18의 200/100)로부터 상기 제어 정보를 수신하는 동작은 이하 설명될 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 18를 참고하면, 하나 이상의 프로세서 102는 상기 제어 정보를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로부터 상기 제어 정보를 수신할 수 있다.
UE는 기지국으로부터 참조 신호(reference signal)를 수신할 수 있다(S115). 즉, 기지국은 UE에게 참조 신호를 전송할 수 있다. 상기 참조 신호는 상기 설정 정보에 기반하여 수신될 수 있다. 예를 들어, 상기 참조 신호는 주기적/비주기적/반-지속적으로 전송될 수 있다. 예를 들어, 전술한 이벤트-기반 고속(예, L1/L2 측정 기반) 빔 보고 방법(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6), 전술한 빔 관리, 전술한 CSI 관련 동작 등에 기반하여 상기 참조 신호가 수신될 수 있다. 예를 들어, 상기 참조 신호는 CSI-RS, 동기 신호, SSB 중의 하나 이상에 해당할 수 있다.
예를 들어, S115단계의 UE(도 18의 100/200)가 기지국 (도 18의 200/100)으로부터 상기 참조 신호를 수신하는 동작은 이하 설명될 도 18 의장치에 의해 구현될 수 있다. 예를 들어, 도 18를 참고하면, 하나 이상의 프로세서 102는 상기 참조 신호를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로부터 상기 참조 신호를 수신할 수 있다.
UE는 빔 보고를 위한 측정을 수행할 수 있다(S120). 예를 들어, 상기 빔 보고를 위한 측정은 전술한 이벤트-기반 고속(예, L1/L2 측정 기반) 빔 보고 방법(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6), 전술한 빔 관리, 전술한 CSI 관련 동작, 전술한 L1-RSRP/L1-SINR 관련 동작에 기반하여 수행될 수 있다. 예를 들어, 빔 보고를 위한 측정은 상술한 설정 정보/DCI/참조 신호에 기반하여 수행될 수 있다.
예를 들어, 상기 빔 보고를 위한 측정(예, RSRP/SINR 측정)은 RS 그룹 별로 수행될 수 있다. 예를 들어, UE는 특정 RS 그룹의 최적 품질의 RS의 빔 품질 값(예, L1-RSRP/L1-SINR)을 소정의 임계치 및/또는 소정의 오프셋에 기초하여 비교하여 이벤트가 발생했다고 판단할 수 있다.
예를 들어, S120단계의 UE(도 18의 100/200)가 상기 빔 보고를 위한 측정을 수행하는 동작은 이하 설명될 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 18를 참고하면, 하나 이상의 프로세서 102는 상기 빔 보고를 위한 측정을 수행하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있다.
UE는 기지국으로 빔 보고를 전송할 수 있다(S125). 즉, 기지국은 UE로부터 빔 보고를 수신할 수 있다. 상기 빔 보고는 상향링크 채널(예, PUCCH/PUSCH)을 통해 전송될 수 있다. 또는, 일례로, 상기 빔 보고가 MAC-CE를 통해 전송될 수도 있다. 상기 빔 보고는 주기적/반-지속적/비주기적으로 전송될 수 있다. 예를 들어, 상기 빔 보고는 전술한 이벤트-기반 고속(예, L1/L2 측정 기반) 빔 보고 방법(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6)에서 설명한 바와 같이, L1-RSRP, L1-SINR, 이벤트 발생 여부에 대한 정보, 또는 보고하는 자원 그룹 정보(예, RS 그룹 ID) 중의 하나 이상을 포함할 수 있고, 필요에 따라 추가적인 정보를 더 포함할 수 있다. 또한, 상기 빔 보고는 이웃 셀에 대한 빔 보고도 포함할 수 있다.
예를 들어, 상기 빔 보고는 멀티-파트(예, 제 1 파트 및 제 2 파트)로 구성될 수 있다. 예를 들어, 실시예 1-2의 예시에 기반하여 제 1 파트/제 2 파트 빔 보고가 구성될 수 있다. 예를 들어, 제 1 파트에는 제 2 파트가 존재하는지 여부에 대한 1 비트 시그널링을 포함할 수 있다. 예를 들어, 제 1 파트는 비-이벤트-기반 빔 보고를 포함할 수 있다. 제 2 파트는 이벤트-기반 빔 보고를 포함할 수 있으며, 경우에 따라 이벤트-기반 빔 보고의 일부가 제 1 파트에 포함될 수도 있다. 예를 들어, 이벤트-기반 보고가 가능한 시점에서 상기 제 2 파트가 전송될 수 있다.
예를 들어, 실시예 1-4에서 설명한 바와 같이, 단말은 이벤트의 실제 발생 유무와 무관하게 항상 '이벤트 발생' 혹은 '이벤트 발생하지 않음' 중 하나의 상태에 대응되는 CSI 페이로드를 가정하여, 해당 CSI 페이로드를 포함한 총 UCI 페이로드 크기를 계산할 수 있다. 예를 들어, 실시예 1-5에서 설명한 바와 같이, 빔 보고를 위해 할당된 상향링크 자원에서 사용할 수 있는 최대 페이로드 크기보다 실제 보고되어야 할 정보의 페이로드가 더 큰 경우, 일부 빔 보고 정보가 생략 규칙/우선순위 규칙에 기반하여 생략되어 보고될 수 있다.
예를 들어, 상술한 S125 단계의 UE(도 18의 100/200)가 기지국(도 18의 200/100)으로 상기 빔 보고를 전송하는 동작은 이하 설명될 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 18를 참고하면, 하나 이상의 프로세서 102는 상기 빔 보고를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로 상기 빔 보고를 전송할 수 있다.
앞서 언급한 바와 같이, 상술한 기지국/UE 시그널링 및 동작(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6)/도 15/16/17 등)은 이하 설명될 장치(예, 도 18의 장치 100/200)에 의해 구현될 수 있다. 예를 들어, 기지국은 제 1 무선 기기, UE는 제 2 무선 기기에 해당할 수 있고, 경우에 따라 그 반대의 경우도 고려될 수 있다.
예를 들어, 상술한 기지국/UE 시그널링 및 동작(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6)/도 15/16/17 등)은 도 18의 하나 이상의 프로세서(예 102, 202)에 의해 처리될 수 있으며, 상술한 기지국/UE 시그널링 및 동작(예, 실시예 1/1-1/1-2/1-3/1-4/1-5/1-6)/도 15/16/17 등)은 도 18의 적어도 하나의 프로세서(예 102, 202)를 구동하기 위한 명령어/프로그램(예 명령(instruction), 실행가능한 코드(executable code))형태로 메모리(예 도 18의 하나 이상의 메모리(예 104, 204) 에 저장될 수도 있다.
본 개시가 적용될 수 있는 장치 일반
도 18은 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시하는 도면이다.
도 18을 참조하면, 제 1 디바이스/무선 기기(100)와 제 2 디바이스/무선 기기(200)는 다양한 무선 접속 기술(예를 들어, LTE, NR)을 통해 무선 신호를 송수신할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예를 들어, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예를 들어, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예를 들어, 베이스밴드 신호)를 수신할 수 있고, 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 개시의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 개시에 포함된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 개시에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예를 들어, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 개시는 본 개시의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. 본 개시에서 설명하는 특징을 수행하는 프로세싱 시스템을 프로그래밍하기 위해 사용될 수 있는 명령은 저장 매체 또는 컴퓨터 판독가능 저장 매체 상에/내에 저장될 수 있고, 이러한 저장 매체를 포함하는 컴퓨터 프로그램 제품을 이용하여 본 개시에서 설명하는 특징이 구현될 수 있다. 저장 매체는 DRAM, SRAM, DDR RAM 또는 다른 랜덤 액세스 솔리드 스테이트 메모리 디바이스와 같은 고속 랜덤 액세스 메모리를 포함할 수 있지만, 이에 제한되지 않으며, 하나 이상의 자기 디스크 저장 디바이스, 광 디스크 저장 장치, 플래시 메모리 디바이스 또는 다른 비-휘발성 솔리드 스테이트 저장 디바이스와 같은 비-휘발성 메모리를 포함할 수 있다. 메모리는 선택적으로 프로세서(들)로부터 원격에 위치한 하나 이상의 저장 디바이스를 포함한다. 메모리 또는 대안적으로 메모리 내의 비-휘발성 메모리 디바이스(들)는 비-일시적 컴퓨터 판독가능 저장 매체를 포함한다. 본 개시에서 설명하는 특징은, 머신 판독가능 매체 중 임의의 하나에 저장되어 프로세싱 시스템의 하드웨어를 제어할 수 있고, 프로세싱 시스템이 본 개시의 실시예에 따른 결과를 활용하는 다른 메커니즘과 상호작용하도록 하는 소프트웨어 및/또는 펌웨어에 통합될 수 있다. 이러한 소프트웨어 또는 펌웨어는 애플리케이션 코드, 디바이스 드라이버, 운영 체제 및 실행 환경/컨테이너를 포함할 수 있지만 이에 제한되지 않는다.
여기서, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat S1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 개시에서 제안하는 방법은 3GPP LTE/LTE-A, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A, 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (20)

  1. 무선 통신 시스템에서 단말에 의해서 빔 보고를 수행하는 방법에 있어서, 상기 방법은:
    복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 기지국으로부터 수신하는 단계; 및
    상기 설정 정보에 기초하여, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 기지국으로 전송하는 단계를 포함하고,
    상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고,
    상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보인, 방법.
  2. 제 1 항에 있어서,
    상기 설정 정보는 상기 복수의 RS 자원 그룹 각각에 대한, 이벤트-기반 또는 비-이벤트-기반 보고 여부, 보고 주기, 보고 오프셋, 보고될 RS 자원 개수, 또는 보고될 측정 정보의 개수 중의 하나 이상을 포함하는, 방법.
  3. 제 1 항에 있어서,
    상기 설정 정보는 이벤트 트리거 기준(criteria)에 대한 정보를 포함하고,
    상기 기준은 상기 복수의 RS 자원 그룹 중의 특정 RS 자원 그룹과 다른 하나 이상의 RS 자원 그룹의 최적의(best) RS 자원의 빔 품질값의 상대적인 비교, 또는 상기 특정 RS 자원 그룹의 최적의 RS 자원의 빔 품질값에 대한 절대적인 임계치와의 비교 중의 하나 이상을 포함하거나,
    상기 기준은 하나 이상의 특정 샘플에서의, 상기 복수의 RS 자원 그룹 중의 특정 RS 자원 그룹과 다른 하나 이상의 RS 자원 그룹의 최적의(best) RS 자원의 빔 품질값의 상대적인 비교, 또는 상기 특정 RS 자원 그룹의 최적의 RS 자원의 빔 품질값에 대한 절대적인 임계치와의 비교 중의 하나 이상을 포함하는, 방법.
  4. 제 1 항에 있어서,
    상기 빔 보고 정보는, 상기 제 1 측정 정보 또는 상기 제 2 측정 정보 중의 하나 이상의 각각이 연관되는 RS 자원 그룹에 대한 정보, 또는 이벤트 발생 여부에 대한 정보 중의 하나 이상을 포함하는, 방법.
  5. 제 1 항에 있어서,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 동일한 상향링크 자원 또는 상이한 상향링크 자원 상에서 전송되는, 방법.
  6. 제 5 항에 있어서,
    상기 동일한 상향링크 자원 상에서 상기 제 1 측정 정보와 제 2 측정 정보는 멀티-파트 인코딩되어 전송되고,
    제 1 파트는 상기 제 1 측정 정보를 포함하고, 상기 제 2 측정 정보의 존재 여부 또는 상기 제 2 측정 정보의 일부분 중의 하나 이상을 더 포함하며,
    제 2 파트는 상기 제 2 측정 정보의 나머지 부분 또는 상기 제 2 측정 정보의 전체를 포함하며,
    상기 제 2 파트는 상기 제 2 측정 정보가 존재함에 기초하여 상기 빔 보고 정보에 포함되는, 방법.
  7. 제 5 항에 있어서,
    상기 동일한 상향링크 자원은, 상기 빔 보고 정보에 상기 제 2 측정 정보가 포함된다는 가정 또는 상기 제 2 측정 정보가 포함되지 않는다는 가정에 기초하는 미리 정의된 페이로드 크기에 기초하여 결정되는, 방법.
  8. 제 5 항에 있어서,
    상기 상이한 상향링크 자원은 상기 제 1 측정 정보에 대해서 예비된(reserved) 제 1 자원 및 상기 제 2 측정 정보에 대해서 예비된 제 2 자원을 포함하는, 방법.
  9. 제 5 항에 있어서,
    상기 동일한 또는 상이한 자원의 최대 페이로드 크기보다 상기 제 1 측정 정보 또는 상기 제 2 측정 정보 중의 하나 이상을 포함하는 전체 정보의 산출된 페이로드 크기가 더 큰 것에 기초하여, 상기 제 1 측정 정보 또는 상기 제 2 측정 정보 중의 하나 이상의 일부가 생략되는, 방법.
  10. 제 1 항에 있어서,
    상기 제 2 측정 정보의 전송이 허용되는 보고 시점 또는 허용되지 않는 보고 시점이 미리 설정되거나 미리 정의되는, 방법.
  11. 제 1 항에 있어서,
    상기 복수의 RS 자원 그룹의 각각은, 동일한 개체 식별자 또는 동일한 스크램블링 식별자에 연관되는 하나 이상의 RS 자원을 포함하고,
    상기 개체는 셀, TRP(transmission and reception point), 패널(panel), 또는 빔 중의 하나 이상에 대응하는, 방법.
  12. 제 11 항에 있어서,
    상기 제 1 RS 자원 그룹은 서빙 개체에 연관되고, 상기 제 2 RS 자원 그룹은 이웃 개체에 연관되는, 방법.
  13. 제 1 항에 있어서,
    상기 RS 자원은 CSI-RS(channel state information-reference signal) 자원 또는 SS(synchronization signal)/PBCH(physical broadcast channel) 블록 중의 하나 이상을 포함하고,
    상기 L1 측정 정보는, L1-RSRP(reference signal received power), L1-SINR(signal to interference and noise ratio), 또는 L1-RSRQ(reference signal received quality) 중의 하나 이상을 포함하는, 방법.
  14. 제 1 항에 있어서,
    상기 빔 보고 정보는 상향링크제어정보(UCI), 또는 MAC(medium access control)-CE(control element) 중의 하나 이상을 포함하고,
    상기 빔 보고 정보는 PUCCH(physical uplink control channel), 또는 PUSCH(physical uplink shared channel) 중의 하나 이상을 통하여 전송되고,
    상기 PUSCH는 그랜트-기반 또는 설정된 그랜트-기반으로 전송되는, 방법.
  15. 제 14 항에 있어서,
    상기 PUCCH를 통하여 이벤트 발생 여부가 보고되고, 상기 PUSCH를 통하여 상기 제 2 측정 정보가 보고되는, 방법.
  16. 무선 통신 시스템에서 빔 보고를 수행하는 단말에 있어서, 상기 단말은:
    하나 이상의 송수신기; 및
    상기 하나 이상의 송수신기와 연결된 하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는:
    복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 기지국으로부터 상기 하나 이상의 송수신기를 통하여 수신하고; 및
    상기 설정 정보에 기초하여, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 기지국으로 상기 하나 이상의 송수신기를 통하여 전송하도록 설정되고,
    상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고,
    상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보인, 단말.
  17. 무선 통신 시스템에서 기지국에 의해서 빔 보고를 수신하는 방법에 있어서, 상기 방법은:
    복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 단말로 전송하는 단계; 및
    상기 설정 정보에 기초하여 상기 단말로부터 전송되는, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 수신하는 단계를 포함하고,
    상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고,
    상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보인, 방법.
  18. 무선 통신 시스템에서 빔 보고를 수신하는 기지국에 있어서, 상기 기지국은:
    하나 이상의 송수신기; 및
    상기 하나 이상의 송수신기와 연결된 하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는:
    복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 단말로 상기 하나 이상의 송수신기를 통하여 전송하고; 및
    상기 설정 정보에 기초하여 상기 단말로부터 전송되는, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 하나 이상의 송수신기를 통하여 수신하도록 설정되고,
    상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고,
    상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보인, 기지국.
  19. 무선 통신 시스템에서 빔 보고를 수행하는 단말을 제어하도록 설정되는 처리 장치에 있어서, 상기 처리 장치는:
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서와 동작가능하게 연결되고, 상기 하나 이상의 프로세서에 의해서 실행되는 것에 기초하여 동작들을 수행하는 명령들을 저장하는 하나 이상의 컴퓨터 메모리를 포함하고,
    상기 동작들은:
    복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 기지국으로부터 수신하는 동작; 및
    상기 설정 정보에 기초하여, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 기지국으로 전송하는 동작을 포함하고,
    상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고,
    상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보인, 처리 장치.
  20. 하나 이상의 명령을 저장하는 하나 이상의 비-일시적(non-transitory) 컴퓨터 판독가능 매체로서,
    상기 하나 이상의 명령은 하나 이상의 프로세서에 의해서 실행되어, 무선 통신 시스템에서 빔 보고를 수행하는 장치가:
    복수의 참조신호(RS) 자원 그룹에 대한 설정 정보를 기지국으로부터 수신하고; 및
    상기 설정 정보에 기초하여, 제 1 RS 자원 그룹에 대한 비-이벤트-기반 제 1 측정 정보, 또는 제 2 RS 자원 그룹에 대한 이벤트-기반 제 2 측정 정보 중의 하나 이상을 포함하는 빔 보고 정보를 상기 기지국으로 전송하도록 제어하고,
    상기 제 1 측정 정보는 주기적, 반-지속적, 또는 비주기적으로 전송되고,
    상기 제 2 측정 정보는 상기 단말에서 소정의 이벤트가 트리거됨에 기초하여 전송되며,
    상기 제 1 측정 정보 및 상기 제 2 측정 정보는 L1(layer 1) 측정 정보인, 컴퓨터 판독가능 매체.
KR1020237007411A 2020-09-15 2021-09-10 무선 통신 시스템에서 빔 보고 방법 및 장치 KR20230050367A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20200118652 2020-09-15
KR1020200118652 2020-09-15
PCT/KR2021/012342 WO2022060014A1 (ko) 2020-09-15 2021-09-10 무선 통신 시스템에서 빔 보고 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20230050367A true KR20230050367A (ko) 2023-04-14

Family

ID=80777168

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237007411A KR20230050367A (ko) 2020-09-15 2021-09-10 무선 통신 시스템에서 빔 보고 방법 및 장치

Country Status (3)

Country Link
US (1) US20230344490A1 (ko)
KR (1) KR20230050367A (ko)
WO (1) WO2022060014A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263558A1 (en) * 2021-02-05 2022-08-18 Samsung Electronics Co., Ltd. Method and apparatus of group-based beam reporting
US20230100135A1 (en) * 2021-09-28 2023-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Measurement for wireless communication network
US20230283340A1 (en) * 2021-11-19 2023-09-07 Apple Inc. Artificial Intelligence Based Channel State Information Framework
WO2023187619A1 (en) * 2022-03-29 2023-10-05 Lenovo (Singapore) Pte. Ltd. Method and apparatus including support for an event-trigger based cross-link interference reporting
US20230388069A1 (en) * 2022-05-24 2023-11-30 Qualcomm Incorporated Light layer 1 measurement report

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018232090A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Unified beam management in a wireless network
US11018750B2 (en) * 2019-01-03 2021-05-25 Qualcomm Incorporated Recovery mechanism for secondary cell

Also Published As

Publication number Publication date
WO2022060014A1 (ko) 2022-03-24
US20230344490A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
KR102562610B1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
KR102543904B1 (ko) 무선 통신 시스템에서 다중 송수신 포인트로부터의 하향링크 채널 송수신 방법 및 장치
KR102570074B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
KR102508795B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
US20230344490A1 (en) Method and device for beam reporting in wireless communication system
KR102620427B1 (ko) 무선 통신 시스템에서 공간 파라미터 기반 신호 송수신 방법 및 장치
KR102562608B1 (ko) 무선 통신 시스템에서 빔 실패 복구 방법 및 장치
KR102528306B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
KR20230027038A (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
KR20230027060A (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
KR20230048500A (ko) 무선 통신 시스템에서 상향링크 신호 송수신 방법 및 장치
KR102575456B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
KR102549723B1 (ko) 무선 통신 시스템에서 디폴트 공간 파라미터 기반 송수신 방법 및 장치
KR20230002754A (ko) 무선 통신 시스템에서 빔 연계 상태 기반 상향링크/하향링크 송수신 방법 및 장치
KR20220164692A (ko) 무선 통신 시스템에서 빔 연계 상태 기반 상향링크/하향링크 송수신 방법 및 장치
KR20220166846A (ko) 무선 통신 시스템에서 csi-rs 송수신 방법 및 장치
KR20220155256A (ko) 무선 통신 시스템에서 공간 파라미터 기반 신호 송수신 방법 및 장치
KR102566160B1 (ko) 무선 통신 시스템에서 공간 파라미터 동적 지시 방법 및 장치
KR102548064B1 (ko) 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치
KR20230107097A (ko) 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
KR20240027697A (ko) 무선 통신 시스템에서 채널 상태 정보의 송수신을 수행하는 방법 및 장치
KR20230098224A (ko) 무선 통신 시스템에서 빔 실패 복구 방법 및 장치
KR20230007307A (ko) 무선 통신 시스템에서 참조 신호 연계 기반 하향링크 송수신 방법 및 장치
KR20230130014A (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
KR20220157934A (ko) 무선 통신 시스템에서 공간 파라미터 기반 상향링크 송수신 방법 및 장치