KR20230029602A - 회전 구동 장치 및 펌프 - Google Patents

회전 구동 장치 및 펌프 Download PDF

Info

Publication number
KR20230029602A
KR20230029602A KR1020227040087A KR20227040087A KR20230029602A KR 20230029602 A KR20230029602 A KR 20230029602A KR 1020227040087 A KR1020227040087 A KR 1020227040087A KR 20227040087 A KR20227040087 A KR 20227040087A KR 20230029602 A KR20230029602 A KR 20230029602A
Authority
KR
South Korea
Prior art keywords
bearing
rotor
pair
stator
rotor member
Prior art date
Application number
KR1020227040087A
Other languages
English (en)
Inventor
토시키 오니두카
시니치로우 코리다
토시아키 카메이
히카루 사이토우
마사야 우에노
타쿠야 세키
Original Assignee
가부시키가이샤 이와키
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 이와키 filed Critical 가부시키가이샤 이와키
Publication of KR20230029602A publication Critical patent/KR20230029602A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

회전자(20)와, 자기 베어링(10)과, 회전자를 회전 구동하는 구동부(30)를 구비하고, 자기 베어링은 베어링 고정자(12)와, 환상의 베어링 회전자 부재(11)를 구비하고, 상기 구동부는 구동 고정자(32)와, 환상의 구동 회전자 부재(31)를 가지고, 베어링 고정자는 베어링 회전자 부재의 외주 측에 배치되어 베어링 회전자 부재와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 복수의 베어링 고정자 코어(17)와, 베어링 고정자 코어에 감겨진 베어링 코일(18)을 가지고, 베어링 고정자 코어는, 베어링 회전자 부재와의 대향 방향과 직교하는 제1방향으로 연장되는 제1부분(17a)과, 제1부분의 제1방향의 양단부로부터 베어링 회전자 부재 측으로 연장되는 한 쌍의 제2부분(17b)을 가지고, 베어링 코일은, 베어링 고정자 코어의 제1부분에 감겨지고, 구동 고정자는, 회전자의 외주면과 베어링 고정자 코어의 제1부분과의 사이 및 베어링 고정자 코어의 한 쌍의 제2부분 사이의 제1방향에서의 위치를 통과하도록 형성되어 있다.

Description

회전 구동 장치 및 펌프
본 발명은 자기 베어링을 이용한 회전 구동 장치 및 펌프(ROTARY DRIVE DEVICE AND PUMP)에 관한 것이다.
펌프 장치의 임펠러의 하중 등을 자기력에 의해 비접촉으로 지지하는 자기 베어링과, 임펠러를 회전 구동하는 구동 기구가 알려져 있다(예를 들면, 특허문헌 1 참조). 도 12에 도시한 바와 같이, 이러한 자기 베어링(200)은, 예를 들면 임펠러(200a)를 구비한 회전자(201)에 설치된 베어링 회전자 부재(206)와, 하우징(209)에 고정된 베어링 고정자(202)로 구성되어 있다.
자기 베어링(200)의 직경 방향 내측에는 회전자(201)에 설치된 영구자석 어레이(301)와 하우징(209)에 설치된 공심 코일(air-core coil) 어레이(302)로 구성되는 구동 기구(300)가 포함되어 있다. 회전자(201)는 자기 베어링(200)에 의해 지지되고 구동 기구(300)에 의해 회전 동작된다.
일본특허공개 2005-121157호 공보
이러한 자기 베어링(200)에서는, 베어링 고정자(202)를 구성하는 コ자형의 고정자 코어(204)와 베어링 회전자 부재(206)로 형성되는 자기 회로를 통과하는 자속(
Figure pct00001
)에 의해 회전자(201)에 대한 규정 위치로의 복원력이 작용한다. 또한, 영구자석 어레이(301)와 공심 코일 어레이(302)로 형성된 자기 회로를 통과하는 자속(
Figure pct00002
)에 의해, 공심 코일 어레이(302)에 작용하는 로렌츠 힘의 반작용력이 영구자석 어레이(301)에 작용하여 회전자(201)에의 회전력이 작용한다.
그러나, 회전자(201)의 직경 방향 외측에 자기 베어링(200)의 베어링 고정자(202)가 배치됨과 더불어 직경 방향 내측에 구동 기구(300)의 공심 코일 어레이(302)가 배치되고, 베어링 회전자 부재(206)와 영구자석 어레이(301)가 배치되는 구성이기 때문에, 자기 베어링(200)과 구동 기구(300)를 포함하는 회전 구동 장치로서 보았을 때의 직경 방향의 치수 삭감에는 대략 한계가 있고, 예를 들어, 회전 구동 장치를 펌프 장치에 적용한 경우에는 펌프 장치 전체를 소형화하기 어렵다는 문제가 있었다.
본 발명은 상기 사정을 감안하여 이루어진 것으로, 자기 베어링 및 구동 기구를 포함한 직경 방향의 치수를 억제하여 소형화를 도모할 수 있는 회전 구동 장치 및 펌프를 제공하는 것을 목적으로 한다.
본 발명에 관한 회전 구동 장치는, 회전자와, 상기 회전자를 자기력에 의해 비접촉으로 지지하는 자기 베어링과, 상기 회전자를 회전 구동하는 구동부를 구비한 회전 구동 장치로서, 상기 자기 베어링은 상기 회전자의 외주 측에 배치되어 상기 회전자를 자기력에 의해 비접촉으로 지지하는 베어링 고정자와, 상기 회전자에 설치되어 상기 베어링 고정자와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 환상(고리 모양)의 베어링 회전자 부재를 구비하고, 상기 구동부는 상기 회전자의 외주 측에 배치되어 상기 회전자에 회전 구동력을 부여하는 구동 고정자와, 상기 회전자의 상기 베어링 회전자 부재의 외주 측에 배치되어 상기 구동 고정자로부터 회전 구동력을 받는 환상의 구동 회전자 부재를 가지고, 상기 베어링 고정자는 상기 베어링 회전자 부재의 외주 측에 배치되어 상기 베어링 회전자 부재와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 복수의 베어링 고정자 코어와, 상기 베어링 고정자 코어에 감겨진 베어링 코일을 가지고, 상기 베어링 고정자 코어는, 상기 베어링 회전자 부재와의 대향 방향과 직교하는 제1방향으로 연장되는 제1부분과, 상기 제1부분의 상기 제1방향의 양단부로부터 상기 베어링 회전자 부재 측으로 연장되는 한 쌍의 제2부분을 가지고, 상기 베어링 코일은, 상기 베어링 고정자 코어의 상기 제1부분에 감겨지고, 상기 구동 고정자는 회전자의 외주면과 베어링 고정자 코어의 제1부분 사이 및 베어링 고정자 코어의 상기 한 쌍의 제2부분 사이의 제1방향의 위치를 통과하도록 환상으로 형성되어 있는 것을 특징으로 한다.
본 발명의 일 실시 형태에 있어서, 상기 베어링 고정자 코어는, 상기 한 쌍의 제2부분의 상기 베어링 회전자 부재 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장된 후, 상기 베어링 회전자 부재 측을 향하여 연장되는 한 쌍의 제3부분을 더 가지고 있도록 형성되어 있다.
본 발명의 다른 실시 형태에 있어서, 상기 베어링 회전자 부재는, 원환상(둥근 고리 모양)의 베어링 자석과, 상기 베어링 자석을 상기 제1방향으로 사이에 끼우도록 배치된 원환상의 한 쌍의 요크를 가지고, 상기 한 쌍의 요크는, 상기 베어링 자석의 상기 제1방향의 양단면을 덮어 상기 제1방향으로 연장되는 한 쌍의 제4부분과, 상기 한 쌍의 제4부분의 상기 베어링 자석과는 반대 측의 단부로부터 상기 베어링 고정자 측으로 연장되는 한 쌍의 제5부분을 가지고, 상기 한 쌍의 제5부분의 제1방향의 대향면의 사이에는, 상기 구동 회전자 부재를 한 쌍의 요크 및 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어진 스페이서가 배치되어 있다.
본 발명의 또 다른 실시 형태에 있어서, 상기 베어링 회전자 부재는, 원환상의 베어링 자석과, 상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치된 원환상의 한 쌍의 요크를 가지고, 상기 한 쌍의 요크는, 상기 베어링 자석의 상기 제1방향의 양단면을 덮어 상기 베어링 고정자와의 대향 방향으로 연장되는 한 쌍의 제4부분과, 상기 한 쌍의 제4부분의 상기 베어링 고정자와 반대 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장되는 한 쌍의 제5부분을 가지고, 상기 한 쌍의 제4부분의 상기 베어링 자석보다 상기 베어링 고정자 측의 상기 제1방향의 대향면의 사이에는, 상기 구동 회전자 부재를 상기 한 쌍의 요크 및 상기 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어지는 스페이서가 배치되고, 상기 제5부분과 상기 베어링 자석의 사이에 제1간극이 형성되고, 상기 한 쌍의 제5부분의 서로 대향하는 각 선단부 사이에는, 제2간극이 설치되어 있다.
본 발명의 또 다른 실시 형태에 있어서, 상기 베어링 고정자는, 상기 베어링 회전자 부재의 직경 방향의 외측에 상기 베어링 회전자 부재의 둘레 방향을 따라 복수 배치되고, 상기 베어링 회전자 부재와 직경 방향으로 각각 대향한다.
본 발명의 또 다른 실시 형태에 있어서, 상기 구동 고정자는, 상기 구동 회전자 부재에 직경 방향 외측으로부터 대향하고, 상기 구동 회전자 부재의 둘레 방향을 따라 복수의 자극을 갖는 자성 재료로 이루어지는 원환상의 구동 고정자 코어와, 상기 구동 고정자 코어의 슬롯에 감겨진 구동 코일을 가진다.
본 발명에 따른 펌프는, 회전자와, 상기 회전자를 자기력에 의해 비접촉으로 지지하는 자기 베어링과, 상기 회전자를 회전 구동하는 구동부와, 상기 회전자에 설치된 임펠러를 포함하는 펌프 기구를 구비하는 펌프로서, 상기 자기 베어링은, 상기 회전자의 외주 측에 배치되어 상기 회전자를 자기력에 의해 비접촉으로 지지하는 베어링 고정자와, 상기 회전자에 설치되어 상기 베어링 고정자와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 환상의 베어링 회전자 부재를 구비하고, 상기 구동부는, 상기 회전자의 외주 측에 배치되어 상기 회전자에 회전 구동력을 부여하는 구동 고정자와, 상기 회전자의 상기 베어링 회전자 부재의 외주 측에 배치되어 상기 구동 고정자로부터 회전 구동력을 받는 환상의 구동 회전자 부재를 가지고, 상기 베어링 고정자는, 상기 베어링 회전자 부재의 외주 측에 배치되어 상기 베어링 회전자 부재와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 복수의 베어링 고정자 코어와, 상기 베어링 고정자 코어에 감겨진 베어링 코일을 가지고, 상기 베어링 고정자 코어는, 상기 베어링 회전자 부재와의 대향 방향과 직교하는 제1방향으로 연장되는 제1부분과, 상기 제1부분의 상기 제1방향의 양단부로부터 상기 베어링 회전자 부재 측으로 연장되는 한 쌍의 제2부분을 가지고, 상기 베어링 코일은, 상기 베어링 고정자 코어의 상기 제1부분에 감겨지고, 상기 구동 고정자는, 상기 회전자의 외주면과 상기 베어링 고정자 코어의 상기 제1부분과의 사이 및 상기 베어링 고정자 코어의 상기 한 쌍의 제2부분 사이의 상기 제1방향에 있어서의 위치를 통과하도록 형성되어 있는 것을 특징으로 한다.
본 발명의 일 실시 형태에 있어서, 상기 베어링 고정자 코어는, 상기 한 쌍의 제2부분의 상기 베어링 회전자 부재 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장된 후, 상기 베어링 회전자 부재 측을 향하여 연장되는 한 쌍의 제3부분을 더 가지도록 형성되어 있다.
본 발명의 다른 실시 형태에 있어서, 상기 베어링 회전자 부재는, 원환상의 베어링 자석과, 상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치된 원환상의 한 쌍의 요크를 가지고, 상기 한 쌍의 요크는, 상기 베어링 자석의 상기 제1방향의 양단부면을 덮고 상기 제1방향으로 연장되는 한 쌍의 제4부분과, 상기 한 쌍의 제4부분의 상기 베어링 자석과는 반대 측의 단부로부터 상기 베어링 고정자 측으로 연장되는 한 쌍의 제5부분을 가지고, 상기 한 쌍의 제5부분의 제1방향의 대향면 사이에는, 상기 구동 회전자 부재를 한 쌍의 요크 및 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어지는 스페이서가 배치되어 있다.
본 발명의 또 다른 실시 형태에 있어서, 상기 베어링 회전자 부재는, 원환상의 베어링 자석과, 상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치된 원환상의 한 쌍의 요크를 가지고, 상기 한 쌍의 요크는, 상기 베어링 자석의 상기 제1방향의 양단면을 덮고 상기 베어링 고정자와 대향 방향으로 연장되는 한 쌍의 제4부분과, 상기 한 쌍의 제4부분의 상기 베어링 고정자와 반대 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장되는 한 쌍의 제5부분을 가지고, 상기 한 쌍의 제4부분의 상기 베어링 자석보다 상기 베어링 고정자 측의 상기 제1방향의 대향면 사이에는, 상기 구동 회전자 부재를 상기 한 쌍의 요크 및 상기 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어진 스페이서가 배치되고, 상기 제5부분과 상기 베어링 자석 사이에 제1간극이 형성되고, 상기 한 쌍의 제5부분의 서로 대향하는 각 선단부 사이에는, 제2간극이 설치되어 있다.
본 발명의 또 다른 실시 형태에 있어서, 상기 베어링 고정자는, 상기 베어링 회전자 부재의 직경 방향 외측에 베어링 회전자 부재의 둘레 방향을 따라 복수 배치되고, 베어링 회전자 부재와 직경 방향으로 각각 대향한다.
본 발명의 또 다른 실시형태에 있어서, 상기 구동 고정자는 상기 구동 회전자 부재의 직경 방향 외측으로부터 대향하고, 상기 구동 회전자 부재의 둘레 방향을 따라 복수의 자극을 갖는 자성 재료로 이루어진 원환상의 구동 고정자 코어와, 상기 구동 고정자 코어의 슬롯에 감겨진 구동 코일을 가진다.
본 발명에 의하면, 자기 베어링 및 구동 기구를 포함한 직경 방향의 치수를 억제하여 소형화를 도모할 수 있다.
도 1은 본 발명의 제1실시형태에 관한 회전 구동 장치가 적용된 펌프의 전체 구성을 개략적으로 도시하는 종단면도이다.
도 2는 회전 구동 장치를 개략적으로 도시하는 확대 종단면도이다.
도 3은 회전 구동 장치의 전체 구성을 개략적으로 도시하는 상면도이다.
도 4는 회전 구동 장치의 구동부의 전체 구성을 개략적으로 도시하는 상면도이다.
도 5는 회전 구동 장치의 전체 구성을 일부를 절결하여 개략적으로 도시하는 사시도이다.
도 6은 회전 구동 장치의 회전자의 베어링/회전자부의 전체 구성을 일부를 절결하여 개략적으로 도시하는 사시도이다.
도 7은 회전 구동 장치가 적용된 다른 펌프의 전체 구성을 일부를 투과하여 개략적으로 도시하는 사시도이다.
도 8은 본 발명의 제2실시형태에 관한 회전 구동 장치를 개략적으로 도시하는 확대 종단면도이다.
도 9는 회전 구동 장치의 전체 구성을 개략적으로 도시하는 상면도이다.
도 10은 본 발명의 제3실시형태에 관한 회전 구동 장치를 개략적으로 도시하는 확대 종단면도이다.
도 11은 본 발명의 제4실시형태에 관한 회전 구동 장치의 구동부를 개략적으로 도시하는 상면도이다.
도 12는 본 발명의 제5실시 형태에 관한 회전 구동 장치가 적용된 펌프의 전체 구성을 개략적으로 도시하는 종단면도이다.
도 13은 동 회전 구동 장치의 구동부를 개략적으로 도시하는 상면도이다.
도 14는 종래의 자기 베어링 및 구동 기구의 전체 구성을 개략적으로 도시하는 종단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 따른 회전 구동 장치 및 펌프를 상세하게 설명한다. 단, 이하의 실시 형태는 각 청구항에 따른 발명을 한정하는 것은 아니고, 또한 실시 형태에서 설명된 특징의 조합 모두가 발명의 해결 수단에 필수라는 것은 아니다. 또한, 이하의 실시 형태에 있어서, 동일 또는 상당하는 구성 요소에는 동일한 부호를 붙여 중복된 설명을 생략한다. 또한, 실시 형태에서는, 각 구성 요소의 축척이나 치수가 과장되어 도시되어 있거나 일부의 구성 요소가 생략되어 있는 경우가 있다.
[제1실시 형태]
[회전 구동 장치 및 펌프의 구성]
도 1은, 제1 실시 형태에 관한 회전 구동 장치(90)가 적용된 펌프(100)의 전체 구성을 개략적으로 도시하는 종단면도이다. 도 2는, 회전 구동 장치(90)를 개략적으로 도시하는 확대 종단면도, 도 3a는, 회전 구동 장치(90)의 전체 구성을 개략적으로 도시하는 상면도, 도 3b는 구동부(30)의 전체 구성을 개략적으로 도시하는 상면도이다. 또한, 도 4는, 회전 구동 장치(90)의 전체 구성을 일부를 절개하여 개략적으로 도시하는 사시도, 도 5는 회전 구동 장치(90)의 회전자(20)의 베어링/회전자부(21)의 전체 구성을 일부를 절결하여 개략적으로 도시하는 사시도이다.
도 1 내지 도 5에 도시한 바와 같이, 제1실시 형태에 관한 펌프(100)는, 회전자(20)와, 회전자(20)를 자기력에 의해 비접촉으로 지지하는 자기 베어링(10)과, 회전자(20)를 회전 구동하는 구동부(30)를 구비한다. 또한, 펌프(100)는, 회전자(20)에 설치된 임펠러(22)를 포함하는 펌프 기구와, 펌프 기구 전체를 제어하는 제어부(60)를 구비하고 있다. 또한, 본 예에서는, 펌프(100)를 도시하고 있지만, 이들 회전자(20), 자기 베어링(10) 및 구동부(30)는, 회전자(20)를 비접촉으로 지지하면서 회전 구동한다는 기능에만 착안하면, 도 3a 및 도 4에 도시한 바와 같이, 자기 베어링(10)을 사용한 회전 구동 장치(베어링리스 모터)(90)로서 파악할 수 있다. 그리고, 회전 구동 장치(90)에 있어서, 회전자(20)를 회전 구동한다는 기능에만 착안하면, 도 3b에 도시한 바와 같이, 구동부(30)는 모터 장치(브러시리스 모터)로서 파악할 수 있다.
또한, 이후의 설명에서는, 회전자(20)의 회전축(Z축) 방향을 Z축 방향(액시얼 방향, Z방향이라고도 부른다.), 회전자(20)의 직경 방향을 X축 방향 및 Y축 방향(래디얼 방향, X 방향 및 Y 방향이라고도 부른다), X축 주위의 회전 방향을 Θ방향, Y축 주위의 회전 방향을 Φ방향이라고 각각 부르기로 한다. 또한, X축, Y축 및 Z축은 서로 직교하는 것으로 한다. 또한, 도 1의 지면을 향하여 우측을 펌프(100)의 전방측, 좌측을 후방측으로 한다.
펌프(100)는, 예를 들면 전체가 원통형으로 형성되고, Z축 방향의 한쪽(전방측)에 프론트 케이싱(41)을 가진다. 프론트 케이싱(41)은, 내부에 펌프실(A1)을 형성하고, 전방 중앙부에 펌프실(A1)에 연통하는 원통상의 흡입구(51)를 가진다. 또한, 프론트 케이싱(41)은, 측면에 마찬가지로 펌프실(A1)에 연통하는 토출구(52)를 가진다.
프론트 케이싱(41)의 후단부에는, 예를 들어 O링(41a)에 의해 시일된 상태로 리어 케이싱(42)이 접속되어 있다. 리어 케이싱(42)은, 프론트 케이싱(41)과 함께 펌프실(A1)을 포함하는 밀폐 공간(A)을 형성한다. 또한, 리어 케이싱(42)은, 후방으로 돌출된 원통상 공간(수용 공간)(A2)을 형성한다.
리어 케이싱(42)의 후방 측의 래디얼 방향의 외 측(외주 측)은, 원통상의 하우징(43)에 의해 덮여 있다. 하우징(43)의 하부에는, 펌프(100)를 지지하는 펌프 베이스(43a)가 설치되어 있다. 또한, 하우징(43)의 후방 측은, 제어부(60)를 내부 공간에 수용하는 리어 커버(29)에 의해 덮여 있다. 리어 커버(29)의 중앙부에는, 제어부(60)에 접속되는 하니스 등의 삽입 관통 구멍(29a)이 형성되어 있고, 삽입 관통 구멍(29a)의 후방 측에는, 케이블 조인트(28)가 접속되어 있다.
밀폐 공간(A)에는, 회전자(20)가 부상(비접촉 지지) 가능한 상태로 수용된다. 회전자(20)는, 예를 들면 전체가 수지 재료 등의 비자성체로 형성되고, Z축 방향의 일단인 전방 측에 설치된 임펠러(22)와, Z축 방향의 타단인 후방 측에 설치된 환상의 베어링/회전자부(21)를 일체로 형성하여 이루어진다. 임펠러(22)는, 프론트 케이싱(41)의 내부의 펌프실(A1)에 수용되고, 펌프실(A1)과 함께 펌프 기구를 구성한다.
한편, 리어 케이싱(42)은, 전방의 플랜지부(42a)와, 플랜지부(42a)의 중앙부로부터 후방으로 돌출된 원통 돌출부(42b)를 가지고, 베어링/회전자부(21)는, 리어 케이싱(42)의 원통 돌출부(42b)의 내부의 원통상 공간(A2)에 수용되어 있다. 하우징(43)의 내측에는, 원통상의 고정자 베이스(44)가 설치되어 있다. 고정자 베이스(44)는, 리어 케이싱(42)의 플랜지부(42a) 및 원통 돌출부(42b)의 외주면과의 사이에서, 원통상 공간(A2)을 둘러싸는 환상 공간(A3)을 형성한다. 그리고, 환상 공간(A3)에는, 후술하는 베어링 고정자(12) 및 구동 고정자로서 모터 고정자(32)가 설치되어 있다.
자기 베어링(10)은, 회전자(20)의 베어링/회전자부(21)의 내주 측에 장착된 환상의 자성 재료로 이루어지는 베어링 회전자 부재(11)와, 베어링 회전자 부재(11)의 래디얼 방향의 외측에, 예를 들면 베어링 회전자 부재(11)와 소정의 간격을 두고 배치된 베어링 고정자(12)를 가진다.
베어링 회전자 부재(11)는, 예를 들면 도 5에 도시한 바와 같이, 원환상으로 성형된 네오디뮴 자석으로 이루어지는 베어링 자석(13)과, 베어링 자석(13)과 동심으로, 베어링 자석(13)의 액시얼 방향(Z축 방향)의 양 단면을 액시얼 방향으로 끼워 넣도록 배치된 원환상의 전자 연철로 이루어지는 한 쌍의 요크(14, 15)를 가진다.
베어링 자석(13)은, 예를 들면 액시얼 방향으로 N극 및 S극이 대향하고, 또한 둘레 방향 전체 둘레에 걸쳐 동일한 극이 되도록 착자되어 있다. 또한, 베어링 자석(13)은, 도 2에 도시한 바와 같이, 베어링 회전자 부재(11) 및 베어링 고정자(12)의 후술하는 베어링 고정자 코어(17)에서 형성되는 자기 회로에 바이어스 자속(
Figure pct00003
1)을 공급한다.
한편, 베어링 고정자(12)는, 예를 들어 도 3a 및 도 3b에 도시한 바와 같이, 베어링 회전자 부재(11)의 둘레 방향의 4개소에 90°의 각도를 두고 복수 배치되어 있다. 이들 베어링 고정자(12) 중, 예를 들면 X축 방향으로 대향하는 한 쌍의 베어링 고정자(12)(12x)는, 제어부(60)의 제어에 의해, 회전자(20)의 X축 방향의 위치 및 Φ방향의 각도를 제어하고, Y축 방향으로 대향하는 한 쌍의 베어링 고정자(12)(12y)는, 회전자(20)의 Y축 방향의 위치 및 Θ방향의 각도를 제어한다. 또한, 이들 베어링 고정자(12)(12x, 12y)는, 회전자(20)의 Z축 방향의 높이를 제어한다.
또한, 고정자 베이스(44)에는, 베어링 회전자 부재(11)의 래디얼 방향 및 각 회전 방향의 변위를 검출 가능한 변위 센서(16)가, 베어링 고정자(12)와 각각 45°의 각도를 이루도록(즉, X축 방향 및 Y축 방향과 각각 45°의 각도로 교차하도록) 복수(예를 들면, 여기서는 4개) 배치되어 있다.
이들 변위 센서(16)는, 예를 들면 와전류식의 센서를 들 수 있지만, 이것에 한정되는 것은 아니고, 다양한 센서를 채용할 수 있다. 또한, 베어링 고정자(12)의 수는, 상기의 수에 한정되는 것은 아니고, 예를 들면 6, 8, 10, 12, 16개 등, 다양한 형태를 채용할 수 있다. 그 밖에 변위 센서에는, 도시는 생략하지만, 상기 변위 센서(16)와 함께, 예를 들어 고정자 베이스(44) 등에 베어링/회전자부(21)와 액시얼 방향으로 대향하도록 설치되고, 베어링 회전자 부재(11) 등의 액시얼 방향 및 회전 방향의 변위를 검출 가능한 센서도 포함된다. 또한, 변위 센서(16) 등의 배치 형태나 수는, 이에 한정되지 않고, 다양한 형태를 채용할 수 있다.
베어링 고정자(12)는, 예를 들면 적층 전자 강판 등의 자성 재료로 이루어지는 베어링 고정자 코어(17)와, 베어링 고정자 코어(17)에 감겨진 베어링 코일(18)을 가진다. 베어링 고정자 코어(17)의 종단면 형상은, 베어링 회전자 부재(11)측을 개방단으로 하는 거의 C자형(コ자형)으로 되어 있다. 구체적으로는, 도 2에 도시한 바와 같이, 베어링 고정자 코어(17)는, 그 종단면 형상이, 예를 들면 베어링 회전자 부재(11)와의 대향 방향(직경 방향)과 직교하는 제1방향(이 예에서는 Z축 방향)으로 연장되는 제1부분(17a)과, 제1부분(17a)의 Z축 방향의 양단부로부터 베어링 회전자 부재(11)측으로 연장되는 한 쌍의 제2부분(17b)을 포함한 형상으로 되어 있다. 또한, 제1부분(17a)에는, 베어링 코일(18)이 감겨져 있다.
또한, 도 3a에 도시한 바와 같이, 베어링 회전자 부재(11)의 외주면은 곡면으로 구성되어 있지만, 베어링 고정자 코어(17)의 자극면(17d)(도 2 참조)은 평면으로 형성되어 있다. 구체적으로는, 자극면(17d)은, X축 방향 또는 Y축 방향 및 Z축 방향으로 연장되는 동일 평면 상에 형성되어 있다. 일반적으로 베어링 고정자 코어(17)의 자극면(17d)이 베어링 회전자 부재(11)의 외주면을 따르는 곡면으로 구성되어 있는 경우에는, 자극면(17d)의 둘레 방향의 단부에 자장의 바이어스 자속(
Figure pct00004
1)이 집중되어 버리게 된다. 이에 비해, 자극면(17d)이 평면으로 형성되어 있으면, 이러한 바이어스 자속(
Figure pct00005
1)의 집중을 방지하는 것이 가능해진다.
한편, 베어링 회전자 부재(11)의 한 쌍의 요크(14, 15)는, 예를 들면 그 종단면 형상이, 베어링 자석(13)의 제1방향의 양단면을 덮고 제1방향으로 연장되는 한 쌍의 제4부분(14a, 15a)과, 한 쌍의 제4부분(14a, 15a)의 베어링 자석(13)과는 반대 측의 단부로부터 베어링 고정자(12) 측으로 연장되는 한 쌍의 제5부분(14b, 15b)을 포함한 형상으로 되어 있다.
구동부(30)는, 회전자(20)의 베어링/회전자부(21)의 외주 측, 즉 베어링 회전자 부재(11)의 베어링 자석(13)의 래디얼 방향(직경 방향)의 외측에 배치된 환상의 구동 회전자 부재로서의 모터 자석(31)과, 모터 자석(31)의 래디얼 방향의 외측에, 예를 들면 모터 자석(31)과 소정의 간격을 두고 배치된 구동 고정자로서의 모터 고정자(32)를 가진다. 모터 고정자(32)는 회전자(20)에 회전 구동력을 부여하고, 모터 자석(31)은 모터 고정자(32)로부터 회전 구동력을 받는다.
모터 자석(31)은, 예를 들어 래디얼 방향 4극에 착자한 네오디뮴 자석으로 이루어진다. 모터 자석(31)은, 한 쌍의 요크(14, 15)의 한 쌍의 제5부분(14b, 15b)의 제1방향의 대향면 사이에 배치된 원환상의 스페이서(19)에 의해 한 쌍의 요크(14, 15) 및 베어링 자석(13)과 비접촉으로 지지되고, 베어링 회전자 부재(11)의 래디얼 방향의 치수(직경)(L1) 내에 수용되도록 배치되어 있다. 또한, 스페이서(19)는, 비자성체의 수지 재료 또는 금속 재료에 의해 형성된다.
모터 고정자(32)는, 모터 자석(31)에 직경 방향의 외측으로부터 대향하는 모터 자석(31)의 둘레 방향을 따른 복수의 자극을 갖는 자성 재료로 이루어지는 원환상의 모터 고정자 코어(33)를 가진다. 모터 고정자 코어(33)는, 예를 들면 모터 자석(31)의 외주면을 따른 오목 형상의 자극면을 갖는 6개의 슬롯을 구비한다. 또한, 모터 고정자(32)는, 모터 고정자 코어(33)의 각 슬롯에 감겨진 구동 코일로서의 모터 코일(34)을 가진다. 모터 고정자(32)는, 회전자(20)의 외주면과 베어링 고정자 코어(17)의 제1부분(17a)과의 사이, 및 베어링 고정자 코어(17)의 한 쌍의 제2부분(17b) 사이의 Z 방향에 있어서의 위치를 통과하도록 환상으로 형성되어 있다. 즉, 모터 고정자(32)는, 베어링 고정자(12)에 있어서의 베어링 코일(18)의 래디얼 방향의 내측에 있어서, 베어링 고정자 코어(17)의 한 쌍의 제2부분(17b)의 사이에, 베어링 고정자(12)의 래디얼 방향의 치수(L2) 내에 수용되도록 배치되어 있다. 또한, 도 3a 및 도 3b 에 도시한 바와 같이, 베어링 회전자 부재(11)의 Z축 둘레의 회전 각도를 검출하기 위해, 모터 고정자(32)의 둘레 방향으로 인접하는 4개의 슬롯 사이에 60°의 각도를 통해 3개의 홀 IC(16a)가 설치되어 있다. 또한, 홀 IC(16a)의 배치 형태나 수는 이것에 한정되지 않고, 다양한 형태를 채용할 수 있다.
그리고, 이와 같이 구성된 모터 고정자(32)는, 도 3b에 도시한 바와 같이, U상, V상 및 W상의 3상 6슬롯, 4극의 센서드 브러시리스 모터의 고정자로서 구성되고, 자속(
Figure pct00006
2)을 발생시켜 자기 결합된 모터 자석(31)을 포함하는 회전자(20)를 회전 구동시킨다. 또한, 도 1을 제외한 도면에 있어서는, 베어링/회전자부(21)의 주위를 포함하는 비자성체에 대해서는 도시를 생략하고 있다. 또한, 구동부(30)는, 상기와 같은 3상 6슬롯, 4극의 브러시리스 모터에 한정되지 않고, 예를 들어 10극의 모터 자석(31)과 12슬롯의 모터 고정자 코어(33)를 갖는 모터 고정자(32)로 이루어지는 구성이나, 14극의 모터 자석(31)과 12슬롯의 모터 고정자 코어(33)를 갖는 모터 고정자(32)로 이루어지는 구성 등을 채용할 수 있다. 또한, 구동부(30)가, 센서리스 브러시리스 모터인 경우에는, 예를 들어 홀 IC(16a)가 구비되어 있지 않아도 된다.
제어부(60)는, 예를 들어 자기 베어링(10)의 베어링 코일(18) 및 구동부(30)의 모터 코일(34)을 구동하는 MOS-FET 등을 구비한 드라이버 기판 등의 제1기판(61), 자기 베어링(10) 및 구동부(30)를 제어하는 CPU 기판 등의 제2기판(62), 및 각종 센서로부터의 신호를 처리하는 인코더 기판 등의 제3기판(63)을 가진다. 제어부(60)는, 상술한 변위 센서(16)를 포함하는 변위 센서 전체로부터의 전압 변화 등의 검지 신호에 기초하여, 제3기판(63)에 의해 회전자(20)의 각 방향 및 각 회전 방향의 변위를 검지하고, 이에 따라서 제2기판(62)이 자기 베어링(10)의 베어링 고정자(12)의 베어링 코일(18)에 흐르는 전류를 미세하게 컨트롤한다. 이에 의해, 회전자(20)의 X축 방향의 위치 및 Φ방향의 각도, Y축 방향의 위치 및 Θ방향의 각도, 및 Z축 방향의 높이를 실시간으로 제어하여 회전자(20)의 회전 위치 보정을 행하는 것이 가능하다. 또한, 제어부(60)는, 홀 IC(16a)로부터의 검지 신호에 기초하여, 제2기판(62)에 의해 자계 변화를 검지하고, 구동부(30)의 모터 고정자(32)의 모터 코일(34)에 흐르는 전류를 미세하게 컨트롤하여, 예를 들어 제1기판(61)에 의해 회전자(20)의 회전 동작을 제어한다.
[회전 구동 장치 및 펌프의 동작]
이어서 상기와 같이 구성된 회전 구동 장치(90)가 적용된 펌프(100)의 동작을 설명한다.
상술한 구성의 펌프(100)에서는, 자기 베어링(10)의 자기 회로와, 구동부(30)의 자기 회로가 서로 독립되어 간섭하지 않는다. 즉, 도 2 및 도 3a에 도시한 바와 같이, 자기 베어링(10)에 의해 형성되는 자속(
Figure pct00007
1)이 통과하는 자기 회로는, 회전자(20)의 회전축 Z와 평행한 XZ 평면 및 YZ 평면을 따라 형성된다. 한편, 도 2 및 도 3b에 도시한 바와 같이, 구동부(30)에 의해 형성되는 자속(
Figure pct00008
2)이 통과하는 자기 회로는, 회전자(20)의 회전축 Z에 대하여 직교하는 XY 평면을 따라 형성된다. 모터 고정자(32)는, 베어링 고정자 코어(17)의 한 쌍의 제2부분(17b) 사이의 공간을 통과하도록 환상으로 형성되고, 또한, 모터 자석(31)이 베어링 회전자 부재(11)보다도 외주 측에 배치되어 있으므로 자기 베어링(10)의 자기 회로는, 구동부(30)의 자기 회로의 외측을 둘러싸도록 형성된다.
제어부(60)는, 변위 센서(16) 등으로 검출된 회전자(20)의 XYZ축의 각 축 방향의 변위 및 Φ방향 및 Θ방향의 기울기를 보정하도록 상기와 같이 베어링 코일(18)에 흐르는 전류를 제어하여 베어링 코일(18)에 의해 발생하는 제어 자속을 조정한다. 이에 의해, 회전자(20)는, 자기 베어링(10)에 의해 소정 위치 및 소정 자세를 유지하면서 비접촉 상태에서 자기 베어링(10)에 의해 지지된다.
이 상태에서 구동부(30)의 모터 고정자(32)의 모터 코일(34)에 3상 교류 전력을 공급하면, 3상 브러시리스 모터가 동작하여 회전자(20)가 소정의 회전 방향으로 회전한다. 회전자(20)가 회전하면, 임펠러(22)가 밀폐 공간(A) 내에 있어서 비접촉으로 회전하므로, 흡입구(51)를 통해 펌프실(A1) 내에 이송 유체가 도입되고, 토출구(52)를 통해 이송 유체가 펌프실(A1) 내로부터 외부로 토출된다.
[실시 형태의 효과]
본 실시형태에 관한 회전 구동 장치(90)를 이용한 펌프(100)에 의하면, 자기 베어링(10)의 베어링 고정자(12)와 구동부(30)의 모터 고정자(32)가 회전자(20)의 외측에 배치되고, 게다가 모터 고정자(32)가 자기 베어링(10)의 베어링 고정자 코어(17)의 내측 공간에 배치되어 있다. 이로 인해, 회전자(20)의 내측에 고정자를 배치할 필요가 없어지고, 회전 구동 장치(90) 전체의 래디얼 방향의 치수(직경)(Lr)를 종래의 것과 비교하여 작게 하는 것이 가능하다.
또한, 베어링 고정자 코어(17)의 Z축 방향의 치수는, 한 쌍의 제2부분(17b)의 사이에 모터 고정자(32)가 들어가는 정도의 치수로 설정되기 때문에, 모터 고정자(32)가 존재하지 않는 경우보다도 길어지게 된다. 그러나, 베어링 고정자(12)의 베어링 코일(18)은, 베어링 고정자 코어(17)의 Z축 방향으로 연장되는 제1부분(17a)에 감겨지고, Z축 방향으로는 돌출되지 않으므로, 회전 구동 장치(90) 전체의 Z축 방향의 치수(Lh)는, 베어링 고정자 코어(17)의 Z축 방향의 높이와 동일 치수로 할 수 있다. 이로 인해 회전 구동 장치(90) 전체의 Z축 방향의 치수(Lh)를 종래의 것과 비교하여 약간 커지는 정도로 억제하는 것이 가능하다. 따라서, 자기 베어링(10) 및 구동부(30)를 포함한 회전 구동 장치(90)의 래디얼 방향 및 액시얼 방향의 치수를 최대한 억제하여 전체적으로 충분한 소형화를 도모하는 것이 가능하다.
구체적으로는, 예를 들면 종래의 회전 구동 장치의 래디얼 방향의 치수를 100%로 한 경우, 회전 구동 장치(90)의 래디얼 방향의 치수(Lr)는 약 70% 정도로 할 수 있고, 종래의 회전 구동 장치의 Z축 방향의 치수(높이)에 대해서는 회전 구동 장치(90)의 Z축 방향의 치수(Lh)를 약 1.1배 정도의 증가로 억제할 수 있다. 이로 인해 회전 구동 장치(90)를 채용한 펌프(100) 전체의 소형화도 도모할 수 있다. 그리고, 이와 같이 구성된 회전 구동 장치(90)에서는, 자기 베어링(10)이 회전자(20)를 Z방향의 양측에서 지지하고, 구동부(30)가 회전자(20)의 Z방향의 한가운데에서 구동하고 있으므로, 회전자(20)에 대한 구동력의 밸런스가 매우 양호하다. 또한, 자기 베어링(10)과 구동부(30)가 서로의 자기 회로에 영향을 주지 않으므로 양자가 서로의 성능을 저해하지 않는다.
또한, 베어링 고정자(12)와 모터 고정자(32)가 회전자(20)의 외측에, 또한, 모터 고정자(32)가 베어링 고정자 코어(17)의 내측 공간에, 베어링 고정자 코어(17)에 의해 액시얼 방향의 양측이 걸쳐지도록 배치되어 있으므로 구동부(30)의 액시얼 방향의 양단을 2축의 자기 베어링을 2개 사용하여 4축 이상으로 지지하는 구조의 일반적인 회전 구동 장치와 비교하여 구조가 간단하고 저렴하게 경량화 및 소형화를 도모하는 것이 가능해진다. 이와 함께, 2축 제어의 자기 베어링(10)에 의해 회전자(20)의 자기 부상을 제어하기 때문에, 제어 구조가 복잡해지지 않아 제어계의 회로 구성을 간소화하여, 예를 들면 발열체(베어링 코일(18)이나 제1기판(61)의 MOS-FET 등)를 적게 하여, 제어부(60)의 구성이나 기판 설계 등을 간소화할 수 있다. 또한, 본 실시 형태의 펌프(100)의 경우, 회전자(20)의 한쪽에 임펠러(22)가 배치되어 있으므로 회전자(20)가 Z축에 대하여 경사지는 경우, Z축 상의 임펠러(22)에 가까운 위치를 회전 중심으로 하여 회전자(20)가 경사진다. 이로 인해, 변위 센서(16)를, 임펠러(22)로부터 이격된 위치, 바람직하게는, 베어링/회전자부(21)의 Z축 방향의 중앙의 위치에 배치해 두면, 변위 센서(16)에 의해 회전자(20)의 X축 방향의 위치 및 Φ방향의 각도, Y축 방향의 위치 및 Θ방향의 각도를 검지 가능하므로 회전축의 기울기에 대해서도, 2축 제어에 의해 충분히 컨트롤할 수 있다.
[회전 구동 장치가 적용된 다른 펌프의 구성]
도 6 은, 회전 구동 장치(90)가 적용된 다른 펌프(101)의 전체 구성을, 일부를 투과하여 개략적으로 도시하는 사시도이다. 도 6에 도시한 바와 같이, 펌프(101)는, 회전 구동 장치(90)의 임펠러(22)와 일체화된 회전자(20)를, 예를 들면 플랜지 부착 배관(102)의 내부에 삽입하고, 플랜지 부착 배관(102)의 회전자(20) 설치 개소의 외주 측에 구동부(30)의 모터 고정자(32) 및 자기 베어링(10)의 베어링 고정자(12)를 배치하여 이루어진다. 즉, 회전자(20)는, 자기 베어링(10)에 의해 자기 부상하고, 내측에 모터 고정자(32)를 배치하지 않기 때문에 플랜지 부착 배관(102) 내에 용이하게 배치 가능하다. 또한, 회전자(20)를 지지 및 구동하는 베어링 고정자(12) 및 모터 고정자(32)도, 플랜지 부착 배관(102)의 외측에 장착하는 것만으로 된다. 이와 같이 구성하면, 플랜지 부착 배관(102)의 복잡한 가공이나 펌프 장치의 설치 공사 등을 불필요하게 하면서도, 예를 들면 배관재의 일부로서 펌프(101)를 이용하는 것이 가능해진다.
[제2실시 형태]
[회전 구동 장치의 다른 구성]
도 7 은, 제2실시 형태에 관한 회전 구동 장치(90A)를 개략적으로 도시하는 확대 종단면도, 도 8 은, 회전 구동 장치(90A)의 전체 구성을 개략적으로 도시하는 상면도이다. 또한, 도 7 및 도 8을 포함하는 이후의 설명에 있어서는, 제1실시 형태와 동일한 구성 요소에 대해서는 동일한 부호를 부여하므로 이하에서는 중복되는 설명은 생략한다.
제2실시 형태의 회전 구동 장치(90A)는, 자기 베어링(10)의 베어링 고정자(12)의 베어링 고정자 코어(17)의, 예를 들면 종단면도 형상이 상이한 점이, 제1실시 형태의 회전 구동 장치(90)와는 상이하다. 즉, 베어링 고정자 코어(17)는, 상술한 제1부분(17a) 및 제2부분(17b) 외에, 그 종단면도 형상이, 한 쌍의 제2부분(17b)의 베어링 회전자 부재(11)측의 단부로부터 제1방향(이 경우, Z축 방향)으로 서로 가까워지는 방향으로 연장된 후, 베어링 회전자 부재(11)측을 향해 연장되는 한 쌍의 제3부분(17c)을 더 포함하도록 형성되어 있다.
환언하면, 베어링 고정자 코어(17)는, 종단면도 형상에 있어서, 베어링 코일(18)이 감겨지는 제1부분(17a)의 Z축 방향의 양단으로부터, 베어링 회전자 부재(11)를 향해 본래는 연장될 C자 형상의 개방 단부 부분(예를 들면, 도 12 참조)에, 한 쌍의 열쇠 형상 부분을 가지고, 개방 단부를 서로 가까이 하는 형상을 가지고 있다.
베어링 고정자 코어(17)가 이러한 형상이면, 베어링 코일(18)의 Z축 방향의 길이(l)를 베어링 고정자 코어(17)의 개방 단부 측의 한 쌍의 제3부분(17c)의 Z축 방향의 대향면 사이의 거리(La)보다도 크게 할 수 있다. 또한, 베어링 고정자 코어(17)의 개방 단부 측의 폭, 즉 한 쌍의 제3부분(17c)의 Z축 방향의 대향면과 반대측의 면 사이의 거리(Lb)를, 베어링 고정자 코어(17)의 본래의 Z축 방향의 길이(즉, 회전 구동 장치(90A)의 Z축 방향의 치수)(Lh)보다도 작고, 베어링 회전자 부재(11)의 Z축 방향의 길이(Lc)와 거의 동일하게 할 수 있다. 또한, 구동부(30)의 모터 고정자(32)는, 베어링 고정자 코어(17)의 한 쌍의 제2부분(17b)의 사이로부터 한 쌍의 제3부분(17c)의 사이에 걸쳐 배치되어 있다.
여기서, 일반적으로 종래의 자기 베어링(200)(도 12 참조)에 의한 복원력은, 예를 들면 베어링 고정자(202)의 고정자 코어(204)의 길이와, 베어링 회전자 부재(206)의 액시얼 방향의 두께(Lf)가 거의 동일하고, 또한 최대한 얇을수록 크다는 것이 알려져 있다. 한편, 자속(
Figure pct00009
)은, 베어링 고정자(202)의 코일(205)에 의해 제어되지만 응답성을 높이기 위해서는 코일(205)의 인덕턴스를 최대한 작게 하는 것이 요망된다.
코일(205)의 인덕턴스는, 코일(205)의 단면적(S)에 비례하고, 코일 길이(l)에 반비례하므로, 코일(205)의 응답성을 높이기 위해서는, 코일(205)의 단면적(S)을 작게 하고, 코일(205)의 길이(l)를 길게 하도록 고정자 코어(204)에 코일(205)을 감을 필요가 있다.
그러나, 코일 길이(l)가 길어지면, 회전자(201)의 베어링 회전자 부재(206)의 액시얼 방향의 두께(Lf)도 증가하게 되므로, 회전자(201)의 복원력이 저하하게 되고, 특히 회전자(201)가 기울어졌을 때의 복원 토크가 저하함과 함께 액시얼 방향의 자기 베어링(200)의 치수가 커지게 된다.
여기서, 상술한 바와 같이, 회전자(20)의 자기 베어링(10)에 의한 위치 및 기울기의 복원력은, 베어링 고정자(12)의 개방단(제3부분(17c))의 Z축 방향의 길이(Lb)가 베어링 회전자 부재(11)의 Z축 방향의 길이(Lc)와 거의 동일하고, 또한 베어링 회전자 부재(11)의 Z축 방향의 길이(Lc)가 짧을수록 커진다. 이 점에서 제2실시 형태의 회전 구동 장치(90A)의 자기 베어링(10)에 의하면, 도 12에 도시하는 종래의 C자 형상의 고정자 코어(204)에 비해 개방단의 베어링 회전자 부재(11)에 대향하는 부분(제3부분(17c))의 Z축 방향의 길이(Lb)를 짧게 할 수 있다.
이로 인해, 베어링 코일(18)의 권취수(N)를 유지하면서, 베어링 회전자 부재(11)의 Z축 방향의 길이(Lc)를 종래의 것보다도 짧게 할 수 있으므로 베어링 회전자 부재(11)의 Z축 방향의 소형화를 도모하면서 충분한 복원력을 확보할 수 있다. 또한, 상술한 바와 같이, 자기 베어링(10)의 응답성을 높이기 위해서는, 베어링 코일(18)의 인덕턴스를 최대한 작게 하는 것이 필요하다. 이 점에서, 제2실시 형태에 관한 자기 베어링(10)에 의하면, 베어링 고정자 코어(17)의 베어링 코일(18)이 감겨지는 제1부분(17a)의 길이(Ld)를 충분히 확보할 수 있으므로, 베어링 코일(18)의 Z축 방향의 길이(l)를 길게, 또한 베어링 코일(18)의 단면적(S)을 작게 할 수 있어, 베어링 코일(18)의 인덕턴스를 억제하여 응답성을 향상시킬 수 있다. 또한, 베어링 자석(13)의 흡인력을 최대로 하기 위해서는, 베어링 고정자 코어(17)의 각 제3부분(17c)(돌극)의 Z축 방향의 폭이, 요크(14, 15)의 Z축 방향의 두께와 거의 동일한 것이 바람직하다.
제2실시 형태의 회전 구동 장치(90A)에 의하면, 제1실시 형태의 회전 구동 장치(90)와 마찬가지의 작용 효과를 발휘할 수 있음과 함께 베어링 회전자 부재(11)의 액시얼 방향의 치수를 보다 작게 할 수 있다. 이로 인해, 베어링/회전자부(21)의 소형화, 나아가서는 회전자(20)의 소형화를 촉진하여 전체적으로 한층 더 소형화를 도모하는 것이 가능해진다.
[제3실시 형태]
[회전 구동 장치의 다른 구성]
도 9는 제3 실시 형태에 관한 회전 구동 장치(90B)를 개략적으로 도시하는 확대 종단면도이다.
제3실시 형태의 회전 구동 장치(90B)는, 도 9에 도시한 바와 같이, 자기 베어링(10)에 있어서의 베어링 회전자 부재(11)의 구성 및 모터 고정자(32)의 형상과 베어링 고정자 코어(17)의 내측 공간에서의 배치 형태가 제2실시 형태의 회전 구동 장치(90A)와는 상이하다.
즉, 베어링 회전자 부재(11)는, 예를 들면 원환상의 베어링 자석(13)과, 베어링 자석(13)과 동심으로 베어링 자석(13)을 액시얼 방향의 양측으로부터 끼워 넣도록 배치된 원환상의 한 쌍의 요크(14, 15)를 갖는 점은 마찬가지이지만, 세부가 상이하다. 제3실시 형태에서는, 한 쌍의 요크(14, 15)는, 예를 들어 종단면도 형상이, 베어링 고정자(12)측을 개방단으로 하여 Z축 방향의 가운데가 절단된 거의 コ자형으로 되어 있다.
구체적으로 한 쌍의 요크(14, 15)의 종단면도 형상은, 베어링 자석(13)의 제1방향(여기서는, Z축 방향)의 양단면을 덮으면서 Z축 방향과 직교하는 제2방향(여기서는, 래디얼 방향(X축 방향))을 따라 연장되는 한 쌍의 제4부분(14a, 15a)과, 이들 한 쌍의 제4부분(14a, 15a)의 베어링 고정자(12)와 반대 측의 단부로부터 Z축 방향으로 서로 가까워지는 방향으로 연장되는 한 쌍의 제5부분(14b, 15b)을 가지고 있다. 제4부분(14a, 15a)의 내주부는, 베어링 자석(13)의 내주부 및 외주부보다도 내측 및 외측으로 돌출되어 있다.
제4부분(14a, 15a)의 베어링 자석(13)보다도 베어링 고정자(12) 측의 제1방향의 대향면 사이에는, 원환상의 스페이서(19)에 의해 요크(14, 15) 및 베어링 자석(13)과 비접촉으로 지지된 모터 자석(31)이 베어링 회전자 부재(11)의 치수(직경)(L1) 내에 수용되도록 배치되고, 제5부분(14b, 15b)과 베어링 자석(13) 사이에는, 제1간극(g1)이 형성되어 있다. 또한, 이들 한 쌍의 제5부분(14b, 15b)의 대향하는 선단부 사이에는, 제2간극(g2)이 설치되어 있다.
베어링 회전자 부재(11)가 이러한 형상이면, 제1간극(g1)에 의해 베어링 자석(13)의 양 자극이 제5부분(14b, 15b)에 지나치게 접근하는 것을 방지할 수 있으므로, 베어링 자석(13)에 의한 바이어스 자속(
Figure pct00010
1)을, 베어링 고정자(12)에 안정적으로 공급할 수 있다. 또한, 자기 저항이 큰 베어링 자석(13)과 병렬로 자기 저항이 작은 제5부분(14b, 15b)에 의한 자기 회로가 형성되므로, 베어링 코일(18)에 의해 발생하는 제어 자속(
Figure pct00011
3)을 최대한 손실 없이 베어링 회전자 부재(11)에 통과시키는 것이 가능해진다. 단, 제2간극(g2)이 없으면, 베어링 자석(13)의 양 자극이 제5부분(14b, 15b)을 통해 단락되어 버리므로, 바이어스 자속(
Figure pct00012
1)의 베어링 고정자(12)측으로의 안정 공급과, 제어 자속(
Figure pct00013
3)이 통과하는 자기 회로의 자기 저항의 밸런스를 고려하여, 제2간극(g2)의 폭을 적절하게 설정하는 것이 바람직하다.
한편, 본 실시 형태에서는, 도 7에 도시한 구조와는 달리, 모터 고정자(32)를 구성하는 모터 코일(34)이, 베어링 고정자 코어(17)의 제3부분(17c) 사이에는 위치하지 않고, 제2부분(17b) 사이의 위치에 수용되어 있다. 그리고, 베어링 고정자 코어(17)의 제3부분(17c) 사이에는, 모터 고정자 코어(33)의 회전자(20)를 향해 연장되는 선단부만이 위치하고 있다. 즉, 모터 고정자(32)는, 베어링 고정자(12)에 있어서의 베어링 코일(18)의 래디얼 방향의 내측에 있어서, 베어링 고정자 코어(17)의 한 쌍의 제2부분(17b)의 사이에 모터 고정자 코어(33) 및 모터 코일(34)이 수용됨과 함께, 한 쌍의 제3부분(17c)의 사이에 모터 고정자 코어(33)의 연장 부분이 배치되어 베어링 고정자(12)의 래디얼 방향의 치수(L2) 내에 수용되도록 배치되어 있다.
제3실시 형태의 회전 구동 장치(90B)에 의하면, 제2실시 형태의 회전 구동 장치(90A)와 마찬가지의 작용 효과를 발휘할 수 있음과 함께, 베어링 회전자 부재(11)의 액시얼 방향의 치수를 더욱 작게 하는 것이 가능하므로, 베어링/회전자부(21) 및 회전자(20)의 소형화를 보다 촉진하여, 전체로서의 소형화를 더욱 도모하는 것이 가능해진다.
[제4실시 형태]
도 10은, 제4실시 형태에 관한 회전 구동 장치(90C)의 구동부(30)를 개략적으로 도시하는 상면도이다.
실시 형태에서는, 변위 센서(16)로서, 모터 고정자(32)의 둘레 방향으로 인접하는 6개의 슬롯 사이에 60°의 각도를 통해 와전류 센서 등으로 이루어지는 6개의 변위 센서(16)가 설치되어 있다. 홀 IC(16a)는 일부 변위 센서(16)의 근방에 배치된다.
변위 센서(16)를 이와 같이 배치하면, 모터 고정자(32)의 각 슬롯과 변위 센서(16)가, 위치적으로 간섭하지 않으므로, 변위 센서(16)를 베어링 회전자 부재(11)의 Z축 방향의 중앙부에 배치할 수 있다. 이에 의해, 회전자(20)의 래디얼 방향의 위치 어긋남 및 경사를 적절한 위치에서 검출할 수 있다.
[제5실시 형태]
도 11a는, 제5실시 형태에 관한 회전 구동 장치(90D)가 적용된 펌프(100A)의 전체 구성을 개략적으로 도시하는 종단면도, 도 11b는, 회전 구동 장치(90D)의 구동부(30)를 개략적으로 도시하는 상면도이다.
이 실시 형태에서는, 변위 센서(16)가, 베어링 회전자 부재(11)의 내주 측에 둘레 방향으로 90°의 각도를 통해 4개 배치되어 있다. 즉, 리어 케이싱(42)의 후방으로 연장되는 원통 돌출부(42b)는, 중앙부에 전방으로 연장되는 원통 돌출부(42c)를 가지고, 베어링 회전자 부재(11)는, 원통 돌출부(42b) 및 원통 돌출부(42c)로 형성되는 환상 공간(A4) 내에 배치된다. 그리고, 원통 돌출부(42c)의 내측에 4개의 변위 센서(16)가 배치되어 있다. 이 경우에는, 변위 센서(16)의 배치 장소가 모터 고정자(32)에 의해 제한되는 일은 없으므로, 변위 센서(16)는, 베어링 회전자 부재(11)의 Z축 방향의 중앙부에 용이하게 배치할 수 있다.
본 실시 형태에 의해서도, 제4실시 형태와 마찬가지로, 변위 센서(16)를 베어링 회전자 부재(11)의 Z축 방향의 중앙부에 배치할 수 있으므로, 회전자(20)의 래디얼 방향의 위치 어긋남 및 경사를 적절한 위치에서 검출할 수 있다.
이상, 본 발명의 일부 실시 형태를 설명했지만, 이들 실시 형태는 예로서 제시한 것이며, 본 발명의 범위를 한정하는 것은 의도하지 않는다. 이들 신규 실시 형태는 그 밖의 다양한 형태로 실시될 수 있으며, 발명의 요지를 일탈하지 않는 범위에서 여러가지 생략, 치환, 변경할 수 있습니다. 이들 실시 형태나 그 변형은, 발명의 범위나 요지에 포함되는 것과 함께, 특허청구의 범위에 기재된 발명과 그 균등의 범위에 포함된다.
10 자기 베어링
11 베어링 회전자 부재
12 베어링 고정자
13 베어링 자석
14, 15 요크
16 변위 센서
17 베어링 고정자 코어
17a 제1부분
17b 제2부분
17c 제3부분
18 베어링 코일
20 회전자
30 구동부
31 모터 자석
32 모터 고정자
33 모터 고정자 코어
34 모터 코일
90 회전 구동 장치
100 펌프

Claims (12)

  1. 회전 구동 장치로서,
    회전자와,
    상기 회전자를 자기력에 의해 비접촉으로 지지하는 자기 베어링과,
    상기 회전자를 회전 구동하는 구동부를 구비하며,
    상기 자기 베어링은
    상기 회전자의 외주 측에 배치되어 상기 회전자를 자기력에 의해 비접촉으로 지지하는 베어링 고정자와,
    상기 회전자에 설치되어 상기 베어링 고정자와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 환상의 베어링 회전자 부재를 구비하고,
    상기 구동부는
    상기 회전자의 외주 측에 배치되어 상기 회전자에 회전 구동력을 부여하는 구동 고정자와,
    상기 회전자의 상기 베어링 회전자 부재의 외주 측에 배치되어 상기 구동 고정자로부터 회전 구동력을 받는 환상의 구동 회전자 부재를 가지고,
    상기 베어링 고정자는
    상기 베어링 회전자 부재의 외주 측에 배치되어 상기 베어링 회전자 부재와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 복수의 베어링 고정자 코어와,
    상기 베어링 고정자 코어에 감겨진 베어링 코일을 가지고,
    상기 베어링 고정자 코어는,
    상기 베어링 회전자 부재와의 대향 방향과 직교하는 제1방향으로 연장되는 제1부분과,
    상기 제1부분의 상기 제1방향의 양단부로부터 상기 베어링 회전자 부재 측으로 연장되는 한 쌍의 제2부분을 가지고,
    상기 베어링 코일은, 상기 베어링 고정자 코어의 상기 제1부분에 감겨지고,
    상기 구동 고정자는, 상기 회전자의 외주면과 상기 베어링 고정자 코어의 제1부분과의 사이 및 상기 베어링 고정자 코어의 상기 한 쌍의 제2부분 사이의 상기 제1방향에서의 위치를 통과하도록 형성되어 있는 것을 특징으로 하는, 회전 구동 장치.
  2. 제1항에 있어서,
    상기 베어링 고정자 코어는,
    상기 한 쌍의 제2부분의 상기 베어링 회전자 부재 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장된 후, 상기 베어링 회전자 부재 측을 향하여 연장되는 한 쌍의 제3부분을 더 가지도록 형성되어 있는 것을 특징으로 하는, 회전 구동 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 베어링 회전자 부재는,
    원환상의 베어링 자석과,
    상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치되는 원환상의 한 쌍의 요크를 가지고,
    상기 한 쌍의 요크는,
    상기 베어링 자석의 상기 제1방향의 양단면을 덮고 상기 제1방향으로 연장되는 한 쌍의 제4부분과,
    상기 한 쌍의 제4부분의 상기 베어링 자석과는 반대 측의 단부로부터 상기 베어링 고정자 측으로 연장되는 한 쌍의 제5부분을 가지고,
    상기 한 쌍의 제5부분의 제1방향의 대향면의 사이에는, 상기 구동 회전자 부재를 한 쌍의 요크 및 상기 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어진 스페이서가 배치되어 있는 것을 특징으로 하는, 회전 구동 장치.
  4. 제1항 또는 제2항에 있어서,
    상기 베어링 회전자 부재는,
    원환상의 베어링 자석과,
    상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치된 원환상의 한 쌍의 요크를 가지고,
    상기 한 쌍의 요크는,
    상기 베어링 자석의 상기 제1방향의 양단면을 덮고 상기 베어링 고정자와의 대향 방향으로 연장되는 한 쌍의 제4부분과,
    상기 한 쌍의 제4부분의 상기 베어링 고정자와 반대 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장되는 한 쌍의 제5부분을 가지고,
    상기 한 쌍의 제4부분의 상기 베어링 자석보다 상기 베어링 고정자 측의 상기 제1방향의 대향면의 사이에는, 상기 구동 회전자 부재를 상기 한 쌍의 요크 및 상기 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어지는 스페이서가 배치되고,
    상기 제5부분과 상기 베어링 자석의 사이에 제1간극이 형성되고,
    상기 한 쌍의 제5부분의 서로 대향하는 각 선단부 사이에는, 제2간극이 설치되어 있는 것을 특징으로 하는, 회전 구동 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 베어링 고정자는, 상기 베어링 회전자 부재의 직경 방향의 외측에 상기 베어링 회전자 부재의 둘레 방향을 따라 복수 배치되고, 상기 베어링 회전자 부재와 직경 방향으로 각각 대향하는 것을 특징으로 하는, 회전 구동 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 구동 고정자는, 상기 구동 회전자 부재에 직경 방향 외측으로부터 대향하고, 상기 구동 회전자 부재의 둘레 방향을 따라 복수의 자극을 가지는 자성 재료로 이루어지는 원환상의 구동 고정자 코어와, 상기 구동 고정자 코어의 슬롯에 감겨진 구동 코일을 가지는 것을 특징으로 하는, 회전 구동 장치
  7. 펌프로서,
    회전자와,
    상기 회전자를 자기력에 의해 비접촉으로 지지하는 자기 베어링과,
    상기 회전자를 회전 구동하는 구동부와,
    상기 회전자에 설치된 임펠러를 포함하는 펌프 기구를 구비하며,
    상기 자기 베어링은,
    상기 회전자의 외주 측에 배치되어 상기 회전자를 자기력에 의해 비접촉으로 지지하는 베어링 고정자와,
    상기 회전자에 설치되어 상기 베어링 고정자와 함께 자기 회로를 형성하는 자성 재료로 이루어지는 환상의 베어링 회전자 부재를 구비하고,
    상기 구동부는,
    상기 회전자의 외주 측에 배치되어 상기 회전자에 회전 구동력을 부여하는 구동 고정자와,
    상기 회전자의 상기 베어링 회전자 부재의 외주 측에 배치되어 상기 구동 고정자로부터 회전 구동력을 받는 환상의 구동 회전자 부재를 가지고,
    상기 베어링 고정자는,
    상기 베어링 회전자 부재의 외주 측에 배치되어 상기 베어링 회전자 부재와 함께 자기회로를 형성하는 자성 재료로 이루어지는 복수의 베어링 고정자 코어와,
    상기 베어링 고정자 코어에 감겨진 베어링 코일을 가지고,
    상기 베어링 고정자 코어는,
    상기 베어링 회전자 부재와의 대향 방향과 직교하는 제1방향으로 연장되는 제1부분과,
    상기 제1부분의 상기 제1방향의 양단부로부터 상기 베어링 회전자 부재 측으로 연장되는 한 쌍의 제2부분을 가지고,
    상기 베어링 코일은, 상기 베어링 고정자 코어의 상기 제1부분에 감겨지고,
    상기 구동 고정자는, 상기 회전자의 외주면과 상기 베어링 고정자 코어의 상기 제1부분과의 사이 및 상기 베어링 고정자 코어의 상기 한 쌍의 제2부분 사이의 상기 제1방향에 있어서의 위치를 통과하도록 형성되어 있는 것을 특징으로 하는, 펌프.
  8. 제7항에 있어서,
    상기 베어링 고정자 코어는,
    상기 한 쌍의 제2부분의 상기 베어링 회전자 부재 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장된 후, 상기 베어링 회전자 부재 측을 향하여 연장되는 한 쌍의 제3부분을 더 가지도록 형성되어 있는 것을 특징으로 하는, 펌프.
  9. 제7항 또는 제8항에 있어서,
    상기 베어링 회전자 부재는,
    원환상의 베어링 자석과,
    상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치된 원환상의 한 쌍의 요크를 가지고,
    상기 한 쌍의 요크는,
    상기 베어링 자석의 상기 제1방향의 양단면을 덮고 상기 제1방향으로 연장되는 한 쌍의 제4부분과,
    상기 한 쌍의 제4부분의 상기 베어링 자석과는 반대 측의 단부로부터 상기 베어링 고정자 측으로 연장되는 한 쌍의 제5부분을 가지고,
    상기 한 쌍의 제5부분의 제1방향의 대향면 사이에는, 상기 구동 회전자 부재를 상기 한 쌍의 요크 및 상기 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어지는 스페이서가 배치되어 있는 것을 특징으로 하는, 펌프.
  10. 제7항 또는 제8항에 있어서,
    상기 베어링 회전자 부재는,
    원환상의 베어링 자석과,
    상기 베어링 자석을 상기 제1방향으로 끼워 넣도록 배치된 원환상의 한 쌍의 요크를 가지고,
    상기 한 쌍의 요크는,
    상기 베어링 자석의 상기 제1방향의 양단면을 덮고 상기 베어링 고정자와 대향 방향으로 연장되는 한 쌍의 제4부분과,
    상기 한 쌍의 제4부분의 상기 베어링 고정자와 반대 측의 단부로부터 상기 제1방향으로 서로 가까워지는 방향으로 연장되는 한 쌍의 제5부분을 가지고,
    상기 한 쌍의 제4부분의 상기 베어링 자석보다 상기 베어링 고정자 측의 상기 제1방향의 대향면 사이에는, 상기 구동 회전자 부재를 상기 한 쌍의 요크 및 상기 베어링 자석과 비접촉으로 지지하는 비자성체로 이루어진 스페이서가 배치되고,
    상기 제5부분과 상기 베어링 자석 사이에 제1간극이 형성되고,
    상기 한 쌍의 제5부분의 서로 대향하는 각 선단부 사이에는, 제2간극이 설치되어 있는 것을 특징으로 하는, 펌프.
  11. 제7항 내지 제10항 중 어느 한 항에 있어서,
    상기 베어링 고정자는, 상기 베어링 회전자 부재의 직경 방향 외측에 베어링 회전자 부재의 둘레 방향을 따라 복수 배치되고, 베어링 회전자 부재와 직경 방향으로 각각 대향하는 것을 특징으로 하는, 펌프.
  12. 제7항 내지 제11항 중 어느 한 항에 있어서,
    상기 구동 고정자는 상기 구동 회전자 부재의 직경 방향 외측으로부터 대향하고, 상기 구동 회전자 부재의 둘레 방향을 따라 복수의 자극을 가지는 자성 재료로 이루어진 원환상의 구동 고정자 코어와,
    상기 구동 고정자 코어의 슬롯에 감겨진 구동 코일을 가지는 것을 특징으로 하는, 펌프.
KR1020227040087A 2020-07-03 2021-05-13 회전 구동 장치 및 펌프 KR20230029602A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2020-115775 2020-07-03
JP2020115775 2020-07-03
PCT/JP2021/018171 WO2022004144A1 (ja) 2020-07-03 2021-05-13 回転駆動装置及びポンプ

Publications (1)

Publication Number Publication Date
KR20230029602A true KR20230029602A (ko) 2023-03-03

Family

ID=79315207

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227040087A KR20230029602A (ko) 2020-07-03 2021-05-13 회전 구동 장치 및 펌프

Country Status (7)

Country Link
US (1) US20230287893A1 (ko)
EP (1) EP4178090A4 (ko)
JP (1) JPWO2022004144A1 (ko)
KR (1) KR20230029602A (ko)
CN (1) CN115917935A (ko)
TW (1) TW202202750A (ko)
WO (1) WO2022004144A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114857171B (zh) * 2022-07-07 2022-09-30 山东天瑞重工有限公司 一种外转子径向解耦混合磁轴承
CN115452222B (zh) * 2022-09-01 2024-05-28 东北林业大学 应用于轴系扭矩测量的交变聚焦磁场激励装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121157A (ja) 2003-10-17 2005-05-12 Rikogaku Shinkokai 人工心臓用の磁気軸受およびモータ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007352931B2 (en) * 2007-10-18 2010-08-12 Iwaki Co., Ltd. Magnetic levitation motor and pump
US8378543B2 (en) * 2009-11-02 2013-02-19 Calnetix Technologies, L.L.C. Generating electromagnetic forces in large air gaps
KR101166854B1 (ko) * 2010-03-11 2012-07-19 한국기계연구원 자기베어링 구조 및 이를 구비한 터보기기
JP6887968B2 (ja) * 2018-03-28 2021-06-16 ダイキン工業株式会社 スラスト磁気軸受およびそれを備えたターボ圧縮機

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121157A (ja) 2003-10-17 2005-05-12 Rikogaku Shinkokai 人工心臓用の磁気軸受およびモータ装置

Also Published As

Publication number Publication date
CN115917935A (zh) 2023-04-04
US20230287893A1 (en) 2023-09-14
JPWO2022004144A1 (ko) 2022-01-06
WO2022004144A1 (ja) 2022-01-06
EP4178090A4 (en) 2023-12-27
EP4178090A1 (en) 2023-05-10
TW202202750A (zh) 2022-01-16

Similar Documents

Publication Publication Date Title
EP2905876B1 (en) Electric drive apparatus
JP4616122B2 (ja) 磁気軸受
CN113557361B (zh) 磁性轴承、具备该磁性轴承的驱动装置以及泵
US11454279B2 (en) Thrust magnetic bearing and turbo-compressor with same
US11588360B2 (en) Brushless motor and stator therefor
KR20230029602A (ko) 회전 구동 장치 및 펌프
JP2007221976A (ja) ブラシレスモータ
JP2007097257A (ja) キャンドモータ及びキャンドポンプ
KR102376190B1 (ko) 전기 머신
JP7293680B2 (ja) モータおよび送風装置
US7847453B2 (en) Bearingless step motor
JP2008289283A (ja) 磁気軸受部を有する電動機
JP2006230125A (ja) 回転電機
US11204038B2 (en) Vacuum pump, and magnetic bearing device and annular electromagnet used in vacuum pump
US20230155467A1 (en) Single-phase brushless dc motor
JP7254146B1 (ja) 回転検出装置及びそれを用いた回転電機
US20220286003A1 (en) Motor
JP2023109265A (ja) 回転角度検出装置及びそれを用いた回転電機
JPH0583916A (ja) ブラシレスモータ
JPH03284138A (ja) 回転体の駆動支持機構

Legal Events

Date Code Title Description
A201 Request for examination