KR20230032361A - Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer - Google Patents

Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer Download PDF

Info

Publication number
KR20230032361A
KR20230032361A KR1020210115125A KR20210115125A KR20230032361A KR 20230032361 A KR20230032361 A KR 20230032361A KR 1020210115125 A KR1020210115125 A KR 1020210115125A KR 20210115125 A KR20210115125 A KR 20210115125A KR 20230032361 A KR20230032361 A KR 20230032361A
Authority
KR
South Korea
Prior art keywords
sic
wafer
electromagnetic force
fine impurities
polishing
Prior art date
Application number
KR1020210115125A
Other languages
Korean (ko)
Inventor
송희관
김상원
Original Assignee
(주)큐알피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)큐알피 filed Critical (주)큐알피
Priority to KR1020210115125A priority Critical patent/KR20230032361A/en
Publication of KR20230032361A publication Critical patent/KR20230032361A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02079Cleaning for reclaiming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention relates to a cleaning method for removing metallic fine impurities on the surface of a SiC reclaiming wafer after a mechanical and chemical polishing process in a SiC reclaiming wafer manufacturing process. The present invention relates to a method of: generating electromagnetic force by combining an electric induction device and a permanent magnet to impart a specific direction to metal impurities on the surface of a SiC reclaiming wafer; separating them from the surface of the SiC reclaiming wafer; and discharging them through a hydrogen mixture solution for cleaning.

Description

Sic 재생웨이퍼 연마후 표면의 전자기력에 의한 금속성 미세불순물 제거 방법 {Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer}Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer}

본 발명은 Sic 재생웨이퍼 표면 연마후 표면의 120nm이하의 금속성 미세불순물을 제거하여 Sic 웨이퍼를 효과적으로 재생하는 방법에 관한 것이다.The present invention relates to a method for effectively regenerating a Sic wafer by removing metallic fine impurities of 120 nm or less on the surface after polishing the surface of the Sic reclaimed wafer.

Sic 웨이퍼는 실리콘(Si) 와 탄소(C) 로 구성된 화합물 반도체 재료로서 매우 강하고 안정적인 물질로서 열적(2000℃),기계적(모스 경도 9.3), 화학적(대부분의 산,알카리)에 안정성을 가진다. Sic 웨이퍼를 재생하기 위해서는 반도체 제조공정상에서 사용되었던 테스트용 웨이퍼의 표면에 공정용 화학물질 및 금속물질을제거하고 표면을 평탄화 하기 위해서 기판 표면의 5~20um의 평면화가 필요하다. Sic wafer is a compound semiconductor material composed of silicon (Si) and carbon (C), which is very strong and stable. It has thermal (2000℃), mechanical (Mohs hardness of 9.3), and chemical (most acids and alkalis) stability. In order to regenerate the SiC wafer, it is necessary to planarize the surface of the substrate by 5-20 μm to remove process chemicals and metal materials from the surface of the test wafer used in the semiconductor manufacturing process and to planarize the surface.

평탄화를 위해 화학적-기계적 연마 공정이 필요하며, 연마 공정에서는 일반적으로 산성 또는 염기성 용액으로서, 연마 슬러리,미세 다이아몬드를 포함하는 연마 용액을 사용한다.A chemical-mechanical polishing process is required for planarization, and in the polishing process, a polishing solution containing a polishing slurry and fine diamond is generally used as an acidic or basic solution.

미세 다이아몬드 입자를 사용하는 연마 공정의 경우 다이아몬드 입자 용액과 Sic 웨이퍼 표면과의 기계적, 화학적 결합에 의해 연마량 측면에서 매우 유리하다. 하지만 산화 다이아몬드 입자와 Sic 웨이퍼의 표면과의 마찰로 인해 Sic 웨이퍼 표면 에 미세 다이아몬드 및 표면 결함에 의한 기공이 발생하여 그 안으로 금속성 미세불순물이 침투하게 된다. In the case of the polishing process using fine diamond particles, it is very advantageous in terms of polishing amount due to mechanical and chemical bonding between the diamond particle solution and the surface of the SiC wafer. However, due to the friction between the diamond oxide particles and the surface of the SiC wafer, pores caused by fine diamonds and surface defects are generated on the surface of the Sic wafer, and metallic impurities penetrate into them.

기존의 세정 방식은 암모니아, 과산화수소, 물을 혼합하여 세정하는 SC1 세정과, 염산, 과산화수소, 물을 혼합하는 SC2 세정으로 이루어지고, SC2에서 DHF 단계는 희석 불산을 이용해 자연 산화막을 제거하는 단계를 포함한다. 또한 대체 기술로 웨이퍼 세정 기술인 친환경 원료인 수소를 반도체 웨이퍼의 세정 공정에 환원제로서 활용하고 있다. 하지만, 기존의 세정기술은 Si 반도체를 생산 공정에 적용하는 기술로서 Sic 재생웨이퍼 세정 공정에는 적용하는데 적합하지 않다. Sic 재생웨이퍼 세정 공정에 대한 추가적인 연구가 요구되고 있는 실정이다.Conventional cleaning methods consist of SC1 cleaning, which mixes ammonia, hydrogen peroxide, and water, and SC2 cleaning, which mixes hydrochloric acid, hydrogen peroxide, and water. In SC2, the DHF step includes the step of removing the natural oxide film using diluted hydrofluoric acid. do. In addition, as an alternative technology, hydrogen, an eco-friendly raw material for wafer cleaning technology, is being used as a reducing agent in the cleaning process of semiconductor wafers. However, the conventional cleaning technology is a technology for applying Si semiconductors to the production process, and is not suitable for application to the cleaning process for SiC regeneration wafers. There is a need for additional research on the cleaning process of the SiC recycled wafer.

이러한 배경으로 본 발명자들은 Sic 재생웨이퍼 세정 공정의 문제점을 해결하기위해 전자기력을 Sic 재생웨이퍼 금속성 미세불순물 세정에 활용할 수 있음을 확인하여 본 발명을 완성하였다.Against this background, the inventors of the present invention have completed the present invention by confirming that electromagnetic force can be used to clean metallic fine impurities in a Sic recycled wafer in order to solve the problem of the Sic recycled wafer cleaning process.

한국 공개특허공보 제10-2020-0133177호Korean Patent Publication No. 10-2020-0133177 한국 공개특허공보 제10-2020-0001548호Korean Patent Publication No. 10-2020-0001548

본 발명이 해결하고자 하는 과제는 Sic 재생웨이퍼 연마 공정후 세정 공정에서 화학적요소를 최소화하고 전자기력을 이용하여 Sic 재생웨이퍼 세정하여 친환경적이고 효과적으로 금속성 미세 불순물을 제거하는 것이다.An object to be solved by the present invention is to minimize chemical elements in a cleaning process after polishing a SiC recycled wafer and to clean the SiC recycled wafer using electromagnetic force to remove fine metallic impurities in an environmentally friendly and effective manner.

Sic 웨이퍼 재생을 위해서는 연마공정후 상기의 미세불순물을 제거하여야 하는데 미세불순물 제거를 위하여 영구자석을 고정한 평판 위에 Sic 웨이퍼를 진공에 의해 부착하고 전기유도장치를 가동하면 발생된 전자기력에 의해 기공내의 금속성 미세 불순물에 힘이 작용하면서 부상하여 수소혼합용액과 혼합되어 배출함으로써 연마 공정후 Sic웨이퍼 세정 방법을 제공한다. In order to regenerate the Sic wafer, it is necessary to remove the above-mentioned fine impurities after the polishing process. To remove the fine impurities, the Sic wafer is attached by vacuum on a flat plate with a permanent magnet fixed, and the electric induction device is operated. As the force acts on the impurities, they float up and are mixed with the hydrogen mixture solution to be discharged, thereby providing a cleaning method for the Sic wafer after the polishing process.

본 발명의 Sic 재생웨이퍼 연마공정후 세정 방법은 금속성 미세불순물을 제거하기 위한 고비용의 화학물질 사용 하지않고 전자기력을 이용함에 따라 친환경적이며 경제적인 이점이 있다. The cleaning method after the polishing process of the Sic recycled wafer according to the present invention is environmentally friendly and economical as it uses electromagnetic force without using expensive chemicals for removing metallic fine impurities.

도 1은 본 발명에 사용되는 세정 공정을 설명하기 위한 도면이다.
도 2는 본 발명에 의한 전자기력을 발생시키는 장치를 도시한 도면이다.
도 3은 본 발명에 의한 Sic 재생웨이퍼 표면상의 자속밀도 변화에 대한 도면이다.
도 4는 본 본 발명에 의한 미세불순물이 Sic 재생웨이퍼 표면에서 제거되는 과정을 설명하기 위한 도면이다
도 5는 본 발명에 의한 효과를 확인하기 위한 연마공정전,후 Sic 재생웨이퍼 표면의 미세불순물의 종류 입자 개수와 분포도 표현한 표이다.
1 is a diagram for explaining a cleaning process used in the present invention.
2 is a diagram showing a device for generating electromagnetic force according to the present invention.
Figure 3 is a diagram of the change in magnetic flux density on the surface of the Sic regenerated wafer according to the present invention.
Figure 4 is a view for explaining the process of removing fine impurities from the surface of the Sic regeneration wafer according to the present invention
Figure 5 is a table expressing the number and distribution of fine impurities on the surface of the Sic recycled wafer before and after the polishing process to confirm the effect according to the present invention.

이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예를 상세히 설명한다. 다음에서 설명되는 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술되는 실시 예에 한정되는 것은 아니다. 본 발명의 실시예는 당 분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

본 발명의 Sic 재생웨이퍼(4b)의 제조공정에서 화학적 기계적 평탄화 후 금속성 미세불순물(1d)을 제거를 위한 세정 방법을 제공한다.In the manufacturing process of the Sic recycled wafer 4b of the present invention, a cleaning method for removing metallic fine impurities 1d after chemical mechanical planarization is provided.

본 발명은 기존의 탈이온수(6a)에 고압수소를 직접 주입하는 방법에서 탈피하여 탈이온수(Deionized Water)(6a) 와 암모니아(NH3)(5a)를 혼합(4a)하여 전기분해하여 제조한다.The present invention is prepared by electrolysis by mixing (4a) deionized water (6a) and ammonia (NH3) (5a), breaking away from the conventional method of directly injecting high-pressure hydrogen into deionized water (6a).

도면1은 본 발명에 활용된 수소혼합용액(1b)의 제조공정을 도시한 도면이다. 탈이온수(Deionized Water)(6a) 와 암모니아(NH3)(5a)의 혼합비율은 99.5 : 0.5 비율 또는 이와 유사한 비율로 혼합하고 이를 양이온 교환막 (Proton PEM) 전해장치를 이용하여 전기분해하고 +극에 발생하는 산소는 배출 시키고 -극에서 발생하는 수소는 탈이온수(Deionized Water)(6a)의 탱크에 공급하여 수소혼합용액을 만들어 토출 장치에 공급한다. 토출장치의 압력은 0.5 kgf/cm2 ~2.5 kgf/cm2 의 압력으로 토출시키며 수소혼합용액의 온도는 5℃~30℃의 온도를 유지한다. 수소혼합용액의 ph는 9이상의 것으로 공급한다. Figure 1 is a view showing the manufacturing process of the hydrogen mixture solution (1b) utilized in the present invention. The mixing ratio of deionized water (6a) and ammonia (NH3) (5a) is 99.5 : 0.5 or a similar ratio, electrolyzes it using a cation exchange membrane (Proton PEM) electrolysis device, and Oxygen generated is discharged, and hydrogen generated at the -pole is supplied to the tank of deionized water (6a) to make a hydrogen mixed solution and supplied to the discharge device. The pressure of the discharge device is discharged at a pressure of 0.5 kgf/cm2 ~ 2.5 kgf/cm2, and the temperature of the hydrogen mixture solution is maintained at a temperature of 5 ℃ ~ 30 ℃. The pH of the hydrogen mixture solution is supplied as 9 or higher.

도면2는 본 발명에 의한 전자기력이 발생시키는 장치에 대한 도면이다. Sic재생웨이퍼(4b)를 올려 놓는 평판(2b)은 영구자석 S극,N극이 교차적으로 고정되어있는 구조를 하고 있으며 그 중앙에는 전기유도장치(3b)가 장착되어 있다. 전기유도장치(3b)는 교류전압 220V를 인가시키며 제어컨트롤러에 의해 10Hz ~ 60Hz 이내의 주파수를 이용하며 전류의 크기를 조절할 수 있게 한다. Figure 2 is a diagram of a device generating electromagnetic force according to the present invention. The plate 2b on which the Sic regeneration wafer 4b is placed has a structure in which the S pole and N pole of the permanent magnet are alternately fixed, and an electric induction device 3b is mounted in the center. The electric induction device (3b) applies an AC voltage of 220V, uses a frequency within 10Hz to 60Hz by a control controller, and allows the size of the current to be adjusted.

도면 3은 도면 2의 장치에서 전기유도장치(3b)에 전류를 인가하였을때 발생하는 자속밀도(1c)에 대한 것을 도시한 도면이다. 자속밀도(1c)는 전류를 상승시켜 전기력이 높아지면 자기력이 상승하면서 높아진다. 하기식이 이런 현상의 이론적 배경이 된다. Figure 3 is a diagram showing the magnetic flux density (1c) generated when current is applied to the electric induction device (3b) in the device of Figure 2. The magnetic flux density 1c increases as the electric force increases by increasing the current and the magnetic force increases. The following formula is the theoretical background of this phenomenon.

Fe (전기력 ) = 1/4πε×q₁q₂/r²× r" (식 1)Fe (electric force) = 1/4πε×q₁q₂/r²×r" (Equation 1)

Fe : 전기력 , ε: 유전율, q₁q₂: 전하량, r : 점전하 사이의 거리Fe: electric force, ε: permittivity, q₁q₂: charge amount, r: distance between point charges

dB(r) = μ/4π×I₁dl×r"/r² (식 2)dB(r) = μ/4π×I₁dl×r"/r² (Equation 2)

dB(r): 자기장요소, μ : 투자율 , I₁dl : 전류요소 , r": 변위 방향의 단위벡터 , I₁dl : 자기력, r : 거리 dB(r): magnetic field component, μ: magnetic permeability, I₁dl: current component, r": unit vector in the displacement direction, I₁dl: magnetic force, r: distance

dFm = I₂dl×B(r) (식 3) dFm = I₂dl×B(r) (Equation 3)

dFm : 자기력요소, I₂dl : 전류요소, B(r) : 자기장 dFm: magnetic force element, I₂dl: current element, B(r): magnetic field

상기를 통하여 작용 반작용 법칙에 의하여 I₁에 작용하는 자기력을 적분하여 Fm을 구하면 크기는 같고 부호는 반대가 된다. d는 두 도선 사이 거리가 늘어나는 방향이므로 I₁과 I₂의 전류방향이 같은 방향이면 인력이, 반대 방향이면 척력이 작용한다는 사실을 알수 있다. 전기장 또는 자기장 하에서 움직이는 전하가 받는 힘을 로런츠의 힘이라고 하는데 양의 전하를 띤 입자는 전기장 방향으로 그로기 속도와 자기장에 수직인 방향으로 힘을 받게 된다. 로런츠의 힘 수식은 다음과 같다. Through the above, if Fm is obtained by integrating the magnetic force acting on I₁ according to the action-reaction law, the magnitude is the same and the sign is opposite. Since d is the direction in which the distance between the two wires increases, it can be seen that if the current directions of I₁ and I₂ are in the same direction, the attractive force acts, and if they are in the opposite direction, the repulsive force acts. The force on a charge moving under an electric or magnetic field is called the Lorentz force. The Lorentz force formula is:

F = Fe + Fm = q(E + v ×B) F = Fe + Fm = q(E + v × B)

F : 힘 , Fe : 전기력, Fm : 전기력, q : 전하량, v : 전하의 속도, B : 자기장 F: force, Fe: electric force, Fm: electric force, q: charge amount, v: charge velocity, B: magnetic field

본 발명은 상기 식을 토대로 Sic 재생 웨이퍼(4b) 표면상의 금속성 미세 불순물에 전자기력이 발생하여 힘의 방향으로 이탈시켜 도면 4와 같이 제거할 수 있다. 상기 현상을 발현시키기 위한 연마공정의 표면거칠기 차이에 따라 적정한 전류의 크기는 8A ~ 20A 사이에서 효과적이었으며 연마액 (슬러리)의 종류에 따라 그 효과는 달라질 수 있다.In the present invention, based on the above formula, electromagnetic force is generated on the metallic fine impurities on the surface of the Sic reclaimed wafer 4b, and they can be removed as shown in FIG. 4 by separating them in the direction of the force. According to the difference in surface roughness of the polishing process to express the phenomenon, the size of the appropriate current was effective between 8A and 20A, and the effect may vary depending on the type of polishing liquid (slurry).

본 발명에 의한 효과는 도면 5의 비교표를 참조하여 확인할 수 있다. 검사 과정은 TENCOR 검사기로 검사를 진행하였고 연마후 Sic 재생웨이퍼 표면상의 금속성 미세 불순물의 오염정도는 세정공정전(1e) 120nm 이하의 AL계열 1253개 ~ 4815개, Cu 계열 1012개 ~ 4953개 가 검출되었으며 본 발명에 의한 전자기력을 이용한 장치를 통해 세정 공정을 진행한 후(2e) AL계열 100개이하, Cu계열 100개이하의 결과를 확인할 수 있다. The effects of the present invention can be confirmed by referring to the comparison table in FIG. 5. The inspection process was carried out with a TENCOR inspection machine, and the degree of contamination of metallic fine impurities on the surface of the Sic regeneration wafer after polishing was 1253 to 4815 of AL series of 120 nm or less and 1012 to 4953 of Cu series before the cleaning process (1e). After performing the cleaning process through the device using electromagnetic force according to the present invention (2e), the results of less than 100 AL series and less than 100 Cu series can be confirmed.

1a : 전자기력을 이용한 세정장치
2a : 수소혼합용액 저장 탱크
3a : 전기분해장치
4a : 탈이온수 , 암모니아 혼합 탱크
5a : 암모니아 공급 탱크
6a : 탈이온수 공급 탱크
7a : 냉각장치
1b : 수소혼합용액
2b : N극과 S극이 교차 구조의 영구자석
3b : 전기유도장치
4b : Sic 재생웨이퍼
1c : 자속밀도
2c : 자속밀도 회전상태 표현
1d : 금속성 미세불순물
1e : 세정공정전 금속성 미세불순물 검출 수치
2e : 세정공정후 금속성 미세불순물 검출 수치
1a: cleaning device using electromagnetic force
2a: Hydrogen mixed solution storage tank
3a: electrolysis device
4a: deionized water, ammonia mixing tank
5a: ammonia supply tank
6a: deionized water supply tank
7a: cooling device
1b: hydrogen mixed solution
2b: Permanent magnet with crossed N and S poles
3b: electric induction device
4b: Sic regeneration wafer
1c: magnetic flux density
2c: Expression of magnetic flux density rotation
1d: metallic microimpurities
1e: Detection level of metallic fine impurities before cleaning process
2e: detection level of metallic fine impurities after cleaning process

Claims (6)

전자기력을 이용한 기계적,화학적 연마후 Sic 재생웨이퍼 표면상의 금속성 불순물 제거 방법Method for removing metallic impurities on the surface of Sic recycled wafer after mechanical and chemical polishing using electromagnetic force 제1항에 있어서, Sic 재생웨이퍼 세정액으로 사용하는 수소혼합용액을 탈이온수와 암모니아를 혼합하여 전기분해하여 수소를 발생시켜 탈이온수에 혼합하는 세정액 제조 방법.The method of claim 1, wherein the hydrogen mixture solution used as the SiC recycling wafer cleaning liquid is mixed with deionized water and ammonia and electrolyzed to generate hydrogen and mixed with deionized water. 제1항에 있어서, Sic 재생웨이퍼 세정공정에서 전기유도장치와 영구자석을 조합하여 금속성 미세불순물을 특정방향으로 이탈시키는 장치 제조 방법.The method according to claim 1, wherein the metallic fine impurities are separated in a specific direction by combining an electric induction device and a permanent magnet in the cleaning process of the SiC recycled wafer. 제1항에 있어서, 기계적,화학적 연마후 전자기력을 이용하여 금속성 미세불순물을 제거하는 것을 특징으로 하는 Sic 재생웨이퍼 세정 방법.The method of claim 1, wherein the metal fine impurities are removed using electromagnetic force after mechanical and chemical polishing. 제1항에 있어서, Sic 재생웨이퍼 표면상의 전자기력를 이용하여 금속성 미세불순물을 특정방향으로 방향성을 부여하는 것을 포함하는 세정 방법.The cleaning method according to claim 1, comprising directing the metallic fine impurities in a specific direction by using an electromagnetic force on the surface of the Sic reclaimed wafer. 제1항에 있어서, 전자기력을 이용하여 금속성 미세불순물을 제거하는 반도체 웨이퍼 세정 방법.The method of claim 1 , wherein the metallic fine impurities are removed using electromagnetic force.
KR1020210115125A 2021-08-30 2021-08-30 Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer KR20230032361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210115125A KR20230032361A (en) 2021-08-30 2021-08-30 Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210115125A KR20230032361A (en) 2021-08-30 2021-08-30 Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer

Publications (1)

Publication Number Publication Date
KR20230032361A true KR20230032361A (en) 2023-03-07

Family

ID=85513033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210115125A KR20230032361A (en) 2021-08-30 2021-08-30 Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer

Country Status (1)

Country Link
KR (1) KR20230032361A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200001548A (en) 2018-06-26 2020-01-06 버슘머트리얼즈 유에스, 엘엘씨 Post chemical mechanical planarization(cmp) cleaning
KR20200133177A (en) 2019-05-17 2020-11-26 성균관대학교산학협력단 Functional cleaning solution containing hydrogen water and wafer cleaning method after CMP process using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200001548A (en) 2018-06-26 2020-01-06 버슘머트리얼즈 유에스, 엘엘씨 Post chemical mechanical planarization(cmp) cleaning
KR20200133177A (en) 2019-05-17 2020-11-26 성균관대학교산학협력단 Functional cleaning solution containing hydrogen water and wafer cleaning method after CMP process using the same

Similar Documents

Publication Publication Date Title
Li et al. Electro-chemical mechanical polishing of silicon carbide
Murata et al. Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles
KR101371870B1 (en) Silicon carbide polishing method utilizing water-soluble oxidizers
CN102311706B (en) Nanometer level polishing solution and preparation method thereof
EP2919259B1 (en) Method for polishing work and work polishing apparatus
CN103506928B (en) Superhard polishing semiconductor materials method
CN109877657B (en) Electrochemical thickening and polishing method
CN108381379A (en) The polishing method that aluminum-nitride single crystal piece electrobrightening and chemically mechanical polishing are combined
Pan et al. Optimization study on magnetorheological fluid components and process parameters of cluster magnetorheological finishing with dynamic magnetic field for sapphire substrates
Ou et al. Photoelectrochemically combined mechanical polishing of n-type gallium nitride wafer by using metal nanoparticles as photocathodes
Zulkifle et al. High-efficiency wafer-scale finishing of 4H-SiC (0001) surface using chemical-free electrochemical mechanical method with a solid polymer electrolyte
CN112809458B (en) Silicon carbide wafer and method for processing same
KR20230032361A (en) Method of removing metallic fine impurities by electromagnetic force on the surface after polishing the Sic reclaiming wafer
RU2389109C2 (en) Method for preparation of surface in binary and multicomponent materials
An et al. Effect of process parameters on material removal rate in chemical mechanical polishing of 6H-SiC (0001)
Zhao et al. An experimental investigation of flat polishing with dielectrophoretic (DEP) effect of slurry
Zhou et al. Integrated process for silicon wafer thinning
Shi et al. Polishing of diamond, SiC, GaN based on the oxidation modification of hydroxyl radical: status, challenges and strategies
Lim et al. Effect of electric field on chemical mechanical polishing of langasite
Asghar et al. Influence of Polishing Parameters on Abrasive Free Chemical Mechanical Planarization (AFCMP) of Non-Polar (11-20) and Semi-Polar (11-22) GaN Surfaces
CN110106544A (en) A kind of plasma electrochemical polishing method of SiC single crystal nanoscale
AU2016201774B2 (en) Method for reducing the metal contamination on a surface of a substrate
Banerjee Current status of slurries and cleans for CMP of III-V device fabrications–A critical review
JP2014203990A (en) Polishing method of wide-gap semiconductor and polishing apparatus
Yin et al. Processing properties of strong oxidizing slurry and effect of processing atmosphere in SiC-CMP

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application