KR20230007149A - Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity - Google Patents

Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity Download PDF

Info

Publication number
KR20230007149A
KR20230007149A KR1020210088031A KR20210088031A KR20230007149A KR 20230007149 A KR20230007149 A KR 20230007149A KR 1020210088031 A KR1020210088031 A KR 1020210088031A KR 20210088031 A KR20210088031 A KR 20210088031A KR 20230007149 A KR20230007149 A KR 20230007149A
Authority
KR
South Korea
Prior art keywords
phosphate
ldfbop
oxalato
lithium
carbonate
Prior art date
Application number
KR1020210088031A
Other languages
Korean (ko)
Inventor
유형철
서봉석
Original Assignee
제이투에이치바이오텍 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이투에이치바이오텍 (주) filed Critical 제이투에이치바이오텍 (주)
Priority to KR1020210088031A priority Critical patent/KR20230007149A/en
Publication of KR20230007149A publication Critical patent/KR20230007149A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65748Esters of oxyacids of phosphorus the cyclic phosphorus atom belonging to more than one ring system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)

Abstract

The present invention relates to a novel method for preparing lithium difluoro bis(oxlato)phospholate having high purity, which is used as a non-aqueous electrolyte additive for lithium secondary batteries, by using bis(trimethylsilyl)amine.

Description

비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)을 이용한 고순도 리튬 디플루오로비스(옥살라토)인산염 (lithium Difluoro bis(oxlato)phospholate, LDFBOP)의 제조방법{Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity}Manufacturing method of high-purity lithium difluoro bis (oxlato) phosphate (LDFBOP) using bis (trimethylsilyl) amine {Preparation Method for Lithium Difluoro bis (oxlato) )phospholate Having High Purity}

본 발명은 비스(트리메틸 실릴)아민(bis(trimethylsilyl)amine)을 사용하여 리튬이차전지용 비수전해액 첨가제로 사용되는 고순도의 리튬 디플루오로비스(옥살라토)인산염 (lithium difluoro bis(oxlato)phospholate, LDFBOP)을 제조하는 새로운 방법에 관한 것이다.The present invention uses bis(trimethylsilyl)amine to provide high-purity lithium difluorobis(oxlato)phosphate, which is used as a non-aqueous electrolyte additive for lithium secondary batteries. It relates to a new method for preparing LDFBOP).

리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)은 화학식 1로 표시되는 리튬이차전지, 리튬 이온 캐퍼시터 등의 성능 향상을 위한 비수전해액 첨가제로 사용되고 있는 물질로써 이는 USP 6,783,896 및 WO 2009/066559등에 공개되어 있다.Lithium difluorobis(oxalato)phosphate (LDFBOP) is a material used as a non-aqueous electrolyte additive for improving the performance of lithium secondary batteries, lithium ion capacitors, etc. It is disclosed.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

대한민국 공개특허 제2011-0086102호에 리튬 디플루오로비스(옥살라토)인산염(LDFBOP)의 제조방법이 개시되어 있다. 상기 공개특허 에따르면 헥사플루오로인산 리튬(Lithium hexafluolo phosphate, LiPF6)과 옥살산(Oxalic acid)의 혼합 용액에 사염화규소 (Tetrachloro Silane,SiCl4)를 반응시키면 질량%비로 약 66:1 내지 2.3:1의 비율을 가지는 리튬 디플루오로비스(옥살라토)인산염 및 리튬 테트라플루오로(옥살라토)인산염의 혼합물 용액을 얻을 수 있다. 상기 공개특허의 제조 방법은 최종 결정화 방법에 의한 정제가 용이하지 않은 리튬 디플루오로비스(옥살라토)인산염을 염소화합물이나 유리산이 적은 용액으로 제조하기 때문에 전지 성능 향상에 유효한 첨가제로 사용될 수 있다고 개시되어 있다.Korean Patent Publication No. 2011-0086102 discloses a method for producing lithium difluorobis(oxalato)phosphate (LDFBOP). According to the above published patent, when silicon tetrachloride (Tetrachloro Silane, SiCl 4 ) is reacted with a mixed solution of lithium hexafluorophosphate (LiPF 6 ) and oxalic acid, the mass% ratio is about 66: 1 to 2.3: A mixture solution of lithium difluorobis(oxalato)phosphate and lithium tetrafluoro(oxalato)phosphate having a ratio of 1 can be obtained. The manufacturing method of the above-mentioned published patent manufactures lithium difluorobis(oxalato)phosphate, which is not easy to purify by the final crystallization method, as a solution with less chlorine compounds or free acids, so it can be used as an effective additive for improving battery performance. has been initiated.

그러나 상기 공개특허는 부산물로 발생 되는 염산(HCl), 또는 테트라플루오로실란(Tetrafluoro silane, SiF4)등을 감압방법으로 제거하므로, 완전 제거가 어렵고, 가스로 발생되어 나오는 이들의 비점(bp)이 낮아 포집(trapping)을 통해 대기 중으로 배출시키지 않도록 하는 것이 용이하지 않다는 문제점이 있다. 따라서LDFBOP에 이러한 부산물들이 존재하여 비수 전해액 전지의 성능에 악영향을 주고 생산에 사용되는 반응기 및 배관등의 제조장비의 수명을 단축하는 요소로 작용한다. 또한 상기 방법은 리튬 디플루오로비스(옥살라토)인산염만을 선택적으로 제조할 수 없다는 문제점이 있다.However, since the above published patent removes hydrochloric acid (HCl) or tetrafluorosilane (SiF 4 ) generated as a by-product by a reduced pressure method, it is difficult to completely remove them, and their boiling point (bp) generated as a gas There is a problem in that it is not easy to prevent discharge into the atmosphere through trapping because of its low level. Therefore, these by-products exist in LDFBOP, which adversely affects the performance of the non-aqueous electrolyte battery and acts as a factor that shortens the lifespan of manufacturing equipment such as reactors and piping used in production. In addition, the above method has a problem in that it cannot selectively produce only lithium difluorobis(oxalato)phosphate.

다른 공개된 제조방법으로는 미국공개특허 제2010/0267984호에 옥살산 리튬(Litium oxlate)을 이용하는 방법이 있다. 상기 공개특허의 제조 방법은 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6)을 고온에서 가열하여 펜타플루오로 인산염 (PF5) 가스를 생성시켜 제조하는 방법으로서 이 방법은 수분에 매우 민감하고, 펜타플루오로 인산염 (PF5) 가스가 인체에 매우 유해하여 대량생산을 하기에는 여러 문제점이 있다.Another disclosed manufacturing method is a method using lithium oxalate in US Patent Publication No. 2010/0267984. The manufacturing method of the above published patent is a method of producing a pentafluorophosphate (PF 5 ) gas by heating lithium hexafluorophosphate (LiPF 6 ) at a high temperature, and this method is very sensitive to moisture, Pentafluorophosphate (PF 5 ) gas is very harmful to the human body, and there are many problems in mass production.

대한민국 공개특허 제2011-0086102호Republic of Korea Patent Publication No. 2011-0086102 미국 공개특허 제2010-0267984호US Patent Publication No. 2010-0267984

본 발명의 목적은 비수전해액 전지로 사용되는 리튬 디플루오로비스(옥살라토)인산염 (lithium Difluoro bis(oxlato)phospholate, LDFBOP)를 선택적으로 고순도 제조하는 방법을 제공하는 것에 있다.An object of the present invention is to provide a method for selectively producing high-purity lithium difluoro bis(oxlato)phosphate (LDFBOP) used in a non-aqueous electrolyte battery.

또한, 본 발명의 목적은 비수전해액 전지로 사용되는 고순도의 리튬 디플루오로비스(옥살라토)인산염 (lithium Difluoro bis(oxlato)phospholate, LDFBOP)의 제조에 있어서, 염소화합물 및 유리산의 부산물이 생기지 않으면서 대량생산이 가능한 효율적인 제조방법을 제공하는 것에 있다.In addition, an object of the present invention is to prevent by-products of chlorine compounds and free acids in the production of high purity lithium difluoro bis(oxlato)phosphate (LDFBOP) used in non-aqueous electrolyte batteries. It is to provide an efficient manufacturing method capable of mass production without generating.

본 발명은 상기에서 기술한 종래기술의 문제점을 해결하기 위하여 연구를 거듭한 결과, 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)을 사용하는 경우, 염소화합물 및 유리산의 발생을 효과적으로 제거할 수 있으면서, 경제적이고 공업적으로 그리고 선택적으로 리튬 디플루오로비스(옥살라토)인산염(LDFBOP)를 제조할 수 있음을 발견하고 본 발명을 완성하였다.As a result of repeated research to solve the problems of the prior art described above, the present invention can effectively remove the generation of chlorine compounds and free acids when bis (trimethylsilyl) amine is used. The present invention was completed by finding that lithium difluorobis(oxalato)phosphate (LDFBOP) can be prepared economically, industrially and selectively while being possible.

본 발명은 유기용매에서 헥사플루오로인산 리튬 (Lithium hexafluolophosphate, LiPF6)과 옥살산(Oxalic acid)을 사염화규소 (Tetrachloro Silane, SiCl4) 및 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine) 존재하에서 반응시키는 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법을 제공한다.In the present invention, lithium hexafluorophosphate (LiPF 6 ) and oxalic acid are mixed in an organic solvent in the presence of silicon tetrachloride (Tetrachloro Silane, SiCl 4 ) and bis(trimethylsilyl)amine (bis(trimethylsilyl)amine). It provides a method for producing lithium difluorobis (oxalato) phosphate (LDFBOP), characterized by reacting.

본 발명의 제조방법에 따르면, 비수전해액 전지의 성능 향상에 유효한 첨가제로 사용되고 있는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)을 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)을 부산물 제거제로 사용하여 전지의 성능에 크게 악영향을 주는 염소화합물 및 유리산의 오염 없이 경제적이고 공업적으로 제조할 수 있다. 또한 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)을 선택적으로 제조할 수 있는 효과가 있다.According to the manufacturing method of the present invention, lithium difluorobis(oxalato)phosphate (LDFBOP), which is used as an effective additive for improving the performance of non-aqueous electrolyte batteries, is used as a by-product of bis(trimethylsilyl)amine It can be used as a removal agent and economically and industrially produced without contamination of chlorine compounds and free acids that greatly adversely affect battery performance. In addition, there is an effect of selectively producing lithium difluorobis(oxalato)phosphate (LDFBOP).

도 1은 실시예1의 방법으로 제조한 LDFBOP의 19F- NMR 분석결과
도 2는 비교예1의 방법으로 제조한 LDFBOP의 19F- NMR 분석결과
1 is a result of 19 F-NMR analysis of LDFBOP prepared by the method of Example 1
Figure 2 is the result of 19 F-NMR analysis of LDFBOP prepared by the method of Comparative Example 1

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventors can properly define the concept of terms in order to best explain their invention. Based on the principle, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.

본 발명은 하기 반응식 1과 같이 헥사플루오로인산 리튬 (Lithium hexafluolophosphate, LiPF6)과 옥살산(Oxalic acid)의 혼합 용액에 사염화규소 (Tetrachloro Silane, SiCl4) 및 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)을 첨가하여 반응시키는 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법에 관한 것이다.As shown in Scheme 1 below, in the present invention, silicon tetrachloride (Tetrachloro Silane, SiCl 4 ) and bis (trimethylsilyl) amine (bis (trimethylsilyl) in a mixed solution of lithium hexafluorophosphate (LiPF 6 ) and oxalic acid) It relates to a method for producing lithium difluorobis (oxalato) phosphate (LDFBOP), which is characterized by reacting by adding amine).

[반응식 1][Scheme 1]

Figure pat00002
Figure pat00002

본 발명의 제조방법에 따르면, 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6)에 대한 화학식 2의 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)의 몰비를 조절함으로써 고순도의 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)을 제조할 수 있다.According to the production method of the present invention, high purity lithium difluoro Bis(oxalato)phosphate (LDFBOP) can be prepared.

[화학식 2][Formula 2]

Figure pat00003
Figure pat00003

본 발명의 고순도 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조에 적합한 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6)에 대한 화학식 2의 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)의 몰비는 바람직하게는 1:0.50 내지 1: 0.01의 범위이고, 보다 바람직하게는 1:0.25 내지 1: 0.03의 범위이다. 헥사플루오로인산 리튬 (Lithium hexafluolophosphate, LiPF6) 1몰에 대하여 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)의 양이 0.01몰보다 적으면 염산(HCl) 및 테트라플루오로실란(Tetrafluoro silane, SiF4)이 다량 발생하게 되고, 0.50몰보다 많으면 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 생성 속도가 느리게 되어 순도가 낮아지고 공업적 효율이 크게 감소된다. Bis (trimethylsilyl) amine (bis (trimethylsilyl The molar ratio of )amine) is preferably in the range of 1:0.50 to 1:0.01, more preferably in the range of 1:0.25 to 1:0.03. When the amount of bis(trimethylsilyl)amine is less than 0.01 mole per mole of lithium hexafluorophosphate (LiPF 6 ), hydrochloric acid (HCl) and tetrafluorosilane (Tetrafluoro silane, A large amount of SiF 4 ) is generated, and when it is more than 0.50 mol, the production rate of lithium difluorobis(oxalato)phosphate (LDFBOP) is slowed, so that the purity is lowered and industrial efficiency is greatly reduced.

본 발명에서는 헥사플루오로인산 리튬 (Lithium hexafluolophosphate, LiPF6)에 대한 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)의 몰비를 1:0.50 내지 1: 0.01범위 내에서 임의로 조절함으로써염산(HCl), 또는 테트라플루오로실란(Tetrafluoro silane, SiF4) 양을 크게 줄이면서 공업적으로 고순도의 리튬 디플루오로비스(옥살라토)인산염 (lithium Difluoro bis(oxlato)phospholate, LDFBOP)를 얻을 수 있다.In the present invention, by arbitrarily adjusting the molar ratio of bis(trimethylsilyl)amine to lithium hexafluorophosphate (LiPF 6 ) within the range of 1:0.50 to 1:0.01, hydrochloric acid (HCl) , Or, it is possible to obtain industrially high-purity lithium difluoro bis (oxlato) phosphate (LDFBOP) while greatly reducing the amount of tetrafluoro silane (SiF 4 ).

본 발명의 방법은 유기용매 하에서 진행되고 사용되는 유기용매로는 고리 카보네이트, 비고리 카보네이트, 니트릴, 에스테르, 할로겐 치환 알킬 화합물, 케톤화합물 및 방향족화합물 용매로 구성된 군으로부터 선택된 하나 이상의 용매가 사용될 수 있다. 보다 구체적으로, 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 아세토니트릴, 프로피온니트릴, 아세트산에틸, 프로피온산에틸, 디클로로메탄, 1,2- 디클로로에탄, 아세톤, 벤젠, 톨루엔, 크실렌, 클로로벤젠, 1,2-디메톡시에탄등의 유기용매가 사용될 수 있으나, 이에 한정되는 것은 아니다.The method of the present invention is carried out in an organic solvent, and as the organic solvent used, one or more solvents selected from the group consisting of cyclic carbonates, acyclic carbonates, nitriles, esters, halogen-substituted alkyl compounds, ketone compounds, and aromatic compound solvents may be used. . More specifically, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, acetonitrile, propionnitrile, ethyl acetate, ethyl propionate, dichloromethane, 1,2-dichloroethane, acetone, benzene , Toluene, xylene, chlorobenzene, organic solvents such as 1,2-dimethoxyethane may be used, but is not limited thereto.

이들 유기용매는 무수물(anhydrous)을 사용하는 것이 바람직하며, 본 발명에 사용되는 유기용매 중의 수분 함량은 바람직하게는 500중량ppm이하이고 더욱 바람직하게는 1-500 중량ppm 이하이다. 수분 농도가 500 ppm을 상회하면 LiPF6, 사염화규소 (Tetrachloro Silane, SiCl4) 및 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)이 가수분해되기 때문에 사용하기에 바람직하지 않다.It is preferable to use anhydrous organic solvents, and the water content in the organic solvent used in the present invention is preferably 500 ppm by weight or less, more preferably 1-500 ppm by weight or less. If the moisture concentration exceeds 500 ppm, LiPF6, tetrachloro silane (SiCl 4 ), and bis(trimethylsilyl)amine are hydrolyzed, which is undesirable for use.

본 발명에서 사용되는 유기용매중의 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6)의 농도는 바람직하게는 10-40 중량%, 보다 바람직하게는 12-30 중량%이다, 농도가 10 중량% 이하이면 용액의 농도가 너무 낮기 때문에, 장시간에 걸쳐 감압 농축하여 유기용매를 제거하는 공정을 진행해야 하기 때문에 경제적으로 효율적이지 않다. 한편 농도가 40 중량%를 넘으면 용액의 점도 상승과 비등점의 변화로 인하여 정확한 공정을 원활하게 수행하는 것이 곤란하여 바람직하지 않다.The concentration of lithium hexafluorophosphate (LiPF 6 ) in the organic solvent used in the present invention is preferably 10-40% by weight, more preferably 12-30% by weight, and the concentration is 10% by weight. Since the concentration of the solution is too low if it is less than this, it is not economically efficient because the process of removing the organic solvent by concentration under reduced pressure over a long period of time must be performed. On the other hand, when the concentration exceeds 40% by weight, it is difficult to smoothly perform the exact process due to the increase in the viscosity of the solution and the change in the boiling point, which is not preferable.

본 발명의 고순도 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP) 제조 공정은 유기용매에 헥사플루오로인산 리튬, 옥살산, 비스(트리메틸실릴)아민 및 사염화규소를 넣고, 20 내지 30℃의 범위에서 30분 내지 5시간 반응시킨다. 이때 본 발명은 비스(트리메틸실릴)아민을 사용하여 반응 중 생성되는 플루로라이드 및 염산이 플루오로트라이에틸실란 및 암모늄클로라이드 형태로 되어 용이하게 제거될 수 있도록 하는 것을 특징으로 한다(하기 반응식 2 참조). 본 발명은 반응 이후 여과 공정을 거쳐 고체로 생성되는 부산물인 암모늄 클로라이드 (ammonium chloride, NH4Cl)를 제거하는 단계1; 및 이후 50 내지 110℃의 범위로 온도를 올려 부산물인 플루오로트라이메틸실란(Fluorotrimethyl silane, FSiMe3)을 제거하는 단계2를 포함할 수 있다.The high-purity lithium difluorobis(oxalato)phosphate (LDFBOP) manufacturing process of the present invention puts lithium hexafluorophosphate, oxalic acid, bis(trimethylsilyl)amine and silicon tetrachloride in an organic solvent in the range of 20 to 30 ° C. reacted for 30 minutes to 5 hours. At this time, the present invention is characterized in that bis(trimethylsilyl)amine is used so that fluoride and hydrochloric acid generated during the reaction can be easily removed in the form of fluorotriethylsilane and ammonium chloride (see Scheme 2 below) ). Step 1 of the present invention is to remove ammonium chloride (ammonium chloride, NH 4 Cl), which is a by-product produced as a solid through a filtration process after the reaction; and step 2 of removing by-product fluorotrimethylsilane (FSiMe 3 ) by raising the temperature to a range of 50 to 110°C.

[반응식 2][Scheme 2]

Figure pat00004
Figure pat00004

상기 단계2의 반응 온도가 50℃ 미만이면 부산물인 플루오로트라이메틸실란(Fluorotrimethyl silane, FSiMe3)의 제거 속도가 낮아지기 때문에 반응 시간이 길어져 경제적이지 않고, 110℃를 초과하면 불필요한 분해반응이 촉진되어 부산물이 증가되어 이를 전해액에 사용하면 전해액의 성능에 악영향을 줄 수 있다. 상기 단계2는 5시간 내지 24시간 진행될 수 있다. 단계2가 상기 시간으로 진행되는 경우 FSiMe3가 충분히 제거될 수 있다.If the reaction temperature in step 2 is less than 50 ° C, the removal rate of the by-product, Fluorotrimethyl silane (FSiMe 3 ), is low, so the reaction time is long and uneconomical. If the reaction temperature exceeds 110 ° C, unnecessary decomposition reactions are promoted. By-products are increased, and if they are used in the electrolyte, the performance of the electrolyte may be adversely affected. Step 2 may be performed for 5 hours to 24 hours. When step 2 proceeds for the above time, FSiMe 3 can be sufficiently removed.

단계2 이후 반응용액을 냉각하고 여과한 후 여액을 농축하고 결정화 용매(비가용성 용매)를 넣고 생성되는 고체를 여과 및 건조하여 리튬 디플루오로비스(옥살라토)인산염을 회수할 수 있다.After step 2, the reaction solution is cooled and filtered, the filtrate is concentrated, a crystallization solvent (insoluble solvent) is added, and the resulting solid is filtered and dried to recover lithium difluorobis(oxalato)phosphate.

상기 결정화 용매는 바람직하게는 1.4-디옥산일 수 있다.The crystallization solvent may preferably be 1.4-dioxane.

본 발명의 제조방법의 생성물인 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)은 수분에 의해 가수분해를 받기 때문에 질소, 아르곤 등의 불활성 가스 분위기에서 반응을 수행하는 것이 바람직하다.Since lithium difluorobis(oxalato)phosphate (LDFBOP), a product of the production method of the present invention, undergoes hydrolysis by moisture, it is preferable to carry out the reaction in an inert gas atmosphere such as nitrogen or argon.

본 발명은 상기 방법으로 제조된 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)를 포함하는 이차전지 전해액을 제공한다.The present invention provides a secondary battery electrolyte containing lithium difluorobis(oxalato)phosphate (LDFBOP) prepared by the above method.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위 한 것으로 본 발명의 범위가 이들 실시예에 국한되지 않는다.Hereinafter, the present invention will be described in more detail by examples. These examples are only for explaining the present invention, and the scope of the present invention is not limited to these examples.

실시예 1: 고순도 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조Example 1: Preparation of high purity lithium difluorobis(oxalato)phosphate (LDFBOP)

질소 기류하에서 상온에서 플라스크에 1,2-디메톡시에탄 (1,2-dimethoxy ethane, 알드리치 구매)100g과 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6, 알드리치 구매) 15.0g을 투입후 건조된 무수 옥살산(oxalic aicd, 알드리치 구매) 18.7g을 넣고 1,2-디메톡시에탄 (1,2-dimethoxy ethane)10g을 추가로 투입하였다. 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine, 알드리치 구매) 0.8g을 넣고, 사염화규소 (Tetrachloro Silane, SiCl4, 알드리치 구매) 20g을 20oC이하를 유지하면서 천천히 적가하였다. 상온에서 2시간 교반후 반응액을 여과하고 온도를 올려 85 oC에서 FSiMe3 가스의 방출이 멈출 때까지 약 12시간 동안 교반하였다. 반응 후 상온으로 냉각 후 여과하여 투명 무색의 여액을 얻었다. 수득한 여액을 8시간 동안 감압 농축하고, 얻어진 농축액에 무수 1,4-디옥산 (1,4-dioxane, 알드리치 구매) 117g을 넣고 상온에서 6시간 동안 교반후 생긴 고체를 감압 여과하여 회수하고 50oC에서 진공건조하여 미백색의 목적물 22.6g (수율 91%)을 얻었다. 얻어진 샘플 10mg을 중수소 치환된 DMSO 0.5ml에 용해시켜 19F-NMR (JEOL사, 모델명 JNM-ECZ400S)을 측정한 결과를 도 1에 나타내었다. LDFBOP순도는 대략 99.2%이다.100g of 1,2-dimethoxy ethane (purchased from Aldrich) and 15.0g of lithium hexafluorophosphate (Lithium hexafluorophosphate , purchased from Aldrich) were added to the flask at room temperature under a nitrogen stream, and then dried. 18.7 g of oxalic acid (purchased from Aldrich) was added and 10 g of 1,2-dimethoxy ethane was additionally added. 0.8 g of bis(trimethylsilyl)amine (purchased from Aldrich) was added, and 20 g of silicon tetrachloride (Tetrachloro Silane, SiCl 4 , purchased from Aldrich) was slowly added dropwise while maintaining the temperature below 20 ° C. After stirring at room temperature for 2 hours, the reaction solution was filtered, heated, and stirred at 85 ° C. for about 12 hours until the release of FSiMe 3 gas stopped. After the reaction, the mixture was cooled to room temperature and filtered to obtain a transparent, colorless filtrate. The obtained filtrate was concentrated under reduced pressure for 8 hours, and 117 g of anhydrous 1,4-dioxane (1,4-dioxane, purchased from Aldrich) was added to the obtained concentrate and stirred at room temperature for 6 hours. 22.6 g (yield: 91%) of a white target product was obtained by vacuum drying at C. 10 mg of the obtained sample was dissolved in 0.5 ml of deuterium-substituted DMSO, and 19 F-NMR (JEOL, model name: JNM-ECZ400S) was measured, and the results are shown in FIG. 1 . LDFBOP purity is approximately 99.2%.

실시예 2: 고순도 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조Example 2: Preparation of high purity lithium difluorobis(oxalato)phosphate (LDFBOP)

질소 기류하에서 상온에서 플라스크에 무수 에틸메틸카보네이트(Ethyl methyl carbonate, 알드리치 구매)100g과 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6) 15.0g을 투입 후 건조된 무수 옥살산 18.7g을 넣고 무수 에틸메틸카보네이트10g을 추가로 투입하였다. 비스(트리메틸 실릴)아민(bis(trimethylsilyl)amine) 0.8g을 넣고, 사염화규소 (Tetrachloro Silane, SiCl4) 20g을 20oC이하를 유지하면서 천천히 적가하였다. 상온에서 3시간 교반후 반응액을 여과하고 온도를 올려 85 oC 에서 FSiMe3 가스의 방출이 멈출 때까지 약 10시간 동안 교반하였다. 반응 후 상온으로 냉각 후 여과하여 투명 무색의 여액을 얻었다. 수득한 여액을 10시간 동안 감압 농축하고, 얻어진 농축액에 무수 1,4-디옥산 (1,4-dioxane) 117g을 넣고 상온에서 6시간 동안 교반후 생긴 고체를 감압 여과 후 55oC에서 진공건조하여 미백색의 목적물 22.0g (수율 89%)을 얻었다. 실시에 1과 같이 19F-NMR을 측정한 결과, LDFBOP순도는 대략 99.0%이다.100 g of anhydrous ethyl methyl carbonate (purchased from Aldrich) and 15.0 g of lithium hexafluorophosphate (LiPF 6 ) were added to a flask at room temperature under a nitrogen stream, and then 18.7 g of dried anhydrous oxalic acid was added and anhydrous ethylmethyl carbonate was added. 10 g of carbonate was additionally added. 0.8 g of bis(trimethylsilyl)amine was added, and 20 g of silicon tetrachloride (Tetrachloro Silane, SiCl 4 ) was slowly added dropwise while maintaining the temperature below 20 ° C. After stirring at room temperature for 3 hours, the reaction solution was filtered, heated, and stirred at 85 ° C. for about 10 hours until release of FSiMe 3 gas stopped. After the reaction, the mixture was cooled to room temperature and filtered to obtain a transparent, colorless filtrate. The obtained filtrate was concentrated under reduced pressure for 10 hours, 117 g of anhydrous 1,4-dioxane was added to the obtained concentrate, stirred at room temperature for 6 hours, and the resulting solid was filtered under reduced pressure and vacuum dried at 55 ° C. Thus, 22.0 g (yield 89%) of a white-colored target product was obtained. As a result of 19 F-NMR measurement as in Example 1, the LDFBOP purity was approximately 99.0%.

실시예 3: 고순도 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조Example 3: Preparation of high purity lithium difluorobis(oxalato)phosphate (LDFBOP)

질소 기류하에서 상온에서 플라스크에 무수아세토니트릴(acetonitrile, 알드리치 구매) 100g과 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6) 15.0g을 투입 후 건조된 무수 옥살산 18.7g을 넣고 무수 아세토니트릴(acetonitrile)10g을 추가로 투입하였다. 비스(트리메틸 실릴)아민(bis(trimethylsilyl)amine) 1.2g을 넣고, 사염화규소 (Tetrachloro Silane, SiCl4) 20g을 20oC이하를 유지하면서 천천히 적가하였다. 상온에서 2.5시간 교반후 반응액을 여과하고 온도를 올려 85 oC에서 FSiMe3 가스의 방출이 멈출 때까지 약 10시간 동안 교반하였다. 반응 후 상온으로 냉각 후 여과하여 투명 무색의 여액을 얻었다. 수득한 여액을 8시간 동안 감압 농축하고, 얻어진 농축액에 1,4-디옥산 (1,4-dioxane) 117g을 넣고 상온에서 8시간 동안 교반후 생긴 고체를 감압 여과 후 50oC에서 진공건조하여 미백색의 목적물 22.4g (수율 90%)을 얻었다. 실시에 1과 같이 19F-NMR을 측정한 결과, LDFBOP순도는 대략 99.0%이다.After adding 100g of anhydrous acetonitrile (purchased from Aldrich) and 15.0g of lithium hexafluorophosphate (LiPF 6 ) to a flask at room temperature under a nitrogen stream, 18.7g of dried oxalic anhydride was added and anhydrous acetonitrile (acetonitrile) 10 g was additionally added. 1.2 g of bis(trimethylsilyl)amine was added, and 20 g of silicon tetrachloride (Tetrachloro Silane, SiCl 4 ) was slowly added dropwise while maintaining the temperature below 20 ° C. After stirring at room temperature for 2.5 hours, the reaction mixture was filtered, heated, and stirred at 85 ° C. for about 10 hours until release of FSiMe 3 gas stopped. After the reaction, the mixture was cooled to room temperature and filtered to obtain a transparent, colorless filtrate. The obtained filtrate was concentrated under reduced pressure for 8 hours, 117 g of 1,4-dioxane was added to the obtained concentrate, stirred at room temperature for 8 hours, and the resulting solid was filtered under reduced pressure and vacuum dried at 50 ° C. 22.4 g (yield: 90%) of a white target product was obtained. As a result of 19 F-NMR measurement as in Example 1, the LDFBOP purity was approximately 99.0%.

비교예 1: 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조Comparative Example 1: Preparation of lithium difluorobis(oxalato)phosphate (LDFBOP)

대한민국 공개특허 제2011-0086102호의 방법에 따라 제조하고 실시에 1과 같이 19F-NMR을 측정한 결과를 도 2에 나타내었다. LDFBOP순도는 대략 97.2%이다.It was prepared according to the method of Korean Patent Publication No. 2011-0086102 and the results of measuring 19 F-NMR as in Example 1 are shown in FIG. 2. LDFBOP purity is approximately 97.2%.

도 1과 2는 본 발명 실시예 1에서 제조한 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)과 비교예 1의 대한민국 공개특허 제2011-0086102호의 제조 방법으로 만든 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)을 중수소 치환시약인 DMSO-D6에 희석하여, 19F-NMR (핵자기 공명 분석)으로 분석한 결과이다. 도 1 및 도 2에 의하면 본 발명의 경우 기존 공개특허에서 보이는 유연물질이 감소하여 고순도의 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)가 제조되었음을 알 수 있다.1 and 2 are lithium difluorobis (oxalato) phosphate (LDFBOP) prepared in Example 1 of the present invention and lithium difluorobis (made by the preparation method of Korean Patent Publication No. 2011-0086102 in Comparative Example 1) This is a result obtained by diluting oxalato)phosphate (LDFBOP) in DMSO-D 6 , a deuterium substitution reagent, and analyzing by 19 F-NMR (nuclear magnetic resonance analysis). According to FIGS. 1 and 2 , in the case of the present invention, it can be seen that the related substances shown in the existing published patents are reduced, and thus high-purity lithium difluorobis(oxalato)phosphate (LDFBOP) is produced.

비교예 1에서 생성되는 유연물질은 하기 화학식 3의 물질로써 반응의 부산물의 제거가 원활하지 않아 반응이 늦어져서 생성되어지는 물질이라고 예측된다.The related material produced in Comparative Example 1 is a material represented by the following Chemical Formula 3, and is predicted to be a material produced due to a delayed reaction due to poor removal of by-products of the reaction.

[화학식 3][Formula 3]

Figure pat00005
Figure pat00005

즉, 본 발명은 부산물 없이 선택적으로 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)를 고순도로 제조할 수 있다.That is, the present invention can selectively prepare lithium difluorobis(oxalato)phosphate (LDFBOP) with high purity without by-products.

Claims (10)

유기용매에서 헥사플루오로인산 리튬 (Lithium hexafluolophosphate, LiPF6)과 옥살산(Oxalic acid)을 사염화규소 (Tetrachloro Silane, SiCl4) 및 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine) 존재하에서 반응시키는 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The reaction of lithium hexafluorophosphate (LiPF 6 ) and oxalic acid in an organic solvent in the presence of silicon tetrachloride (Tetrachloro Silane, SiCl 4 ) and bis (trimethylsilyl)amine Method for producing lithium difluorobis(oxalato)phosphate (LDFBOP) characterized by 청구항 1에 있어서, 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6)에 대한 비스(트리메틸실릴)아민(bis(trimethylsilyl)amine)의 몰비가 1:0.5 내지 1:0.01인 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method according to claim 1, wherein the molar ratio of bis(trimethylsilyl)amine to lithium hexafluorophosphate (LiPF 6 ) is 1:0.5 to 1:0.01 Lithium di Method for producing fluorobis(oxalato)phosphate (LDFBOP) 청구항 1에 있어서, 상기 유기용매는 고리 카보네이트, 비고리 카보네이트, 니트릴, 에스테르, 할로겐치환 알킬 화합물, 케톤화합물 및 방향족화합물 용매로 구성된 군으로부터 선택된 하나 이상인 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method according to claim 1, wherein the organic solvent is at least one selected from the group consisting of cyclic carbonate, acyclic carbonate, nitrile, ester, halogen-substituted alkyl compound, ketone compound, and aromatic compound solvent. To) Manufacturing method of phosphate (LDFBOP) 청구항 1에 있어서, 상기 유기용매가 프로필렌카보네이트, 에틸렌카보네이트, 부틸렌카보네이트, 디에틸카보네이트, 디메틸카보네이트, 에틸메틸카보네이트, 아세토니트릴, 프로피온니트릴, 아세트산에틸, 프로피온산에틸, 디클로로메탄, 1,2- 디클로로에탄, 아세톤, 벤젠, 톨루엔, 크실렌, 클로로벤젠 및 1,2-디메톡시에탄으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method according to claim 1, wherein the organic solvent is propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, acetonitrile, propionitrile, ethyl acetate, ethyl propionate, dichloromethane, 1,2-dichloro Method for producing lithium difluorobis(oxalato)phosphate (LDFBOP), characterized in that at least one selected from the group consisting of ethane, acetone, benzene, toluene, xylene, chlorobenzene and 1,2-dimethoxyethane 청구항 3 또는 청구항 4에 있어서, 상기 유기용매 중의 수분 함량은 500중량ppm이하인 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method for preparing lithium difluorobis(oxalato)phosphate (LDFBOP) according to claim 3 or claim 4, wherein the water content in the organic solvent is 500 ppm by weight or less. 청구항 1에 있어서, 융기용매 중의 헥사플루오로인산 리튬 (Lithium hexafluolo phosphate, LiPF6)의농도는 10-40중량%인 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The preparation of lithium difluorobis (oxalato) phosphate (LDFBOP) according to claim 1, wherein the concentration of lithium hexafluorophosphate (LiPF 6 ) in the raising solvent is 10-40% by weight Way 청구항 1에 있어서, 유기용매에 헥사플루오로인산 리튬, 옥살산, 비스(트리메틸실릴)아민 및 사염화규소를 넣고, 20 내지 30℃의 범위에서 반응시킨 다음, 여과 공정을 거쳐 고체로 생성되는 부산물인 암모늄 클로라이드 (ammonium chloride, NH4Cl)를 제거하는 단계1; 및 이후 50 내지 110℃의 범위로 온도를 올려 부산물인 플루오로트라이메틸실란(Fluorotrimethyl silane, FSiMe3)을 제거하는 단계2를 포함하는 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method according to claim 1, wherein lithium hexafluorophosphate, oxalic acid, bis (trimethylsilyl) amine and silicon tetrachloride are added to an organic solvent, reacted in the range of 20 to 30 ° C, and ammonium, a by-product produced as a solid through a filtration process Step 1 of removing ammonium chloride (NH 4 Cl); And then, step 2 of removing the by-product fluorotrimethylsilane (FSiMe 3 ) by raising the temperature in the range of 50 to 110 ° C. Lithium difluorobis (oxalato) phosphate ( LDFBOP) manufacturing method 청구항 7에 있어서, 단계2 이후 반응용액을 냉각하고 여과한 후 여액을 농축하고 결정화 용매(비가용성 용매)를 넣고 생성되는 고체를 여과 및 건조하여 리튬 디플루오로비스(옥살라토)인산염을 회수하는 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method according to claim 7, after step 2, the reaction solution is cooled and filtered, the filtrate is concentrated, a crystallization solvent (insoluble solvent) is added, and the resulting solid is filtered and dried to recover lithium difluorobis (oxalato) phosphate. Method for producing lithium difluorobis (oxalato) phosphate (LDFBOP), characterized in that 청구항 1에 있어서, 불활성 가스 분위기에서 반응을 수행하는 것을 특징으로 하는 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)의 제조방법The method for producing lithium difluorobis(oxalato)phosphate (LDFBOP) according to claim 1, characterized in that the reaction is performed in an inert gas atmosphere. 청구항 1의 방법으로 제조된 리튬 디플루오로비스(옥살라토)인산염 (LDFBOP)를 포함하는 이차전지 전해액Secondary battery electrolyte containing lithium difluorobis(oxalato)phosphate (LDFBOP) prepared by the method of claim 1
KR1020210088031A 2021-07-05 2021-07-05 Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity KR20230007149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210088031A KR20230007149A (en) 2021-07-05 2021-07-05 Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210088031A KR20230007149A (en) 2021-07-05 2021-07-05 Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity

Publications (1)

Publication Number Publication Date
KR20230007149A true KR20230007149A (en) 2023-01-12

Family

ID=84923711

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210088031A KR20230007149A (en) 2021-07-05 2021-07-05 Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity

Country Status (1)

Country Link
KR (1) KR20230007149A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100267984A1 (en) 2006-09-07 2010-10-21 U.S. Government As Represented By The Secretary Of The Army Oxyfluorophosphate synthesis process and compound therefrom
KR20110086102A (en) 2008-12-16 2011-07-27 샌트랄 글래스 컴퍼니 리미티드 Method for producing lithium difluorobis(oxalato)phosphate solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100267984A1 (en) 2006-09-07 2010-10-21 U.S. Government As Represented By The Secretary Of The Army Oxyfluorophosphate synthesis process and compound therefrom
KR20110086102A (en) 2008-12-16 2011-07-27 샌트랄 글래스 컴퍼니 리미티드 Method for producing lithium difluorobis(oxalato)phosphate solution

Similar Documents

Publication Publication Date Title
KR101395663B1 (en) Process for preparing lithium difluorobis(oxalato)phosphate, lithium tetrafluoro(oxalato)phosphate, or their mixture
CN108368132B (en) Novel method for producing lithium bis (fluorosulfonyl) imide
JP5315971B2 (en) Method for producing difluorobis (oxalato) lithium phosphate solution
JP2832644B2 (en) Method for producing lithium hexafluorophosphate
CN108910919B (en) Preparation method of electronic-grade lithium difluorobis (oxalate) phosphate
JP6031828B2 (en) Method for producing tetrafluoro (oxalato) phosphate solution
KR101739936B1 (en) Novel method for preparing lithium difluorophosphate
CN109850926B (en) Preparation method of lithium tetrafluoro oxalate phosphate and lithium difluorobis oxalate phosphate
KR20180094631A (en) Preparing method of lithium difluorophosphate
CA2628098A1 (en) Process for the preparation of (.omega.-aminoalkylamino)alkyl halides and conversion to amifostine
WO2019061802A1 (en) Method for preparing lithium difluorophosphate
CN109180730A (en) A kind of double oxalic acid method for production of phosphate salt of difluoro
CN112919441B (en) Method for coproducing lithium difluorophosphate and lithium difluorooxalate phosphate
EP1400524B1 (en) Tetrakis(fluoroaryl) borate/ether complexes and process for preparing the same
CN1550451A (en) Process for the fluorination of boron hydrides
KR20230007149A (en) Preparation Method for Lithium Difluoro bis(oxlato)phospholate Having High Purity
KR102209974B1 (en) Process for Preparing Lithium Tetrafluoro(oxalato)phosphate
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
US20230187700A1 (en) 1,4-dioxane slovate of lithium difluorobis(oxalato)phosphate, method for preparing the same, and electrolyte composition comprising the same
CN111943985B (en) Synthetic method of oxalate lithium phosphate compound
KR102164920B1 (en) Process for Preparing Lithium Difluorobis(oxalato)phosphate
CN115583974A (en) Preparation method of lithium difluorobis (oxalate) phosphate
JP4215852B2 (en) Method for producing tetrakis (fluoroaryl) borate derivative
KR20220082421A (en) Preparing method of lithium difluorobis(oxalato)phosphate
JP5544892B2 (en) Process for producing 2-cyano-1,3-diketonate salt and ionic liquid

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application