KR20230006697A - Positive temperature coefficient compound and self-regulating heating cable having high thermal resistance and flexibility and manufacturing method thereof - Google Patents

Positive temperature coefficient compound and self-regulating heating cable having high thermal resistance and flexibility and manufacturing method thereof Download PDF

Info

Publication number
KR20230006697A
KR20230006697A KR1020210086777A KR20210086777A KR20230006697A KR 20230006697 A KR20230006697 A KR 20230006697A KR 1020210086777 A KR1020210086777 A KR 1020210086777A KR 20210086777 A KR20210086777 A KR 20210086777A KR 20230006697 A KR20230006697 A KR 20230006697A
Authority
KR
South Korea
Prior art keywords
weight
parts
temperature coefficient
positive temperature
tert
Prior art date
Application number
KR1020210086777A
Other languages
Korean (ko)
Other versions
KR102526902B1 (en
Inventor
정세진
Original Assignee
정세진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정세진 filed Critical 정세진
Priority to KR1020210086777A priority Critical patent/KR102526902B1/en
Priority to KR1020220161082A priority patent/KR102557081B1/en
Priority to KR1020220161088A priority patent/KR102557079B1/en
Publication of KR20230006697A publication Critical patent/KR20230006697A/en
Application granted granted Critical
Publication of KR102526902B1 publication Critical patent/KR102526902B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/38Mixtures of peroxy-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Insulating Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)

Abstract

The present invention relates to a method for manufacturing a high heat-resistant flexible positive temperature coefficient composition and an autonomously controlled heating cable. The method comprises an initiator dispersion preparation step, a copolymerization step, a crosslinked positive temperature coefficient composition preparation step, a flame retardant surface treatment step, a crosslinked insulating coating composition preparation step, a conductor heat treatment step, a positive temperature coefficient heating element preparation step, an insulating layer forming step, a reinforcing layer forming step, and a coating layer formation step. By performing copolymerization by controlling a combination ratio of fluorine-based monomers, the dispersion characteristics of an electrically conductive filler are maximized and the interfacial adhesion with the metal conductor is improved. In addition to heat resistance that can improve the lifespan of the final product and minimize fire risk, flexibility, electrical, mechanical, and chemical properties, as well as constructability and productivity, can be improved. Highly heat-resistant, flexible, positive temperature coefficient compositions and autonomously controlled heating cables can be easily manufactured.

Description

고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블과 그 제조방법{Positive temperature coefficient compound and self-regulating heating cable having high thermal resistance and flexibility and manufacturing method thereof}Positive temperature coefficient compound and self-regulating heating cable having high thermal resistance and flexibility and manufacturing method thereof}

본 발명은 불소수지 공중합체를 이용한 고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블의 제조방법에 관한 것으로서, 더욱 상세하게는 불소계 단량체(monomer)의 조합비를 조절하여 공중합 함으로써 전기전도성 충진제의 분산특성을 극대화하고 금속계 도체와의 계면접착성을 향상시켜 최종 제품의 수명을 향상 및 화재 위험을 최소화 시킬 수 있는 내열성은 물론 유연성, 전기적, 기계적, 화학적 특성 외에도 시공성 및 생산성을 향상시킬 수 있는 정온도계수 조성물 및 자율제어형 히팅케이블의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high heat-resistant flexible constant temperature coefficient composition using a fluororesin copolymer and a self-regulating heating cable, and more particularly, by adjusting the combination ratio of fluorine-based monomers and copolymerizing them, the dispersion characteristics of the electrically conductive filler In addition to heat resistance that can improve the lifespan of the final product and minimize the risk of fire by maximizing the interfacial adhesion with metal conductors, as well as flexibility, electrical, mechanical, and chemical properties, positive temperature coefficient that can improve workability and productivity It relates to a composition and a method for manufacturing a self-regulating heating cable.

저항성 발열체를 이용하는 발열선(heating wire 또는 cable)은 다양한 산업분야에서 응용되고 있다. A heating wire or cable using a resistive heating element is used in various industrial fields.

일예로 오피스텔, 아파트 등의 상업용 건축물의 동파방지는 물론 화학플랜트(chemical plant)에 장착되어 있는 배관이나 탱크의 온도유지, 장거리 송유관 온도유지, 고드름 방지, 도로융설, 바닥난방 등의 상업용이나 산업용 뿐만 아니라, 가정용 및 의료용의 다양한 온열제품을 들 수 있다.For example, freeze protection of commercial buildings such as officetels and apartments, maintenance of the temperature of pipes or tanks installed in chemical plants, maintenance of the temperature of long-distance pipelines, prevention of icicles, snow melting on roads, floor heating, etc. In addition, various thermal products for home and medical use may be mentioned.

특히 온도유지나 동파방지용으로 사용되는 발열선은 일정한 온도유지기능이 있는 자율제어형 히팅케이블(self-regulating heating cable)을 사용하면 효과적이다.In particular, it is effective to use a self-regulating heating cable with a constant temperature maintenance function for a heating wire used for temperature maintenance or freeze protection.

이와같은 자율제어형 히팅케이블은 주변의 환경에 관계없이 일정한 온도를 유지하게 되고 사용 목적에 따른 제조사양변경이 용이하며 유연성과 평탄한 면을 가지고 있어 어떠한 복잡한 형상의 시설물에도 시공이 간편하다는 장점을 가지고 있다.Such a self-regulating heating cable maintains a constant temperature regardless of the surrounding environment, is easy to change the manufacturer specifications according to the purpose of use, and has flexibility and a flat surface, so it has the advantage of being easy to construct in any complex shape facility. .

또한 정온도계수(positive temperature coefficient) 전열소자 케이블은 발열량이 주위 온도 또는 대상물의 온도에 따라 스스로 변형함으로써 과열을 원천적으로 제거하고 길이에 상관없이 편리하게 절단하여 사용할 수 있다는 장점을 가지고 있다.In addition, the positive temperature coefficient heating element cable has the advantage of eliminating overheating fundamentally by transforming itself according to the ambient temperature or the temperature of the object and being able to conveniently cut and use regardless of length.

이에 따라 고성능의 자율제어형 히팅케이블의 수요도 늘고 있으며 기술 요구수준 역시 높아지는 실정이다.Accordingly, the demand for high-performance self-regulating heating cables is also increasing, and the level of technical requirements is also increasing.

이들 자율제어형 히팅케이블은 정온도계수 특성을 같는 반도전성 고분자 조성물의 내열 온도에 따라 일반적으로 저온용 65℃, 중온용 110℃, 고온용 121℃ 등으로 분류된다. These self-regulating heating cables are generally classified into 65°C for low temperature, 110°C for medium temperature, and 121°C for high temperature according to the heat resistance temperature of the semiconductive polymer composition having the same positive temperature coefficient characteristics.

상기 자율제어형 히팅케이블은 이미 주지된 바와 같이 고분자 절연체에 전기전도성 충진제filler)를 적당량으로 배합하여 반도체화 함으로써 반도전성(semi-conductive) 전기적 특성을 갖게된다.As already well known, the self-regulating heating cable has semi-conductive electrical characteristics by mixing an appropriate amount of an electrically conductive filler with a polymer insulator to make it a semiconductor.

종래의 고분자 정온도계수 조성물을 제조함에 있어 탄소나 금속 등으로 구성된 전기전도성 충진제를 결정성 고분자 매트릭스(matrix)에 분산시켜 제조된 조성물은 대체적으로 높은 용융점도를 가지게 되고 고화(solidification) 시 높은 강성이 유지하게 된다. In preparing a conventional polymer positive temperature coefficient composition, a composition prepared by dispersing an electrically conductive filler composed of carbon or metal in a crystalline polymer matrix generally has a high melt viscosity and high stiffness during solidification. will keep this

따라서 고분자 매트릭스가 제품 단면적에서 차지하는 비중이 큰 자율제어형 히팅케이블의 경우 유연성이 떨어지고, 저온에서 깨짐(brittleness) 현상이 발생하기 쉬워 현장 시공이 불편하다는 문제점이 발생한다.Therefore, in the case of a self-regulating heating cable in which the polymer matrix accounts for a large portion of the cross-sectional area of the product, flexibility is low and brittleness is easily generated at low temperatures, resulting in inconvenient field construction.

또한 전기전도성 충진제는 반도전성 조성물의 용융혼련(melt mixing) 후 고화과정에서 고분자 매트릭스 내에서 압력이 적은 비결정성(amorphous) 영역으로 이행(migration) 하려는 경향이 있어 고분자 매트릭스 내 저항 불균일을 초래하고 제품의 수명을 단축 시킬수 있다.In addition, the electrically conductive filler tends to migrate to an amorphous region with low pressure in the polymer matrix during the solidification process after melt mixing of the semiconductive composition, resulting in uneven resistance in the polymer matrix and product may shorten its lifespan.

특히 중온이나 고온용으로 사용되는 불소계 고분자를 매트릭스로 사용할 경우 전기를 공급하는 전극 도체 둘레를 감싸는 조성물-도체 계면에서 원하지 않는 물리적 균열 또는 접촉저항이 발생하여 제품의 수명을 크게 단축 시킬수 있는 문제점이 있었다.In particular, when a fluorine-based polymer used for medium or high temperature is used as a matrix, unwanted physical cracks or contact resistance occur at the composition-conductor interface surrounding the electrode conductor that supplies electricity, resulting in a problem that can greatly shorten the life of the product. .

이외에도 화재 시 대형 인재로 직결되는 만큼 화재 안전성에 대한 요구 조건이 특히 까다롭다. 화재 시 연기 발생을 최소화하고, 기계와 사람에게 큰 피해를 입히는 부식성 가스등도 생성하지 않아야한다.In addition, the requirements for fire safety are particularly strict as it is directly linked to large-scale human resources in case of fire. In case of fire, smoke generation should be minimized, and corrosive gases that cause great damage to machinery and people should not be generated.

하지만 이러한 기술의 경우 대부분 국외에서 기술 경쟁력을 확보하고 있고 관련 시장을 선점하고 있어 국내 발열선 제조 업체가 체감하는 시장 진입 장벽은 상대적으로 높아 국내에서도 관련 분야에 대한 핵심기술 개발이 시급한 실정이다. However, most of these technologies have technological competitiveness overseas and preoccupy related markets, so the market entry barrier experienced by domestic heating wire manufacturers is relatively high, so it is urgent to develop core technologies in related fields in Korea as well.

아울러 제조업체에서는 히팅케이블의 압출속도를 최대한 고속으로 하여 생산성을 향상시켜 오고 있기 때문에, 정온도계수 조성물은 연소가스의 최소화와 부식성가스의 생성을 억제함은 물론, 압출가공성을 동시에 만족해야 한다.In addition, since manufacturers have been improving productivity by increasing the extrusion speed of the heating cable as high as possible, the positive temperature coefficient composition must satisfy extrusion processability as well as minimize combustion gas and suppress the generation of corrosive gas.

이에 고내열 유연성 정온도계수 조성물과 이를 적용한 자율제어형 히팅케이블의 개발이 절실히 요구되는 실정이다.Accordingly, there is an urgent need for the development of a highly heat-resistant flexible positive temperature coefficient composition and a self-regulating heating cable using the same.

이런 특성을 개선하기 위하여 지금까지 개발되어 특허 출원된 선행기술과 특허문헌을 살펴보면 다음과 같다. In order to improve these characteristics, prior art and patent documents that have been developed and applied for patents are as follows.

특허 제10-1864413호는 내산화(anti-oxidant) 특성을 갖는 고분자 (polymer) 반도전성 조성물(semi-conductive compound) 및 이를 이용한 자율제어 히팅케이블(self-regulating heating cable)의 제조방법에 관한 것으로, 실란 그라프팅된 접착성 수지를 제조하는 실란 그라프팅된 접착성 수지 제조단계와; 고분자 반도전성 조성물을 제조하는용융혼련단계와; 반도전 조성물 펠렛(pellet)으로 만드는 펠렛화단계와; 도체 표면에 붙은 이물질과 신선유를 제거하여 열처리된 도체를 제조하는 도체열처리단계와; 도체 외주연에 0.1~10μm의 두께의 접착체층을 형성시키는 접착체층 형성단계와; 상기 펠렛화단계에서 제조된 반도전 조성물 펠렛을 압출 성형하는 반도전 발열체를 제조하는 반도전 발열체 제조단계와; 상기 반도전 발열체 제조단계에서 제조된 반도전 발열체를 안정화시키는 안정화단계와; 방사선 조사단계;를 실시하여 동선, 은선, 니켈선과 같은 금속선으로 이루어지거나 주석도금동선이나 니켈도금동선, 은도금동선으로 구성되는 금속도금동선 또는 합금선으로 구성되는 도체에 공중합수지 100~200중량부, 개시제 1~5.0중량부, 비닐실란 10~25중량부, 금속 코팅된 카본나노튜브 1~20중량부, 도전성 카본블랙 40~250중량부, 고분자수지 200~700중량부, 산화방지제 1~10중량부, 분산제 1~5중량부, 금속산화물 5~100중량부, 조사가교제가 담지된 다공성 실리카 1~10중량부로 구성되는 내산화 특성을 갖는 고분자 반도전성 조성물이 코팅되어 표면에 100~1200kGy의 방사성인 조사되어 이루어진 반도전 발열체로 구성된 것이다.Patent No. 10-1864413 relates to a polymer semi-conductive compound having anti-oxidant properties and a method for manufacturing a self-regulating heating cable using the same. , a silane grafted adhesive resin manufacturing step of preparing a silane grafted adhesive resin; a melt-kneading step of preparing a polymeric semiconductive composition; A pelletizing step of making semiconducting composition into pellets; A conductor heat treatment step of removing foreign substances and fresh oil attached to the surface of the conductor to prepare a heat-treated conductor; An adhesive layer forming step of forming an adhesive layer having a thickness of 0.1 to 10 μm on the outer periphery of the conductor; a semiconducting heating element manufacturing step of manufacturing a semiconducting heating element by extruding the semiconducting composition pellets prepared in the pelletizing step; a stabilization step of stabilizing the semiconducting heating element manufactured in the manufacturing step of the semiconducting heating element; Irradiation step; 100 to 200 parts by weight of a copolymer resin to a conductor composed of a metal wire such as copper wire, silver wire, or nickel wire, or a metal-plated copper wire or alloy wire composed of tin-plated copper wire, nickel-plated copper wire, or silver-plated copper wire, 1 to 5.0 parts by weight of initiator, 10 to 25 parts by weight of vinylsilane, 1 to 20 parts by weight of metal-coated carbon nanotube, 40 to 250 parts by weight of conductive carbon black, 200 to 700 parts by weight of polymer resin, 1 to 10 parts by weight of antioxidant 1 to 5 parts by weight of a dispersant, 5 to 100 parts by weight of a metal oxide, and 1 to 10 parts by weight of porous silica loaded with an irradiation crosslinking agent. It is composed of a semiconducting heating element irradiated with phosphorus. 특허 제10-1548983호는 정온도계수(positive temperature coefficient) 히팅케이블 및 그 제조방법에 관한 것으로, 복수가닥으로 집속된 도체 주위로 전도성 조성물이 압출 성형된 제1전극 스트링과, 제1전극 스트링과 동일한 구성으로서 이 제1전극 스트링과 일정한 피치(pitch)를 가지며 길이방향을 따라 권선된 제2전극 스트링과, 제1전극 스트링 및 상기 제2전극 스트링을 감싸는 피복을 포함한다. 상기 발명에 따르면 도체 주위에만 전도성 조성물이 입혀져 있어서 유연성이 우수하고 굴곡이 용이하여 배열 비용과 수고로움이 절감되고, 각각의 도체마다 동심원 형태로 전도성 조성물을 압출성형하기 때문에 전극 주위 압력이 일정하여 출력 제어가 용이하며, 전극별로 따로 작업하기 때문에 전극을 둘러싼 전도성 조성물 두께 제어가 용이하여 출력 균일성이 향상된다는 장점이 있다.Patent No. 10-1548983 relates to a heating cable with a positive temperature coefficient and a method for manufacturing the same, a first electrode string in which a conductive composition is extruded around a bundled conductor, and a first electrode string The second electrode string having the same configuration as the first electrode string and having a constant pitch and wound along the length direction, and a coating surrounding the first electrode string and the second electrode string are included. According to the above invention, since the conductive composition is coated only around the conductor, the flexibility is excellent and bending is easy, reducing the cost and labor of arrangement, and since the conductive composition is extruded in a concentric circle shape for each conductor, the pressure around the electrode is constant and the output is constant. Control is easy, and since each electrode is operated separately, it is easy to control the thickness of the conductive composition surrounding the electrode, thereby improving output uniformity. 공개특허 제10-2015-0006865는 연쇄이동제의 존재하에 트리플루오로에틸렌 및 트리플루오로에틸렌과 상이한 적어도 하나의 추가 단량체의 제어된 자유-라디칼 공중합 단계를 포함하여, 블록 공중합체를 제조하는 방법으로서, 상기 연쇄 이동제가 잔테이트 화합물, 트리티오카보네이트 화합물 또는 모노아이오드화된 화합물인 것을 특징으로 하는 불소수지 제조방법을 제공한다.Patent Publication No. 10-2015-0006865 discloses a method for preparing a block copolymer, comprising a step of controlled free-radical copolymerization of trifluoroethylene and at least one additional monomer different from trifluoroethylene in the presence of a chain transfer agent. , It provides a method for producing a fluororesin, characterized in that the chain transfer agent is a xanthate compound, a trithiocarbonate compound or a monoiodized compound. 특허 제10-0902402호는 중앙에 한 쌍의 전선을 배치하고 그 외부에 반도전성 고분자, 절연막, 편조접지선, 외부 절연막을 차례로 적층하여 케이블을 구성하되, 상기 전선은 알루미늄 선재와 이 알루미늄 선재의 외부 표면에 피복한 동 박막을 포함하는 특징이 있고, 또, 상기 전선은 동 박막을 테이프 형태로 구성하고 이를 알루미늄 선재의 표면에 감아 용접한 다음 소정의 굵기로 인발하여서 되는 동파방지용 히팅 케이블을 제공한다.Patent No. 10-0902402 arranges a pair of wires in the center and constructs a cable by sequentially stacking a semi-conductive polymer, an insulating film, a braided ground wire, and an external insulating film on the outside, and the wires are an aluminum wire and an outer part of the aluminum wire. It has a feature of including a copper thin film coated on the surface, and the electric wire is formed by forming the copper thin film in the form of a tape, winding it on the surface of an aluminum wire rod, welding it, and then drawing it to a predetermined thickness. . 특허 제10-0196298호는 정온도계수 특성을 갖는 고분자 복합재료를 이용한 고분자 발열체로서, 자율제어 고분자 발열체 폴리올레핀계 또는 불소계 결정성 수지에 5~40중량부의 카본볼랙(carbon black), 2~30중량부의 열안정제, 0.1~10중량부의 페놀계 산화방지제(phenol type antioxidant)로 구성되는 고분자 복합재료로 이루어진 내부발열체와 외부발열체의 이중구조인 것이다.Patent No. 10-0196298 is a polymer heating element using a polymer composite material having positive temperature coefficient characteristics, and a self-controlling polymer heating element containing 5 to 40 parts by weight of carbon black and 2 to 30 parts by weight of polyolefin or fluorine-based crystalline resin. It is a dual structure of an internal heating element and an external heating element made of a polymer composite material composed of a heat stabilizer of 0.1 to 10 parts by weight of a phenol type antioxidant. 특허 제10-1445264호는 절연 피복부재 내의 정온도계수 특성을 갖는 반도전성 고분자 조성물에 의해 둘러싸인 3개의 히터전극이 3상 전극을 이루며, 각 전극 사이의 거리가 상기 히팅 케이블의 길이방향을 따라 서로 동일하게 전극이 위치함으로써 상간 균형을 유지하는 것을 특징으로 하는 유연성 있는 케이블 형상의 정온도 히팅 케이블에 관한 것으로, 단상 히터의 정온도 특성을 그대로 유지하면서도 3상 380V를 적용함으로 기존 단상 220V에 비해 전류부하가 67%까지 감소할 뿐더러, 종래의 단상 히터의 최대회로 길이 3배까지 한 개의 전원공급으로 운영이 가능한 돌입전류가 감소된 정온도계수 히팅 케이블을 얻을 수 있다. 또한, 1/3 출력을 가진 3개의 히터가 히팅 케이블의 길이방향을 따라 나란히 진행하는 원리로서, 주위 온도나 대상물의 온도 변화에 의해 상간 부하균형이 깨질 우려가 없다는 장점이 있다.Patent No. 10-1445264 discloses that three heater electrodes surrounded by a semiconductive polymer composition having a positive temperature coefficient within an insulating coating member form a three-phase electrode, and the distance between each electrode is mutually related along the length direction of the heating cable. It relates to a constant-temperature heating cable in the form of a flexible cable, characterized in that the electrodes are equally positioned to maintain phase balance, and while maintaining the constant-temperature characteristics of a single-phase heater as it is, by applying three-phase 380V, current is reduced compared to existing single-phase 220V In addition to reducing the load by 67%, it is possible to obtain a heating cable with a reduced inrush current that can be operated with a single power supply up to three times the maximum circuit length of a conventional single-phase heater. In addition, as a principle in which three heaters with 1/3 outputs run side by side along the longitudinal direction of the heating cable, there is an advantage that there is no fear of breaking the load balance between phases due to changes in the ambient temperature or the temperature of the object. 실용신안등록 제20-0137043호는 주위온도가 상승할수록 전기저항이 증가하는 전기전도성 고분자를 발열체로 이용하는 히터로서 파이프나 탱크 등의 동파방지·보온 및 도로 융설등에 사용되는 자율 제어형 고분자 히터를 제공한다. 상기 고안은 도체와 발열체 사이에 한정적 접착력을 보온하는 역할을 하는 전도성 코팅층을 형성함으로써 도체와 발열체 사이에서 사용 중에 계면저항이 증가되는 것을 최소화하여 장기적인 출력안정성을 개선하기 위해서, 도체, 발열체 및 재킷으로 이루어진 자율제어형 고분자 히터에 있어서, 상기 도체와 상기 발열체 사이에 전도성 코팅층을 형성한 자율제어형 고분자 히터이다.Utility Model Registration No. 20-0137043 is a heater that uses an electrically conductive polymer whose electrical resistance increases as the ambient temperature rises as a heating element. . The above design minimizes the increase in interface resistance between the conductor and the heating element during use by forming a conductive coating layer that serves to insulate the limited adhesive strength between the conductor and the heating element, thereby improving long-term output stability. In the self-regulating polymer heater made of, it is a self-regulating polymer heater in which a conductive coating layer is formed between the conductor and the heating element.

본 발명은 불소계 단량체의 조합비를 조절하여 공중합 함으로써 전기전도성 충진제의 분산 특성을 극대화 하고 금속계 도체와의 계면접착성을 향상시켜 최종 제품의 수명을 향상 및 화재 위험을 최소화 시킬 수 있는 고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블의 제조방법을 제공함에 본 발명의 목적이 있다. The present invention is a highly heat-resistant, flexible, positive thermometer capable of minimizing the risk of fire and improving the lifespan of the final product by maximizing the dispersion characteristics of the electrically conductive filler and improving the interfacial adhesion with the metal-based conductor by copolymerizing by adjusting the combination ratio of the fluorine-based monomers. It is an object of the present invention to provide a method for manufacturing a water composition and a self-regulating heating cable.

상기한 목적을 달성하기 위한 본 발명은 배치혼합기에(batch mixer)에 이온교환수 10,000중량부와 설페이트계(sulfate type) 수용성 개시제(initiator)나 유기과산물(organic peroxide) 개시제, 카보네이트계(carbonate type) 개시제 등에서 선택되어 단독 내지 2종 이상 혼합되어 사용되는 개시제 160~220중량부와 완충제(buffering agent) 120~160중량부를 순차적으로 투여한 다음 50~1,000RPM의 속도로 30~120분 교반하여 개시제분산액을 제조하는 개시제분산액 제조단계와;The present invention for achieving the above object is 10,000 parts by weight of ion-exchanged water and a sulfate type water-soluble initiator or organic peroxide initiator, carbonate type in a batch mixer ) 160 to 220 parts by weight of an initiator and 120 to 160 parts by weight of a buffering agent selected from initiators, etc., used alone or in combination of two or more, are sequentially administered, and then stirred at a speed of 50 to 1,000 RPM for 30 to 120 minutes to remove the initiator an initiator dispersion preparation step of preparing a dispersion;

교반기, 온도조절기가 장착된 연속식 반응기(flow reactor)에 질 퍼지 가스(purge gad)를 1~10L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000중량부와 유화제(emulsifier) 70~110중량부를 투여하여 20~120분 동안 50~500RPM의 속도로 교반하면서 반응기 온도를 80~120℃로 상승시킨다. 상기 반응기에 비닐 플루오라이드(vinyl fluoride)나 비닐리덴 플루오라이드(vinylidene fluoride)에서 선택되어지는 단량체 6,000~10,000중량부와 체인 트랜스퍼제(chain-transfer agent) 100~200중량부을 투여하여 반응기 온도는 70~120℃, 반응기 압력은 30~60기압으로 유지시킨 다음, 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 0.5~14kg/시간의 속도로, 단량체 10~20kg/시간의 속도로, 3,3,3-트리플루오로 프로필렌(3,3,3-trifluoropropene)이나, 테트라플루오로에틸렌(tetrafluoroethylene), 헥사플루오로프로필렌(hexafluoropropylene), 퍼플루오로에틸(프로필 비닐 에테르)[perfluoro(propyl vinyl ether)] 등에서 선택되어지는 공단량체(comonomer)를 0.1~5kg/시간의 속도로 공급하면서 반응기 압력은 30~60기압으로 유지시키고 2~10시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 10~60분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 80~120℃로 유지되는 가열오븐에서 12~24시간 건조시켜 불소수지 공중합체를 제조하는 공중합단계와;100,000 parts by weight of distilled water and 70 to 110 parts by weight of an emulsifier while continuously supplying and discharging quality purge gas at a rate of 1 to 10 L/hour in a flow reactor equipped with an agitator and a temperature controller. After administration, the temperature of the reactor is raised to 80 to 120° C. while stirring at a rate of 50 to 500 RPM for 20 to 120 minutes. 6,000 to 10,000 parts by weight of a monomer selected from vinyl fluoride or vinylidene fluoride and 100 to 200 parts by weight of a chain-transfer agent are added to the reactor, so that the temperature of the reactor is 70 ~ 120 ℃, the reactor pressure is maintained at 30 ~ 60 atm, and then the initiator dispersion prepared in the initiator dispersion preparation step is added to the reactor at a rate of 0.5 ~ 14 kg / hour, monomer at a rate of 10 ~ 20 kg / hour, 3, 3,3-trifluoropropylene (3,3,3-trifluoropropene), tetrafluoroethylene (tetrafluoroethylene), hexafluoropropylene (hexafluoropropylene), perfluoroethyl (propyl vinyl ether) [perfluoro(propyl vinyl ether) )] while supplying the comonomer selected from the group consisting of: A copolymerization step of preparing a fluororesin copolymer by further continuing the reaction for 60 minutes, then cooling, filtering, and washing the reaction solution and drying the obtained copolymer in a heating oven maintained at 80 to 120 ° C. for 12 to 24 hours;

니더(Kneader)나 헨셀(Henschel), 밴버리(banbury) 등의 혼합 믹서(mixer)에 공중합단계에서 제조된 불소수지 공중합체 10,000 중량부와 전기전도성(electro-conductive) 충진제 500~2,000중량부, 조사가교제(irradiation crosslinking agent) 50~100중량부, 포스파이트계(phosphite type) 화합물에서 선택되어 단독 내지는 2종이상 혼합사용되는 산화방지제(antioxidant) 40~80중량부 및 폴리에틸렌 왁스(polyethylene wax)나, 폴리프로필렌 왁스(polypropylene wax), 말레익안하이드리드 변성 폴리프로필렌 왁스(maleic anhydride modified polypropylene wax), 아마이드 변성 폴리에틸렌 왁스(amide modified polyethylene wax) 등의 저분자량 (변성)폴리올레핀(polyolefin)에서 선택되어지는 활제(lubricant) 25~40중량부를 순차적으로 투입하여 150~350℃의 온도에서 10~60분 동안 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 101~105Ω인 3~5mm 크기의 정온도계수 조성물 펠렛을 제조하는 가교형 정온도계수 조성물 제조단계와;10,000 parts by weight of the fluororesin copolymer prepared in the copolymerization step and 500 to 2,000 parts by weight of the electro-conductive filler in a mixing mixer such as Kneader, Henschel, or Banbury, irradiation 50 to 100 parts by weight of an irradiation crosslinking agent, 40 to 80 parts by weight of an antioxidant selected from phosphite type compounds and used alone or in combination of two or more, and polyethylene wax, A lubricant selected from low molecular weight (modified) polyolefins such as polypropylene wax, maleic anhydride modified polypropylene wax, and amide modified polyethylene wax. (lubricant) 25 to 40 parts by weight are sequentially added and kneaded for 10 to 60 minutes at a temperature of 150 to 350 ℃. A cross-linking type positive temperature coefficient composition preparation step of preparing positive temperature coefficient composition pellets having a size of 3 to 5 mm;

교반기(stirrer)가 장착된 반응기에 알코올(alcohol) 95,000 중량부와, 증류수 5,000중량부, 알킬 실란(alkyl silane)이나 비닐 실란(vinyl silane), 불소실란에서 선택되는 실란 10,000~50,000중량부를 첨가하고 산촉매(acid catalyst) 500~2,000중량부를 가하여 pH 3~5를 유지시키면서 50~300RPM 속도로 20~60분간 교반시킨 용액에 평균입경이 0.01~20㎛를 갖는 마그네슘 하이드로옥사이드 포스페이트(magnesium hydroxide phosphate)나, 칼슘 하이드로옥사이드(calcium hydroxide), 알루미늄 하이드로옥사이드(aluminium hydroxide)나 마그네슘 하이드로옥사이드(magnesium hydroxide) 등의 금속수화물에서 단독 내지는 2종 이상 선택되어지는 난연제 35,000~55,000중량부를 가하여 50~300RPM 속도로 20~120분간 교반한 다음 여과한 후 60~120℃에서 건조하여 실란으로 표면처리된 난연제를 제조하는 난연제의 표면처리단계와;95,000 parts by weight of alcohol, 5,000 parts by weight of distilled water, and 10,000 to 50,000 parts by weight of a silane selected from alkyl silane, vinyl silane, and fluorosilane are added to a reactor equipped with a stirrer, 500 to 2,000 parts by weight of an acid catalyst was added and stirred at a speed of 50 to 300 RPM for 20 to 60 minutes while maintaining pH 3 to 5. Magnesium hydroxide phosphate having an average particle diameter of 0.01 to 20 μm or 35,000 to 55,000 parts by weight of a flame retardant selected alone or in combination from metal hydrates such as calcium hydroxide, aluminum hydroxide or magnesium hydroxide is added at 50 to 300 RPM at 20 A flame retardant surface treatment step of preparing a flame retardant surface-treated with silane by stirring for 120 minutes, filtering, and drying at 60 to 120 ° C;

혼합믹서에 에틸렌중합체(ethylene polymer)나 에틸렌공중합체(ethylene copolymer), 공중합단계에서 제조된 불소수지 공중합체 중에서 선택되는 고분자 수지 펠렛 100,000중량부와, 난연제의 표면처리단계에서 제조된 실란표면처리된 난연제 40,000~100,000중량부, 산화방지제 50~200중량부, 활제 100~1,000중량부를 순차적으로 투여하고 100~350℃의 온도에서 5~60분간 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연피복조성물 펠렛을 제조한 다음, 별도의 혼합 믹서에 상기 절연조성물 펠렛과 조사가교제(irradiation crosslinking agent)나 실란가교촉매(silane-crosslinking catalyst)에서 선택되어지는 가교제 1,000~20,000중량부를 투여하고 60~100℃의 온도에서 10~60분간 혼합하여 가교형 절연피복조성물펠렛을 제조하는 가교형 절연피복조성물 제조단계와;In a mixing mixer, 100,000 parts by weight of polymer resin pellets selected from ethylene polymer, ethylene copolymer, and fluororesin copolymer prepared in the copolymerization step, and silane surface treatment prepared in the surface treatment step of the flame retardant 40,000 to 100,000 parts by weight of flame retardant, 50 to 200 parts by weight of antioxidant, and 100 to 1,000 parts by weight of lubricant are sequentially administered and kneaded at a temperature of 100 to 350 ° C for 5 to 60 minutes. Insulation coating composition pellets having a size of 3 to 5 mm are prepared through, and then, in a separate mixing mixer, the insulation composition pellets and a crosslinking agent selected from irradiation crosslinking agent or silane-crosslinking catalyst are mixed with 1,000~ A step of preparing a cross-linked insulation coating composition by administering 20,000 parts by weight and mixing at a temperature of 60 to 100 ° C. for 10 to 60 minutes to prepare a cross-linked insulation coating composition pellet;

동선이나 니켈선 등의 금속선으로 이루어지거나 주석도금동선이나 니켈도금동선 등의 금속도금동선 또는 합금선으로 구성되는 도체 2~4가닥을 가스토치나 가스오븐을 통과시켜 400~1000℃의 온도로 가열하여 도체 표면에 붙은 불순물을 제거하여 열처리된 도체를 제조하는 도체열처리단계와;Heat 2 to 4 conductors composed of metal wire such as copper wire or nickel wire, or metal-coated copper wire such as tin-plated copper wire or nickel-plated copper wire, or alloy wire, by passing them through a gas torch or gas oven to a temperature of 400 to 1000 ° C. a conductor heat treatment step of removing impurities attached to the surface of the conductor to produce a heat-treated conductor;

상기 가교형 정온도계수 조성물 제조단계에서 제조된 정온도계수 조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이(extrusion die)가 부착되어 있는 압출기의 헤드(head)에 도체열처리단계에서 제조된 열처리된 도체 2~4가닥을 통과시키면서 온도조건이 실린더(cylinder)1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드(extrusion head) 150~350℃, 압출다이(extrusion die)는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음, 80~200℃로 유지되는 가열조를 10~50m/분 속도로 통과시킨 후, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건으로 전자선 조사하여 가교된 정온도계수발열체를 제조하는 정온도계수발열체 제조단계와;The positive temperature coefficient composition pellets prepared in the crosslinking type positive temperature coefficient composition preparation step are administered to a hopper, and then the heat treatment produced in the conductor heat treatment step is applied to the head of an extruder to which an extrusion die is attached. While passing 2 to 4 conductors, the temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, The extrusion die is extruded at a temperature of 150 to 350 ° C at a rate of 10 to 40 kg / hour, and then passed through a heating bath maintained at 80 to 200 ° C at a rate of 10 to 50 m / min. A manufacturing step of producing a positive temperature coefficient heating element cross-linked by irradiating electron beams under conditions of 1 to 20 Mrad using an electron beam accelerator of ~2.5 MeV standard;

상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이가 부착되어 있는 압출기의 헤드에 정온도계수발열체 제조단계에서 제조된 정온도계수발열체를 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택되어 20~50m/분의 속도로 가교된 절연층이 형성된 히팅케이블을 제조하는 절연층 형성단계와;The cross-linked insulation coating composition pellets prepared in the cross-linked insulation coating composition manufacturing step are administered to a hopper, and then the positive temperature coefficient heating element manufactured in the positive temperature coefficient heating element manufacturing step is placed on the head of the extruder to which the extrusion die is attached. While passing, the temperature conditions are 120 ~ 300 ℃ for cylinder 1, 120 ~ 300 ℃ for cylinder 2, 150 ~ 350 ℃ for cylinder 3, 150 ~ 350 ℃ for extrusion head, and 150 ~ 350 ℃ for extrusion die. After extrusion at a rate of kg/hour, it is selected from electron beam irradiation crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator of 1 to 2.5 MeV standard or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. an insulating layer forming step of manufacturing a heating cable having an insulating layer crosslinked at a speed of /min;

상기 절연층형성단계에서 제조된 절연층이 형성된 히팅케이블 외주연에 금속와이어로 편조하여 보강층을 형성하는 보강층 형성단계와; a reinforcing layer forming step of forming a reinforcing layer by braiding a metal wire around the outer periphery of the heating cable on which the insulating layer manufactured in the insulating layer forming step is formed;

상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이가 부착되어 있는 압출기의 헤드에 상기 보강층 형성단계에서 제조된 보강층이 형성된 히팅케이블을 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택 되어 20~50m/분의 속도로 가교된 피복층을 성형하는 피복층 형성단계를 거쳐;The cross-linked insulation coating composition pellets prepared in the step of preparing the cross-linked insulation coating composition are injected into a hopper, and then passed through the heating cable formed with the reinforcing layer prepared in the step of forming the reinforcing layer through the head of the extruder to which the extrusion die is attached. temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, and 150~350℃ for extrusion die. After extrusion at a speed of 1 to 2.5 MeV, it is selected from electron beam irradiation crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. through a coating layer forming step of forming a cross-linked coating layer at a speed of 10 min;

고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블을 용이하게 제조할 수 있다.A high heat resistance flexible positive temperature coefficient composition and a self-regulating heating cable can be easily manufactured.

이상에서 설명한 바와 같이 본 발명은 불소계 단량체의 조합비를 조절하여 공중합 함으로써 전기전도성 충진제의 분산특성을 극대화하고 금속계 도체와의 계면접착성을 향상시켜 최종 제품의 수명을 향상 및 화재 위험을 최소화 시킬 수 있는 내열성은 물론 유연성, 전기적, 기계적, 화학적 특성 외에도 시공성 및 생산성을 향상시키는 효과를 가지고 있다As described above, the present invention minimizes the risk of fire and improves the lifespan of the final product by maximizing the dispersion characteristics of the electrically conductive filler and improving the interfacial adhesion with the metal-based conductor by copolymerizing by adjusting the combination ratio of the fluorine-based monomers. In addition to heat resistance, flexibility, electrical, mechanical and chemical properties, it has the effect of improving workability and productivity.

도1은 본 발명의 실시 방법을 예시한 공정흐름도.1 is a process flow diagram illustrating a method of practicing the present invention;

상기 목적과 특징에 최상의 형태로 부합할 수 있는 본 발명을 살펴보면 다음과 같다.Looking at the present invention that can meet the above objectives and characteristics in the best form is as follows.

배치혼합기에(batch mixer)에 이온교환수 10,000중량부와 수용성 개시제(initiator)나 유기과산물 개시제(organic peroxide), 카보네이트계 개시제에서 선택되어 단독 내지 2종이상 혼합되어 사용되는 개시제 160~220중량부, 완충제(buffering agent) 120~160중량부를 순차적으로 투여한 다음 50~1,000RPM의 속도로 30~120분 교반하여 개시제분산액을 제조하는 개시제분산액 제조단계와;In a batch mixer, 10,000 parts by weight of ion-exchanged water and 160 to 220 parts by weight of an initiator selected from water-soluble initiators, organic peroxides, and carbonate-based initiators used alone or in a mixture of two or more , Initiator dispersion preparation step of preparing an initiator dispersion by sequentially administering 120 to 160 parts by weight of a buffering agent and then stirring at a speed of 50 to 1,000 RPM for 30 to 120 minutes;

교반기, 온도조절기가 장착된 연속식 반응기(flow reactor)에 질소(nitrogen)나 네온(neon), 아르곤(argon), 수소(hydrogen) 등에서 선택되어지는 퍼지 가스를 1~10L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000중량부와, 유화제(emulsifier) 70~110중량부를 투여하여 20~120분 동안 50~500RPM의 속도로 교반하면서 반응기 온도를 80~120℃로 상승시킨다음, 상기 반응기에 단량체 6,000~10,000중량부와, 체인 트랜스퍼제(chain-transfer agent) 100~200중량부를 투여하여 반응기 온도는 70~120℃, 반응기 압력은 30~60기압으로 유지시키고, 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 0.5~14kg/시간의 속도로, 단량체 10~20kg/시간의 속도로, 공단량체(comonomer) 0.1~5kg/시간의 속도로 공급하면서 반응기 압력은 30~60기압으로 유지시키고 2~10시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 10~60분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 80~120℃로 유지되는 가열오븐에서 12~24시간 건조시켜 불소수지 공중합체를 제조하는 공중합단계와;A purge gas selected from nitrogen, neon, argon, and hydrogen is continuously supplied at a rate of 1 to 10 L/hour in a flow reactor equipped with an agitator and a temperature controller. While supplying and discharging, 100,000 parts by weight of distilled water and 70 to 110 parts by weight of an emulsifier are administered, and the reactor temperature is raised to 80 to 120 ° C. while stirring at a speed of 50 to 500 RPM for 20 to 120 minutes. 6,000 to 10,000 parts by weight and 100 to 200 parts by weight of a chain-transfer agent are administered to maintain the temperature of the reactor at 70 to 120 ° C and the pressure of the reactor at 30 to 60 atm, and in the step of preparing the initiator dispersion in the reactor While supplying the prepared initiator dispersion at a rate of 0.5 to 14 kg/hour, monomer at 10 to 20 kg/hour, and comonomer at a rate of 0.1 to 5 kg/hour, the reactor pressure was maintained at 30 to 60 atm and 2 After reacting for ~10 hours, the supply of the initiator dispersion was stopped, the reaction was further continued for 10 to 60 minutes, and the reaction solution was cooled, filtered, and washed. A copolymerization step of preparing a fluororesin copolymer by drying for ~24 hours;

니더나 헨셀, 밴버리 등의 혼합 믹서에 공중합단계에서 제조된 불소수지 공중합체 10,000중량부와 전기도전성 충진제 500~2,000중량부, 조사가교제(irradiation crosslinking agent) 50~100중량부, 포스파이트계 화합물에서 단독 내지는 2종이상 혼합사용되는 산화방지제(antioxidant) 40~80중량부 및 활제(lubricant) 25~40중량부를 순차적으로 투입하여 150~350℃의 온도에서 10~60분 동안 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 101~105 Ω인 3~5mm 크기의 고내열 유연성 정온도계수 펠렛을 제조하는 가교형 정온도계수 조성물 제조단계와;In a mixing mixer such as Kneader, Henschel, or Banbury, 10,000 parts by weight of the fluororesin copolymer prepared in the copolymerization step, 500 to 2,000 parts by weight of an electrically conductive filler, 50 to 100 parts by weight of an irradiation crosslinking agent, and a phosphite-based compound 40 to 80 parts by weight of antioxidants and 25 to 40 parts by weight of lubricants used alone or in combination of two or more are sequentially added, and the dough is kneaded at a temperature of 150 to 350 ° C for 10 to 60 minutes. or a twin-screw extruder to prepare a cross-linked positive temperature coefficient composition for preparing heat-resistant flexible positive temperature coefficient pellets having a surface resistance of 10 1 to 10 5 Ω and a size of 3 to 5 mm through extrusion molding;

교반기(stirrer)가 장착된 반응기에 알코올(alcohol) 95,000중량부와, 증류수 5,000중량부, 비닐 실란과, 불소실란에서 선택되는 실란 10,000~50,000중량부를 첨가하고, 산촉매(acid catalyst) 500~2,000중량부를 가하여 pH 3~5를 유지시키면서 50~300RPM 속도로 20~60분간 교반시킨 용액에, 평균입경이 0.01~20㎛를 갖는 금속수화물에서 단독 내지는 2종 이상 선택되어지는 난연제 35,000~55,000중량부를 가하여 50~300RPM 속도로 20~120분간 교반한 다음 여과한 후 60~120℃에서 건조하여 실란으로 표면처리된 난연제를 제조하는 난연제의 표면처리단계와;95,000 parts by weight of alcohol, 5,000 parts by weight of distilled water, 10,000 to 50,000 parts by weight of a silane selected from vinyl silane and fluorosilane are added to a reactor equipped with a stirrer, and 500 to 2,000 parts by weight of an acid catalyst 35,000 to 55,000 parts by weight of a flame retardant selected from metal hydrates having an average particle diameter of 0.01 to 20 μm, alone or in combination, to a solution stirred at a speed of 50 to 300 RPM for 20 to 60 minutes while maintaining pH 3 to 5. A flame retardant surface treatment step of preparing a flame retardant surface-treated with silane by stirring at a speed of 50 to 300 RPM for 20 to 120 minutes, filtering, and drying at 60 to 120 ° C;

혼합믹서에 고분자 수지 펠렛 100,000중량부와, 난연제의 표면처리단계에서 제조된 실란표면처리된 난연제 40,000~100,000중량부, 산화방지제 50~200중량부, 활제 100~1,000중량부를 순차적으로 투여하고 100~350℃의 온도에서 5~60분간 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연피복조성물 펠렛을 제조한다음, 별도의 혼합 믹서에 상기 절연피복조성물 펠렛과 조사가교제(irradiation crosslinking agent)나 가교제 1,000~20,000중량부를 투여하고 60~100℃의 온도에서 10~60분간 혼합하여 가교형 절연피복조성물 펠렛을 제조하는 가교형 절연피복조성물 제조단계와;In a mixing mixer, 100,000 parts by weight of polymer resin pellets, 40,000 to 100,000 parts by weight of a silane surface-treated flame retardant prepared in the surface treatment step of the flame retardant, 50 to 200 parts by weight of an antioxidant, and 100 to 1,000 parts by weight of a lubricant are sequentially injected, and A loaf of dough kneaded for 5 to 60 minutes at a temperature of 350 ° C is transferred to a single screw or twin screw extruder to produce 3 to 5 mm size insulation coating composition pellets through extrusion molding, and then in a separate mixing mixer, the insulation coating composition pellets and A crosslinking insulation coating composition preparation step of preparing a crosslinking insulation coating composition pellet by administering 1,000 to 20,000 parts by weight of an irradiation crosslinking agent or crosslinking agent and mixing at a temperature of 60 to 100 ° C for 10 to 60 minutes;

도체 2~4가닥을 가스토치나 가스오븐을 통과시켜 400~1000℃의 온도로 가열하여 도체 표면에 붙은 불순물을 제거하여 열처리된 도체를 제조하는 도체열처리단계와;A conductor heat treatment step of manufacturing a heat-treated conductor by heating 2 to 4 conductors through a gas torch or gas oven to a temperature of 400 to 1000 ° C to remove impurities attached to the conductor surface;

상기 가교형 정온도계수 조성물 제조단계에서 제조된 정온도계수 조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이(extrusion die)가 부착되어 있는 압출기의 헤드(head)에 도체열처리단계에서 제조된 열처리된 도체 2~4가닥을 통과시키면서 온도조건이 실린더(cylinder)1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드(extrusion head) 150~350℃, 압출다이(extrusion die)는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음, 80~200℃로 유지되는 가열조를 10~50m/분 속도로 통과시킨 후, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건으로 전자선 조사하여 가교된 정온도계수발열체를 제조하는 정온도계수발열체 제조단계와;The positive temperature coefficient composition pellets prepared in the crosslinking type positive temperature coefficient composition preparation step are administered to a hopper, and then the heat treatment produced in the conductor heat treatment step is applied to the head of an extruder to which an extrusion die is attached. While passing 2 to 4 conductors, the temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, The extrusion die is extruded at a temperature of 150 to 350 ° C at a rate of 10 to 40 kg / hour, and then passed through a heating bath maintained at 80 to 200 ° C at a rate of 10 to 50 m / min. A manufacturing step of producing a positive temperature coefficient heating element cross-linked by irradiating electron beams under conditions of 1 to 20 Mrad using an electron beam accelerator of ~2.5 MeV standard;

상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음, 압출 다이가 부착되어 있는 압출기의 헤드에 정온도계수발열체 제조단계에서 제조된 정온도계수발열체를 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택되어 20~50m/분의 속도로 가교된 절연층이 형성된 히팅케이블을 제조하는 절연층 형성단계와;The cross-linked insulation coating composition pellets prepared in the cross-linked insulation coating composition manufacturing step are administered to a hopper, and then the positive temperature coefficient heating element manufactured in the positive temperature coefficient heating element manufacturing step is placed on the head of the extruder to which the extrusion die is attached. while passing through, the temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, and 150~350℃ for extrusion die. After extrusion at a speed of 40 kg/hour, it is selected from electron beam crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator of 1 to 2.5 MeV standard or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. an insulating layer forming step of manufacturing a heating cable having a cross-linked insulating layer at a speed of 50 m/min;

상기 절연층형성단계에서 제조된 절연층이 형성된 히팅케이블 외주연에 금속와이어로 편조하여 보강층을 형성하는 보강층 형성단계와; a reinforcing layer forming step of forming a reinforcing layer by braiding a metal wire around the outer periphery of the heating cable on which the insulating layer manufactured in the insulating layer forming step is formed;

상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이가 부착되어 있는 압출기의 헤드에 상기 보강층 형성단계에서 제조된 보강층이 형성된 히팅케이블을 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택 되어 20~50m/분의 속도로 가교된 피복층을 성형하는 피복층 형성단계를 로 이루어지는 고내열 유연성 정온도계수 자율제어형 히팅케이블의 제조방법을 실시한다.The cross-linked insulation coating composition pellets prepared in the step of preparing the cross-linked insulation coating composition are injected into a hopper, and then passed through the heating cable formed with the reinforcing layer prepared in the step of forming the reinforcing layer through the head of the extruder to which the extrusion die is attached. temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, and 150~350℃ for extrusion die. After extrusion at a speed of 1 to 2.5 MeV, it is selected from electron beam irradiation crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. A method for manufacturing a highly heat-resistant, flexible, positive temperature coefficient self-regulating heating cable comprising a coating layer forming step of forming a crosslinked coating layer at a speed of 20 min.

상기한 제조방법의 실시로 400~1000℃의 온도로 가열하여 표면에 붙은 불순물을 제거한 도체 2~4가닥을 정온도계수 조성물로 코팅하고, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건으로 전자선 조사한 정온도계수발열체를 구성한 것과;By carrying out the above manufacturing method, 2 to 4 strands of the conductor, after removing impurities attached to the surface by heating at a temperature of 400 to 1000 ° C, are coated with a positive temperature coefficient composition, and 1 to 20 Mrad using an electron beam accelerator with a standard of 1 to 2.5 MeV. Constructing a positive temperature coefficient heating element irradiated with electron beams under conditions;

상기 정온도계수발열체에 가교형 절연피복조성물을 코팅하여 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 실란가교로 가교된 절연층을 갖는 히팅케이블을 구성한 것과;Constructing a heating cable having an insulating layer crosslinked by electron beam irradiation crosslinking or silane crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator of 1 to 2.5 MeV standard by coating the positive temperature coefficient heating element with a crosslinked insulation coating composition;

상기 히팅케이블 외주연에 금속와이어로 편조하여 보강층을 형성한 것과; forming a reinforcing layer by braiding a metal wire around the outer periphery of the heating cable;

상기 보강층이 형성된 히팅케이블에 가교형 절연피복조성물을 코팅하고, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택 되어 20~50m/분의 속도로 가교된 피 복층을구성한 고내열 유연성 정온도계수 자율제어형 히팅케이블을 얻는다.The heating cable having the reinforcing layer is coated with a cross-linked insulation coating composition, and silane when passing through a heating bath maintained at 60-100 ° C. A highly heat-resistant, flexible, positive temperature coefficient self-regulating heating cable is obtained, which is selected from cross-linking and constitutes a cross-linked coating layer at a speed of 20 to 50 m/min.

여기서 고내열 유연성 정온도계수 조성물은, 불소수지 공중합체 10,000중량부와; 전기전도성(electro-conductive) 카본블랙(carbon black)이나, 탄소나노튜브(carbon nanotube), 흑연(graphite), 그라핀(graphene) 중에서 선택되어지는 전기도전성 충진제 500~2,000중량부와; 트리알릴 시아누레이트(triallyl cyanurate), 트리알릴 이소시아누레이트(triallyl isocyanurate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 트리메틸올 프로판 트리아크릴레이트(trimethylolpropane triacrylate)인 조사가교제(irradiation crosslinking agent) 50~100중량부와; 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite]나, 트리스(2,4-디-터트-부틸 페닐) 포스파이트[tris(2,4-di-tert-butylphenyl) phosphite], 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite], 트리스 (노닐페닐) 포스파이트[tris(nonylphenyl) phosphite, 이소데실 디페닐포스파이트(isodecyl diphenyl phosphite), 비스(2,6-디-터트-부틸-4-메틸페닐)펜타에리트리톨 디포스파이트[bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite] 인 포스파이트계 화합물에서 선택되어 단독 내지는 2종이상 혼합사용되는 산화방지제(antioxidant) 40~80중량부와; 폴리에틸렌 왁스(polyethylene wax)나, 폴리프로필렌 왁스(polypropylene wax), 말레익안하이드리드 변성 폴리프로필렌 왁스(maleic anhydride modified polypropylene wax), 아마이드 변성 폴리에틸렌 왁스(amide modified polyethylene wax)인 저분자량 (변성)폴리올레핀(polyolefin)에서 선택되어지는 활제(lubricant) 25~40중량부로 이루어진다.Here, the high heat-resistant flexible positive temperature coefficient composition includes 10,000 parts by weight of a fluororesin copolymer; 500 to 2,000 parts by weight of an electrically conductive filler selected from among electro-conductive carbon black, carbon nanotube, graphite, and graphene; Triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate as an irradiation crosslinking agent ) 50 to 100 parts by weight; Bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite [bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite] or tris(2,4-di-tert-butylphenyl) phosphite bis(2,4-di-tert-butylphenyl) phosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite ], tris (nonylphenyl) phosphite [tris (nonylphenyl) phosphite, isodecyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite [ bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite] and 40 to 80 parts by weight of an antioxidant selected from phosphite-based compounds and used alone or in combination of two or more; Low molecular weight (modified) polyolefin (polyethylene wax, polypropylene wax, maleic anhydride modified polypropylene wax, amide modified polyethylene wax) It consists of 25 to 40 parts by weight of a lubricant (lubricant) selected from polyolefin.

본 발명을 실시예를 도1에 의거 더욱 상세히 설명하면 다음과 같다. An embodiment of the present invention will be described in more detail with reference to FIG. 1 as follows.

개시제분산액 제조단계;preparing an initiator dispersion;

배치혼합기에(batch mixer)에 이온교환수 10,000중량부와 퍼옥시모노설페이트(peroxymonosulfate), 소디움 퍼설페이트(sodium persulfate), 포타슘 퍼설페이트(potassium persulfate), 암모늄퍼설페이트(ammonium persulfate) 등의 설페이트계 수용성개시제나 디(터트-부틸) 퍼옥사이드[di(tert-butyl) peroxide], 벤조일 퍼옥사이드(benzoyl peroxide), β-하이드록시에틸 터트-부틸 퍼 옥사이드(β-hydroxyalkyl tert-butyl peroxide), 디이소프로필 수퍼옥사이드(di-isopropyl superoxide), β-카르복시 에틸 터트-부틸 퍼옥사이드(β-carboxy ethyl tert-butyl peroxide) 등의 유기과산물(organic peroxide) 개시제와, 디퍼옥시디카보네이트(diperoxydicarbonate), 디(엔-프로필) 퍼옥시디카보네이트[di(n-propyl) peroxydicarbonate], 디(섹-부틸) 퍼옥시디카보네이트[di(sec-butyl) peroxydicarbonate], 디(에틸헥실) 퍼옥시디카보네이트[di(ethylhexyl) peroxydicarbonate], 디이소프로필 퍼옥시디카보네이트[diisopropyl peroxydicarbonate] 등의 카보네이트계 개시제에서 선택되어 단독 내지 2종이상 혼합되어 사용되는 개시제 160~220중량부, 암모늄 아세테이트(ammonium acetate)나, 소디움 아세테이트(sodium acetate), 포타슘 아세테이트(potassium acetate), 소디움 포스페이트(sodium phosphate), 디소디움 하이드로젠 아세테이트(disodium hydrogen phosphate), 소디움 바이카보네이트(sodium bicarbonate), 포타슘 바이카보네이트(potassium bicarbonate) 등에서 선택되어지는 완충제(buffering agent) 120~160중량부를 순차적으로 투여한 다음 50~1,000RPM의 속도로 30~120분 교반하여 개시제분산액을 제조한다. In a batch mixer, 10,000 parts by weight of ion-exchanged water and sulfate systems such as peroxymonosulfate, sodium persulfate, potassium persulfate, and ammonium persulfate Water-soluble initiator, di(tert-butyl) peroxide, benzoyl peroxide, β-hydroxyethyl tert-butyl peroxide, di(tert-butyl) peroxide, organic peroxide initiators such as di-isopropyl superoxide and β-carboxy ethyl tert-butyl peroxide; (N-propyl) peroxydicarbonate [di(n-propyl) peroxydicarbonate], di(sec-butyl) peroxydicarbonate [di(sec-butyl) peroxydicarbonate], di(ethylhexyl) peroxydicarbonate [di(ethylhexyl) peroxydicarbonate], 160 to 220 parts by weight of an initiator selected from carbonate-based initiators such as diisopropyl peroxydicarbonate and used alone or in a mixture of two or more, ammonium acetate or sodium acetate ), a buffering agent selected from potassium acetate, sodium phosphate, disodium hydrogen phosphate, sodium bicarbonate, potassium bicarbonate, etc. ) 120 to 160 parts by weight are sequentially administered and then stirred at a speed of 50 to 1,000 RPM for 30 to 120 minutes to prepare an initiator dispersion.

공중합단계;copolymerization step;

교반기, 온도조절기가 장착된 연속식 반응기(flow reactor)에 질소(nitrogen)나, 네온(neon), 아르곤(argon), 수소(hydrogen) 등에서 선택되어지는 퍼지 가스를 1~10L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000중량부와 파라핀 왁스(paraffin wax)나 마이크로크리스탈린 왁스(microcrystalline wax), 하이드로카본 오일(hydrocarbon oil) 등에서 선택되어지는 유화제(emulsifier) 70~110중량부를 투여하여 20~120분 동안 50~500RPM의 속도로 교반하면서 반응기 온도를 80~120℃로 상승시킨다. 상기 반응기에 비닐 플루오라이드(vinyl fluoride)나 비닐리덴 플루오라이드(vinylidene fluoride)에서 선택되어지는 단량체 6,000~10,000중량부와 에틸 아세테이트(ethyl acetate)나, 메틸 아세테이트(methyl acetate), 디에틸 카보네이트(diethyl carbonate), 메틸 카보네이트(methyl carbonate), 아세톤(acetone), 메틸에틸케톤(methylethylketone), 클로로포름(chloroform), 이소프로필카비놀(isopropylcarbinol) 등에서 선택되어지는 체인 트랜스퍼제(chain-transfer agent) 100~200중량부을 투여하여 반응기 온도는 70~120℃, 반응기 압력은 30~60기압으로 유지시킨다. 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 0.5~14kg/시간의 속도로, 단량체 10~20kg/시간의 속도로, 3,3,3-트리플루오로 프로필렌(3,3,3-trifluoropropene)이나, 테트라플루오로에틸렌(tetrafluoroethylene), 헥사플루오로프로필렌(hexafluoropropylene), 퍼플루오로에틸(프로필 비닐 에테르)[perfluoro(propyl vinyl ether)] 등에서 선택되어지는 공단량체(comonomer)를 0.1~5kg/시간의 속도로 공급하면서 반응기 압력은 30~60기압으로 유지시키고 2~10시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 10~60분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 80~120℃로 유지되는 가열오븐에서 12~24시간 건조시켜 불소수지 공중합체를 제조한다. A purge gas selected from nitrogen, neon, argon, and hydrogen is supplied to a flow reactor equipped with an agitator and a temperature controller at a rate of 1 to 10 L/hour. While continuously supplying and discharging, 100,000 parts by weight of distilled water and 70 to 110 parts by weight of an emulsifier selected from paraffin wax, microcrystalline wax, and hydrocarbon oil are administered to While stirring at a speed of 50 to 500 RPM for 120 minutes, the temperature of the reactor is raised to 80 to 120 ° C. In the reactor, 6,000 to 10,000 parts by weight of a monomer selected from vinyl fluoride or vinylidene fluoride and ethyl acetate, methyl acetate, or diethyl carbonate carbonate), methyl carbonate, acetone, methylethylketone, chloroform, isopropylcarbinol, etc. Chain-transfer agent 100~200 By administering parts by weight, the reactor temperature is maintained at 70 to 120° C. and the reactor pressure is maintained at 30 to 60 atm. The initiator dispersion prepared in the initiator dispersion preparation step was added to the reactor at a rate of 0.5 to 14 kg / hour and 10 to 20 kg / hour of monomer, 3,3,3-trifluoropropylene (3,3,3-trifluoropropene ), tetrafluoroethylene, hexafluoropropylene, perfluoroethyl (propyl vinyl ether) [perfluoro (propyl vinyl ether)], etc. While supplying at the rate of time, the reactor pressure was maintained at 30 to 60 atmospheres, and after reacting for 2 to 10 hours, the supply of the initiator dispersion was stopped, and the reaction was further continued for 10 to 60 minutes, and then the reaction solution was cooled, filtered, The copolymer obtained by washing is dried in a heating oven maintained at 80 to 120 ° C for 12 to 24 hours to prepare a fluororesin copolymer.

가교형 정온도계수 조성물 제조단계;Preparing a cross-linking positive temperature coefficient composition;

니더나 헨셀, 밴버리 등의 혼합 믹서에 공중합단계에서 제조된 불소수지 공중합체 10,000중량부와 전기전도성(electro-conductive) 카본블랙(carbon black)이나, 탄소나노튜브(carbon nanotube), 흑연(graphite), 그라핀(graphene) 등에서 선택되어지는 전기도전성 충진제 500~2,000중량부, 트리알릴 시아누레이트(triallyl cyanurate), 트리알릴 이소시아누레이트(triallyl isocyanurate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 트리메틸올 프로판 트리아크릴레이트(trimethylolpropane triacrylate) 등의 조사가교제(irradiation crosslinking agent) 50~100중량부, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite]나, 트리스(2,4-디-터트-부틸 페닐) 포스파이트[tris(2,4-di-tert-butylphenyl) phosphite], 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포 스파이트[bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite], 트리스 (노닐페닐) 포스파이트[tris(nonylphenyl) phosphite, 이소데실 디페닐포스파이트(isodecyl diphenyl phosphite), 비스(2,6-디-터트-부틸-4-메틸페닐)펜타에리트리톨 디포스파이트[bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite] 등의 포스파이트계 화합물에서 선택되어 단독 내지는 2종이상 혼합사용되는 산화방지제(antioxidant) 40~80중량부 및 폴리에틸렌 왁스(polyethylene wax)나, 폴리프로필렌 왁스(polypropylene wax), 말레익안하이드리드 변성 폴리프로필렌 왁스(maleic anhydride modified polypropylene wax), 아마이드 변성 폴리에틸렌 왁스(amide modified polyethylene wax) 등의 저분자량 (변성)폴리올레핀(polyolefin)에서 선택되어지는 활제(lubricant) 25~40중량부를 순차적으로 투입하여 150~350℃의 온도에서 10~60분 동안 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 101~105 Ω인 3~5mm 크기의 정온도계수 조성물 펠렛을 제조한다.10,000 parts by weight of the fluororesin copolymer prepared in the copolymerization step in a mixing mixer such as Kneader, Henschel, or Banbury, and electro-conductive carbon black, carbon nanotube, or graphite , 500 to 2,000 parts by weight of an electrically conductive filler selected from graphene, etc., triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate ), 50 to 100 parts by weight of an irradiation crosslinking agent such as trimethylolpropane triacrylate, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite [bis(2, 4-di-tert-butylphenyl)pentaerythritol diphosphite] or tris(2,4-di-tert-butylphenyl) phosphite [tris(2,4-di-tert-butylphenyl) phosphite], bis(2,4- Di-tert-butylphenyl) pentaerythritol diphosphite [bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite], tris (nonylphenyl) phosphite [tris (nonylphenyl) phosphite, isodecyl diphenyl phosphite ( phosphite, such as isodecyl diphenyl phosphite) and bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol-diphosphite [bis(2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-diphosphite] 40 to 80 parts by weight of an antioxidant selected from phyto-based compounds and used alone or in combination of two or more, and polyethylene wax, polypropylene wax, maleic anhai 25 to 40 parts by weight of a lubricant selected from low molecular weight (modified) polyolefins such as maleic anhydride modified polypropylene wax and amide modified polyethylene wax sequentially Inject and knead at a temperature of 150 to 350 ° C for 10 to 60 minutes. The dough is transferred to a single or twin screw extruder and extruded into 3 to 5 mm size positive temperature coefficient composition pellets with a surface resistance of 10 1 to 10 5 Ω to manufacture

난연제의 표면처리단계;Surface treatment step of flame retardant;

교반기(stirrer)가 장착된 반응기에 알코올(alcohol) 95,000중량부와, 증류수 5,000중량부, 디메틸디메톡시실란(dimethyldimethoxysilane), 메틸트리메톡시실란(methyltrimethoxysilane), 테트라메톡시실란(tetramethoxysilane), 테트라에톡시실란(tetraethoxysilane) 등의 알킬 실란(alkyl silane)이나 비닐테트리에톡시실란(vinyltriethoxysilane), 비닐테트리메톡시실란(vinyltrimethoxysilane) 등의 비닐 실란이나, 트리데카플루오로-1,1,2,2-테트라하이드로옥틸트리에톡시실란(tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane), 3,3,3-트리플루오로프로필트리메톡시실란(3,3,3-trifluoropropyltrimethoxysilane),1H,1H,2H,2H-퍼플루오로데실트리메톡시실란(1H,1H,2H, 2H-perfluorodecyltrimethoxysilane) 등의 불소실란에서 선택되는 실란 10,000~50,000중량부를 첨가하고 염산이나 아세틱 액시드(acetic acid) 등의 산(acid)에서 선택되어지는 산촉매(acid catalyst) 500~2,000중량부를 가하여 pH 3~5를 유지시키면서 50~300RPM 속도로 20~60분간 교반시킨 용액에 평균입경이 0.01~20㎛를 갖는 마그네슘 하이드로옥사이드 포스페이트(magnesium hydroxide phosphate)나, 칼슘 하이드로옥사이드(calcium hydroxide), 알루미늄 하이드로옥사이드(aluminium hydroxide)나 마그네슘 하이드로옥사이드(magnesium hydroxide) 등의 금속수화물에서 단독 내지는 2종 이상 선택되어지는 난연제 35,000~55,000중량부를 가하여 50~300RPM 속도로 20~120분간 교반한 다음 여과한 후 60~120℃에서 건조하여 실란으로 표면처리된 난연제를 제조한다.In a reactor equipped with a stirrer, 95,000 parts by weight of alcohol, 5,000 parts by weight of distilled water, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, Alkyl silanes such as tetraethoxysilane, vinyl silanes such as vinyltriethoxysilane and vinyltrimethoxysilane, and tridecafluoro-1,1,2,2 -Tetrahydrooctyltriethoxysilane (tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane), 3,3,3-trifluoropropyltrimethoxysilane (3,3,3-trifluoropropyltrimethoxysilane), 1H, 1H, 10,000 to 50,000 parts by weight of a silane selected from fluorosilanes such as 2H,2H-perfluorodecyltrimethoxysilane (1H,1H,2H, 2H-perfluorodecyltrimethoxysilane) is added, and hydrochloric acid, acetic acid, etc. 500 to 2,000 parts by weight of an acid catalyst selected from acids was added and stirred at a speed of 50 to 300 RPM for 20 to 60 minutes while maintaining pH 3 to 5. Magnesium hydrogel having an average particle diameter of 0.01 to 20 μm was added to the solution. 35,000 to 55,000 weight of a flame retardant selected alone or in combination of two or more from metal hydrates such as oxide phosphate, calcium hydroxide, aluminum hydroxide or magnesium hydroxide Part was added, stirred for 20 to 120 minutes at a speed of 50 to 300 RPM, filtered, and dried at 60 to 120 ° C. to prepare a flame retardant surface-treated with silane.

가교형 절연피복조성물 제조단계; A step of preparing a cross-linked insulation coating composition;

혼합믹서에 에틸렌중합체(ethylene polymer)나 에틸렌공중합체(ethylene copolymer), 공중합단계에서 제조된 불소수지 공중합체 중에서 선택되는 고분자 수지 펠렛 100,000중량부와, 난연제의 표면처리단계에서 제조된 실란표면처리된 난연제 40,000~100,000중량부, 산화방지제 50~200중량부, 활제 100~1,000중량부를 순차적으로 투여하고 100~350℃의 온도에서 5~60분간 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연복조성물 펠렛을 제조한다. In a mixing mixer, 100,000 parts by weight of polymer resin pellets selected from ethylene polymer, ethylene copolymer, and fluororesin copolymer prepared in the copolymerization step, and silane surface treatment prepared in the surface treatment step of the flame retardant 40,000 to 100,000 parts by weight of flame retardant, 50 to 200 parts by weight of antioxidant, and 100 to 1,000 parts by weight of lubricant are sequentially administered and kneaded at a temperature of 100 to 350 ° C for 5 to 60 minutes. 3 to 5 mm size insulating demodulating composition pellets are prepared through.

그리고 별도의 혼합 믹서에 상기 절연조성물 펠렛과 조사가교제(irradiation crosslinking agent)나 디부틸틴 디라우레이트(dibutyltin dilaurate), 디에틸디티오카바메이트(diethyldithiocarbamate), 디부틸틴 디아세테이트(dibutyltin diacetate), 트리페닐틴 아세테이트(triphenyltin acetate), 트리에틸틴 시아니드 (triethyltin cyanide), 디페닐틴 클로라이드 (diphenyltin chloride), 트리토릴틴 프로피오네이트(tritolyltin propionate) 등의 실란가교촉매(silane-crosslinking catalyst)에서 선택되어지는 가교제 1,000~20,000중량부를 투여하고 60~100℃의 온도에서 10~60분간 혼합하여 가교형 절연피복조성물 펠렛을 제조한다. And In a separate mixing mixer, the insulation composition pellets and irradiation crosslinking agent, dibutyltin dilaurate, diethyldithiocarbamate, dibutyltin diacetate, tri Choose from silane-crosslinking catalysts such as triphenyltin acetate, triethyltin cyanide, diphenyltin chloride and tritolyltin propionate 1,000 to 20,000 parts by weight of the cross-linking agent is administered and mixed at a temperature of 60 to 100 ° C for 10 to 60 minutes to prepare cross-linked insulation coating composition pellets.

도체열처리단계;Conductor heat treatment step;

동선이나 니켈선 등의 금속선으로 이루어지거나 주석도금동선이나 니켈도금동선 등의 금속도금동선 또는 합금선으로 구성되는 도체 2~4가닥을 가스토치나 가스오븐을 통과시켜 400~1000℃의 온도로 가열하여 도체 표면에 붙은 불순물을 제거하여 열처리된 도체를 제조한다.Heat 2 to 4 conductors composed of metal wire such as copper wire or nickel wire, or metal-coated copper wire such as tin-plated copper wire or nickel-plated copper wire, or alloy wire, by passing them through a gas torch or gas oven to a temperature of 400 to 1000 ° C. to remove impurities attached to the surface of the conductor to produce a heat-treated conductor.

정온도계수발열체 제조단계; positive temperature coefficient heating element manufacturing step;

상기 가교형 정온도계수 조성물 제조단계에서 제조된 정온도계수 조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이(extrusion die)가 부착되어 있는 압출기의 헤드(head)에 도체열처리단계에서 제조된 열처리된 도체 2~4가닥을 통과시키면서 온도조건이 실린더(cylinder)1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드(extrusion head) 150~350℃, 압출다이(extrusion die)는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음, 80~200℃로 유지되는 가열조를 10~50m/분 속도로 통과시킨 후, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건으로 전자선 조사하여 가교된 정온도계수발열체를 제조한다.The positive temperature coefficient composition pellets prepared in the crosslinking type positive temperature coefficient composition preparation step are administered to a hopper, and then the heat treatment produced in the conductor heat treatment step is applied to the head of an extruder to which an extrusion die is attached. While passing 2 to 4 conductors, the temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, The extrusion die is extruded at a temperature of 150 to 350 ° C at a rate of 10 to 40 kg / hour, and then passed through a heating bath maintained at 80 to 200 ° C at a rate of 10 to 50 m / min. A crosslinked positive temperature coefficient heating element is manufactured by irradiating electron beams under conditions of 1 to 20 Mrad using an electron beam accelerator with a standard of ~2.5 MeV.

절연층 형성단계;forming an insulating layer;

상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이가 부착되어 있는 압출기의 헤드에 정온도계수발열체 제조단계에서 제조된 정온도계수발열체를 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택되어 20~50m/분의 속도로 가교된 절연층이 형성된 히팅케이블을 제조한다. The cross-linked insulation coating composition pellets prepared in the cross-linked insulation coating composition manufacturing step are administered to a hopper, and then the positive temperature coefficient heating element manufactured in the positive temperature coefficient heating element manufacturing step is placed on the head of the extruder to which the extrusion die is attached. While passing, the temperature conditions are 120 ~ 300 ℃ for cylinder 1, 120 ~ 300 ℃ for cylinder 2, 150 ~ 350 ℃ for cylinder 3, 150 ~ 350 ℃ for extrusion head, and 150 ~ 350 ℃ for extrusion die. After extrusion at a rate of kg/hour, it is selected from electron beam irradiation crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator of 1 to 2.5 MeV standard or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. /min to produce a heating cable with a cross-linked insulating layer.

보강층 형성단계;Reinforcing layer forming step;

상기 절연층형성단계에서 제조된 절연층이 형성된 히팅케이블 외주연에 금속와이어로 편조하여 보강층을 형성한다.A reinforcing layer is formed by braiding a metal wire around the outer periphery of the heating cable on which the insulating layer manufactured in the insulating layer forming step is formed.

피복층 형성단계; coating layer forming step;

상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이가 부착되어 있는 압출기의 헤드에 상기 보강층 형성단계에서 제조된 보강층이 형성된 히팅케이블을 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택 되어 20~50m/분의 속도로 가교된 피복층을 성형하여 고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블의 제조를 완료한다.The cross-linked insulation coating composition pellets prepared in the step of preparing the cross-linked insulation coating composition are injected into a hopper, and then passed through the heating cable formed with the reinforcing layer prepared in the step of forming the reinforcing layer through the head of the extruder to which the extrusion die is attached. temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, and 150~350℃ for extrusion die. After extrusion at a speed of 1 to 2.5 MeV, it is selected from electron beam irradiation crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. The crosslinked coating layer is molded at a rate of 20 min to complete the production of the highly heat-resistant flexible positive temperature coefficient composition and the self-regulating heating cable.

여기서 상기 공중합단계의 공단량체는 조성물의 내열성이나 유연성을 부여해주며 3,3,3-트리플루오로 프로필렌이나, 테트라플루오로에틸렌, 헥사플루오로프로필렌, 퍼플루오로에틸(프로필 비닐 에테르) 등이 사용되나 본 발명에 제한된 것이 아니다.Here, the comonomer in the copolymerization step imparts heat resistance or flexibility to the composition, and 3,3,3-trifluoropropylene, tetrafluoroethylene, hexafluoropropylene, perfluoroethyl (propyl vinyl ether), etc. are used. However, it is not limited to the present invention.

이때 공단량체는 중합시 0.1~5kg/시간의 속도로 공급되며 0.1kg/시간 미만의속도로 공급될 경우 내열성이 떨어지고 5kg/시간의 이상의 속도로 공급될 경우 유연성이 떨어진다.At this time, the comonomer is supplied at a rate of 0.1 to 5 kg/hour during polymerization, and when supplied at a rate of less than 0.1 kg/hour, heat resistance deteriorates, and when supplied at a rate of 5 kg/hour or more, flexibility decreases.

상기 공중합단계의 체인 트랜스퍼제는 공중합체의 분자량을 조절해주며 비닐 플루오라이드(vinyl fluoride)나 비닐리덴 플루오라이드(vinylidene fluoride)에서 선택되어지는 단량체 6,000~10,000중량부와 에틸 아세테이트(ethyl acetate)나, 메틸 아세테이트(methyl acetate), 디에틸 카보네이트(diethyl carbonate), 메틸 카보네이트(methyl carbonate), 아세톤(acetone), 메틸에틸케톤(methylethylketone), 클로로포름(chloroform), 이소프로필카비놀(isopropylcarbinol) 등에서 100~200중량부가 사용된다.The chain transfer agent in the copolymerization step controls the molecular weight of the copolymer, and 6,000 to 10,000 parts by weight of a monomer selected from vinyl fluoride or vinylidene fluoride and ethyl acetate or , methyl acetate, diethyl carbonate, methyl carbonate, acetone, methylethylketone, chloroform, isopropylcarbinol, etc. 200 parts by weight is used.

이때 체인 트랜스퍼제가 100중량부 미만인 경우 조성물의 혼련성이 떨어지고 200중량부 이상일 경우 내열도가 저하된다.At this time, when the chain transfer agent is less than 100 parts by weight, the kneadability of the composition is lowered, and when it is 200 parts by weight or more, heat resistance is lowered.

상기 난연제의 표면처리단계에서 난연제는 평균입경이 0.01~20㎛를 갖는 마그네슘 하이드로옥사이드 포스페이트(magnesium hydroxide phosphate)나, 칼슘 하이드로옥사이드(calcium hydroxide), 알루미늄 하이드로옥사이드(aluminium hydroxide)나 마그네슘 하이드로옥사이드(magnesium hydroxide) 등의 금속 수화물이 3,500~5,500중량부가 사용된다. In the surface treatment step of the flame retardant, the flame retardant is magnesium hydroxide phosphate having an average particle diameter of 0.01 to 20 μm, calcium hydroxide, aluminum hydroxide or magnesium hydroxide. 3,500 to 5,500 parts by weight of a metal hydrate such as hydroxide) is used.

이때 난연제가 3,500중량부 미만인 경우 난연성이 떨어지고 5,500중량부 이상인 경우 혼련성이 저하된다.At this time, when the flame retardant is less than 3,500 parts by weight, the flame retardancy is lowered, and when it is 5,500 parts by weight or more, the kneading property is lowered.

상기 가교형 정온도계수 조성물 제조단계와 절연피복조성물 제조단계의 산화방지제는 조성물에 장기 열안전성을 부여하며 트리스(2,4-디-터트-부틸페닐)포스파이트(tris(2,4-di-tert-butylphenyl)phosphite), 비스(2,4-디쿠밀페닐)펜타에리트리톨 디포스파이트[bis(2,4-dicumylphenyl)pentaerythritol diphosphite], 비스(2,4-디-터트- 부틸페닐)펜타에리트리톨디포스파이트[bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite], 비스(2-터트-부틸-4-메틸-6-클로로페닐)-페닐 포스파이트[bis(2-tert-butyl-4-methyl-6-chlorophenyl)phenyl phosphite], 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite], 2-부틸-2-에틸-1,3-프로판디올 2,4,6-트리-터트-부틸페놀 포스파이트(2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-tert-butylphenol phosphite), 트리스(노닐페닐)포스 파이트[tris(nonylphenyl)phosphite], 이소데실 디페닐 포스파이트(isodecyl diphenyl phosphite), 비스(2,6-디-터트-부틸-4-메틸페닐)펜타에리트리톨-디포스파이트[bis(2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-diphosphite], 트리페닐 포스파이트(triphenyl phosphite),등에서 선택되어 50~200중량부가 사용되나 본 발명에 제한된 것이 아니다.The antioxidant in the cross-linking positive temperature coefficient composition preparation step and the insulation coating composition preparation step imparts long-term thermal stability to the composition and is tris(2,4-di-tert-butylphenyl) phosphite (tris(2,4-di -tert-butylphenyl)phosphite), bis(2,4-dicumylphenyl)pentaerythritol diphosphite [bis(2,4-dicumylphenyl)pentaerythritol diphosphite], bis(2,4-di-tert-butylphenyl)penta Erythritol diphosphite [bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite], bis(2-tert-butyl-4-methyl-6-chlorophenyl)-phenyl phosphite [bis(2-tert-butyl -4-methyl-6-chlorophenyl)phenyl phosphite], bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite [bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite], 2- Butyl-2-ethyl-1,3-propanediol 2,4,6-tri-tert-butylphenol phosphite (2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-tert- butylphenol phosphite), tris(nonylphenyl)phosphite, isodecyl diphenyl phosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol - It is selected from diphosphite [bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol-diphosphite], triphenyl phosphite, etc., and 50 to 200 parts by weight is used, but is not limited to the present invention. .

이때 산화방지제가 50중량부 미만인 경우 열안정성이 떨어지고 200중량부 이상인 경우 표면으로 이행된다.At this time, if the antioxidant is less than 50 parts by weight, thermal stability is poor, and if it is more than 200 parts by weight, it is transferred to the surface.

상기 가교형 절연피복조성물 제조단계의 에틸렌중합체는 저밀도폴리에틸렌(low density polyethylene), 중밀도폴리에틸렌(high density polyethylene), 고밀도폴리에틸렌 (high density polyethylene), 선상저밀도폴리에틸렌(linear low density polyethylene) 등을 사용하는 것이 바람직하나 본 발명에 제한된 것이 아니다.The ethylene polymer in the step of preparing the crosslinked insulation coating composition is low density polyethylene, high density polyethylene, high density polyethylene, linear low density polyethylene, etc. Although preferred, it is not limited to the present invention.

상기 가교형 절연피복조성물 제조단계의 에틸렌공중합체는 절연피복재료로 에틸렌-비닐아세테이트 공중합체(ethylene-vinyl acetate copolymer)나, 에틸렌-에틸 아크릴레이트 공중합체(ethylene-ethyl acrylate copolymer), 에틸렌-아크릭 액시드 공중합체(ethylene-acrylic acid copolymer), 에틸렌-메타아크릭 액시드 공중합체(ethylene-methacrylic acid copolymer), 에틸렌-메틸 메타아크릴레이트 공중합체(ethylene-methyl methacrylate copolymer), 에틸렌-부틸 메타아크릴레이트 공중합체(ethylene-butyl methacrylate copolymer) 등을 사용하는 것이 바람직하나 본 발명에 제한된 것이 아니다.The ethylene copolymer in the step of preparing the cross-linked insulation coating composition is an insulation coating material, such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, or ethylene-acrylic Ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-butyl methacrylate It is preferable to use a copolymer (ethylene-butyl methacrylate copolymer) or the like, but it is not limited to the present invention.

상기 도체열처리단계에서 도체는 전원이 전달되도록 하는 구성요소로서 동선이나 니켈선 등의 금속선으로 이루어지거나 주석도금동선이나 니켈도금동선 등의 금속도금동선 또는 합금선 등을 사용하는 것이 바람직하나 본 발명에 제한된 것이 아니다.In the conductor heat treatment step, the conductor is a component for transmitting power, and it is preferable to use a metal wire such as copper wire or nickel wire, or to use a metal plated copper wire such as tin-plated copper wire or nickel-plated copper wire or alloy wire. Not limited.

이때 상기 도체는 금속단일선으로 외에도 복수로 집합된 금속집합선을 사용하는 것이 바람직하다.At this time, it is preferable to use a plurality of metal collection wires as well as a single metal wire as the conductor.

상기 보강층 형성단계의 보강층은 외부의 충격으로 부터 절연을 보호하며 동선, 금속도금동선, 철선, 니켈선 등의 금속와이어로 편조하여 형성된다. The reinforcing layer in the reinforcing layer forming step protects insulation from external impact and is formed by braiding metal wires such as copper wire, metal-plated copper wire, iron wire, and nickel wire.

본 발명에 따른 고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블의 제조방법을 보다 상세하게 살펴보고, 그에 따른 실시예를 서술하면 다음과 같다. The manufacturing method of the high heat-resistant flexible positive temperature coefficient composition and the self-regulating heating cable according to the present invention will be examined in more detail, and examples thereof will be described as follows.

단 본 발명의 범위가 예시한 실시예만으로 한정되는 것은 아니다.However, the scope of the present invention is not limited only to the illustrated examples.

실시예1Example 1

배치혼합기에 이온교환수 10,000g과 포타슘 퍼설페이트 200g, 소디움 아세테이트 140g을 순차적으로 투여한 다음 500RPM의 속도로 60분 동안 교반하여 개시제분산액을 제조하였다.10,000 g of ion-exchanged water, 200 g of potassium persulfate, and 140 g of sodium acetate were sequentially added to a batch mixer, followed by stirring at 500 RPM for 60 minutes to prepare an initiator dispersion.

연속식 반응기에 아르곤을 1L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000g과 파라핀 왁스 90g을 투여하여 40분 동안 100RPM의 속도로 교반하면서 반응기 온도를110℃로 상승시킨다. 상기 반응기에 비닐 플루오라이드 8,000g과 에틸 아세테이트 140g을 투여하여 반응기 온도는 110℃, 반응기 압력은 45기압으로 유지시킨다. 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 10kg/시간의 속도로, 비닐 플루오라이드 15kg/시간의 속도로, 3,3,3-트리플루오로 프로필렌 1.5kg/시간의 속도로 공급하면서 반응기 압력은 45기압으로 유지시키고 5시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 30분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 100℃로 유지되는 가열오븐에서 12시간 건조시켜 불소수지 공중합체를 제조하였다.100,000 g of distilled water and 90 g of paraffin wax were administered while continuously supplying and discharging argon at a rate of 1 L/hour to a continuous reactor, and raising the temperature of the reactor to 110° C. while stirring at a rate of 100 RPM for 40 minutes. 8,000 g of vinyl fluoride and 140 g of ethyl acetate were added to the reactor to maintain the reactor temperature at 110° C. and the reactor pressure at 45 atm. While supplying the initiator dispersion prepared in the initiator dispersion preparation step to the reactor at a rate of 10 kg / hour, vinyl fluoride at a rate of 15 kg / hour, and 3,3,3-trifluoro propylene at a rate of 1.5 kg / hour, the reactor The pressure was maintained at 45 atmospheres, and after reacting for 5 hours, the supply of the initiator dispersion was stopped, and the reaction was further continued for 30 minutes, and then the reaction solution was cooled, filtered, and washed. and dried for 12 hours to prepare a fluororesin copolymer.

니더믹서에 불소수지 공중합체 10,000g, 전기전도성 카본블랙 1,500g 트리알릴 이소시아누레이트 75g, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트 45g 및 폴리프로필렌 왁스 30g을 투입하여 200℃의 온도에서 30분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 500Ω인 3 내지 5mm 크기의 정온도계수 조성물 펠렛을 제조하였다.Put 10,000 g of fluororesin copolymer, 1,500 g of electrically conductive carbon black, 75 g of triallyl isocyanurate, 45 g of bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and 30 g of polypropylene wax into a kneader mixer. The kneaded dough at a temperature of 200 ° C. for 30 minutes was transferred to a twin-screw extruder to prepare a positive temperature coefficient composition pellet having a surface resistance of 500 Ω and a size of 3 to 5 mm through extrusion molding.

반응기에 에탄올 95,000g, 증류수 5,000g, 3,3,3-트리플루오로프로필트리메톡시실란15,000g, 아세틱 액시드 800g을 첨가하여 100RPM의 속도로 30분간 교반한 다음, 여기에 평균입경이 10㎛인 마그네슘 하이드로옥사이드 50,000g을 투여하고 200RPM의 속도로 60분간 교반한 다음 여과하여 80℃의 온도에서 건조시켜 실란 표면처리 된 난연제를 제조하였다.95,000 g of ethanol, 5,000 g of distilled water, 15,000 g of 3,3,3-trifluoropropyltrimethoxysilane, and 800 g of acetic acid were added to the reactor, stirred at 100 RPM for 30 minutes, and then the average particle size was 50,000 g of 10 μm magnesium hydroxide was administered, stirred at a speed of 200 RPM for 60 minutes, filtered, and dried at a temperature of 80° C. to prepare a silane surface-treated flame retardant.

니더믹서에 불소수지 공중합체 100,000g, 실란 표면처리된 난연제 80,000g, 트리스(2,4-디-터트-부틸 페닐) 포스파이트 120g, 말레익안하이드리드 변성 폴리프로필렌 왁스 550g을 순차적으로 투여하고 220℃에서 30분간 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3 내지 5mm 크기의 절연피복조성물 펠렛을 제조한 후 별도의 헨셀 믹서에 상기 절연피복조성물 펠렛과 트리알릴 이소시아누레이트 1,200g을 투여하고 80℃의 온도에서 30분간 혼합하여 가교형 절연피복조성물을 제조하였다.100,000 g of a fluororesin copolymer, 80,000 g of a silane surface-treated flame retardant, 120 g of tris (2,4-di-tert-butyl phenyl) phosphite, and 550 g of maleic anhydride-modified polypropylene wax were sequentially added to a kneader mixer, and The kneaded dough for 30 minutes at ° C. is transferred to a twin screw extruder to produce pellets of the insulation coating composition having a size of 3 to 5 mm through extrusion molding, and then the insulation coating composition pellets and triallyl isocyanurate 1,200g in a separate Henschel mixer was administered and mixed at a temperature of 80° C. for 30 minutes to prepare a cross-linked insulation coating composition.

압출성형용 다이가 부착되어 있는 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 정온도계수 조성물 펠렛을 투여하고, 800~1,000℃로 유지되는 가스오븐으로 불순물이 제게된 2가닥의 니켈도금동선을 연속적으로 통과시키면서 20㎏/시간의 속도로 압출한 다음, 150℃로 유지되는 가열조를 10 내지 50m/분 속도로 통과시킨 후 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 20m/분의 속도로 조사하여 정온도계수발열체를 제조하였다.A single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached. It is extruded at a rate of 20 kg/hour while continuously passing two strands of nickel-plated copper wire with impurities removed in a gas oven that is maintained, and then passed through a heating bath maintained at 150 °C at a rate of 10 to 50 m/min, followed by 2.5 An electron beam of 10 Mrad was irradiated at a speed of 20 m/min using a MeV standard electron beam accelerator to manufacture a positive temperature coefficient heating element.

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 정온도계수발열체를 연속적으로 통과시키면서 30㎏/시간의 속도로 0.5mm 두께의 절연층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 절연층을 형성하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition pellets, and the positive temperature coefficient A 0.5 mm thick insulating layer was extruded at a rate of 30 kg/hour while continuously passing through the heating element, and an electron beam of 10 Mrad was irradiated with a 2.5 MeV standard electron beam accelerator to form a cross-linked insulating layer at a rate of 30 m/min.

절연층이 형성된 케이블 외주연에 직경 0.1Φmm 주석도금선으로 편조하여 (편조율 95%) 보강층을 형성하였다. A reinforcing layer was formed on the outer periphery of the cable on which the insulation layer was formed by braiding with a tin-plated wire having a diameter of 0.1 Φ (95% braiding rate).

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 보강층이 형성된 케이블을 연속적으로 통과시키면서 30㎏/시간의 속도로 0.7mm 두께의 피복층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 피복층이 구비된 자율제어형 히팅케이블 제조를 완료하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition, and a reinforcing layer is formed. Self-regulating heating cable equipped with a cross-linked coating layer at a speed of 30 m/min by extruding a coating layer with a thickness of 0.7 mm at a speed of 30 kg/hour while continuously passing the cable and irradiating an electron beam of 10 Mrad with a 2.5 MeV standard electron beam accelerator. Manufacturing is complete.

실시예2Example 2

배치혼합기에 이온교환수 10,000g과 디이소프로필 퍼옥시디카보네이트 200g, 소디움 아세테이트 140g을 순차적으로 투여한 다음 500RPM의 속도로 60분 동안 교반하여 개시제분산액을 제조하였다.10,000 g of ion-exchanged water, 200 g of diisopropyl peroxydicarbonate, and 140 g of sodium acetate were sequentially added to a batch mixer, followed by stirring at 500 RPM for 60 minutes to prepare an initiator dispersion.

연속식 반응기에 아르곤을 1L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000g과 파라핀 왁스 90g을 투여하여 40분 동안 100RPM의 속도로 교반하면서 반응기 온도를110℃로 상승시킨다. 상기 반응기에 비닐리덴 플루오라이드 8,000g과 에틸 아세테이트 140g을 투여하여 반응기 온도는 110℃, 반응기 압력은 45기압으로 유지시킨다. 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 10kg/시간의 속도로, 비닐리덴 플루오라이드 15kg/시간의 속도로, 헥사플루오로프로필렌 1.5kg/시간의 속도로 공급하면서 반응기 압력은 45기압으로 유지시키고 5시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 30분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 100℃로 유지되는 가열오븐에서 12시간 건조시켜 불소수지 공중합체를 제조하였다.100,000 g of distilled water and 90 g of paraffin wax were administered while continuously supplying and discharging argon at a rate of 1 L/hour to a continuous reactor, and raising the temperature of the reactor to 110° C. while stirring at a rate of 100 RPM for 40 minutes. 8,000 g of vinylidene fluoride and 140 g of ethyl acetate were added to the reactor to maintain the reactor temperature at 110° C. and the reactor pressure at 45 atm. While supplying the initiator dispersion prepared in the initiator dispersion preparation step to the reactor at a rate of 10 kg/hour, at a rate of 15 kg/hour for vinylidene fluoride, and at a rate of 1.5 kg/hour for hexafluoropropylene, the reactor pressure was set to 45 atm. After maintaining and reacting for 5 hours, the supply of the initiator dispersion was stopped, the reaction was further continued for 30 minutes, and the reaction mixture was cooled, filtered, washed, and the resulting copolymer was dried in a heating oven maintained at 100 ° C for 12 hours. A fluororesin copolymer was prepared.

니더믹서에 불소수지 공중합체 10,000g, 전기전도성 카본블랙 1,500g 트리알릴 이소시아누레이트 75g, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트 45g 및 폴리프로필렌 왁스 30g을 투입하여 200℃의 온도에서 30분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 500Ω인 3~5mm 크기의 정온도계수 조성물 펠렛을 제조하였다.Put 10,000 g of fluororesin copolymer, 1,500 g of electrically conductive carbon black, 75 g of triallyl isocyanurate, 45 g of bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and 30 g of polypropylene wax into a kneader mixer. The kneaded loaf dough was transferred to a twin-screw extruder at a temperature of 200 ° C. for 30 minutes to prepare positive temperature coefficient composition pellets having a surface resistance of 500 Ω and a size of 3 to 5 mm through extrusion molding.

반응기에 에탄올 95,000g, 증류수 5,000g, 3,3,3-트리플루오로프로필트리메톡시실란15,000g, 아세틱 액시드 800g을 첨가하여 100RPM의 속도로 30분간 교반한 다음, 여기에 평균입경이 10㎛인 마그네슘 하이드로옥사이드 50,000g을 투여하고 200RPM의 속도로 60분간 교반한 다음 여과하여 80℃의 온도에서 건조시켜 실란 표면처리 된 난연제를 제조하였다.95,000 g of ethanol, 5,000 g of distilled water, 15,000 g of 3,3,3-trifluoropropyltrimethoxysilane, and 800 g of acetic acid were added to the reactor, stirred at 100 RPM for 30 minutes, and then the average particle size was 50,000 g of 10 μm magnesium hydroxide was administered, stirred at a speed of 200 RPM for 60 minutes, filtered, and dried at a temperature of 80° C. to prepare a silane surface-treated flame retardant.

니더믹서에 불소수지 공중합체 100,000g, 실란 표면처리된 난연제 80,000g, 트리스(2,4-디-터트-부틸 페닐) 포스파이트 120g, 말레익안하이드리드 변성 폴리프로필렌 왁스 550g을 순차적으로 투여하고 220℃에서 30분간 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연피복조성물 펠렛을 제조한 후 별도의 헨셀 믹서에 상기 절연피복조성물 펠렛과 트리알릴 이소시아누레이트 1,200g을 투여하고 80℃의 온도에서 30분간 혼합하여 가교형 절연피복조성물을 제조하였다.100,000 g of a fluororesin copolymer, 80,000 g of a silane surface-treated flame retardant, 120 g of tris (2,4-di-tert-butyl phenyl) phosphite, and 550 g of maleic anhydride-modified polypropylene wax were sequentially added to a kneader mixer, and The kneaded dough for 30 minutes at ° C. is transferred to a twin screw extruder to produce pellets of the insulation coating composition having a size of 3 to 5 mm through extrusion molding, and then the insulation coating composition pellets and triallyl isocyanurate 1,200g in a separate Henschel mixer was administered and mixed at a temperature of 80° C. for 30 minutes to prepare a cross-linked insulation coating composition.

압출성형용 다이가 부착되어 있는 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 정온도계수 조성물 펠렛을 투여하고, 800~1,000℃로 유지되는 가스오븐으로 불순물이 제게된 2가닥의 니켈도금동선을 연속적으로 통과시키면서 20㎏/시간의 속도로 압출한 다음, 150℃로 유지되는 가열조를 10 내지 50m/분 속도로 통과시킨 후 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 20m/분의 속도로 조사하여 정온도계수발열체를 제조하였다.A single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached. It is extruded at a rate of 20 kg/hour while continuously passing two strands of nickel-plated copper wire with impurities removed in a gas oven that is maintained, and then passed through a heating bath maintained at 150 °C at a rate of 10 to 50 m/min, followed by 2.5 An electron beam of 10 Mrad was irradiated at a speed of 20 m/min using a MeV standard electron beam accelerator to manufacture a positive temperature coefficient heating element.

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 정온도계수발열체를 연속적으로 통과시키면서 30㎏/시간의 속도로 0.5mm 두께의 절연층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 절연층을 형성하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition pellets, and the positive temperature coefficient A 0.5 mm thick insulating layer was extruded at a rate of 30 kg/hour while continuously passing through the heating element, and an electron beam of 10 Mrad was irradiated with a 2.5 MeV standard electron beam accelerator to form a cross-linked insulating layer at a rate of 30 m/min.

절연층이 형성된 케이블 외주연에 직경 0.1Φmm 주석도금선으로 편조하여 (편조율 95%) 보강층을 형성하였다. A reinforcing layer was formed on the outer periphery of the cable on which the insulation layer was formed by braiding with a tin-plated wire having a diameter of 0.1 Φ (95% braiding rate).

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 보강층이 형성된 케이블을 연속적으로 통과시키면서 30㎏/시간의 속도로 0.7mm 두께의 피복층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 피복층이 구비된 자율제어형 히팅케이블 제조를 완료하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition, and a reinforcing layer is formed. Self-regulating heating cable equipped with a cross-linked coating layer at a speed of 30 m/min by extruding a coating layer with a thickness of 0.7 mm at a speed of 30 kg/hour while continuously passing the cable and irradiating an electron beam of 10 Mrad with a 2.5 MeV standard electron beam accelerator. Manufacturing is complete.

실시예3Example 3

배치혼합기에 이온교환수 10,000g과 포타슘 디(터트-부틸) 퍼옥사이드 200g, 소디움 아세테이트 140g을 순차적으로 투여한 다음 500RPM의 속도로 60분 동안 교반하여 개시제분산액을 제조하였다.10,000 g of ion-exchanged water, 200 g of potassium di(tert-butyl) peroxide, and 140 g of sodium acetate were sequentially added to a batch mixer, followed by stirring at 500 RPM for 60 minutes to prepare an initiator dispersion.

연속식 반응기에 아르곤을 1L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000g과 파라핀 왁스 90g을 투여하여 40분 동안 100RPM의 속도로 교반하면서 반응기 온도를 90℃로 상승시킨다. 상기 반응기에 비닐리덴 플루오라이드 8,000g과 에틸 아세테이트 140g을 투여하여 반응기 온도는 90℃, 반응기 압력은 45기압으로 유지시킨다. 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 10kg/시간의 속도로, 비닐리덴 플루오라이드) 15kg/시간의 속도로, 테트라플루오로에틸렌 1.5kg/시간의 속도로 공급하면서 반응기 압력은 45기압으로 유지시키고 5시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 30분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 100℃로 유지되는 가열오븐에서 12시간 건조시켜 불소수지 공중합체를 제조하였다.100,000 g of distilled water and 90 g of paraffin wax were administered while continuously supplying and discharging argon at a rate of 1 L/hour to a continuous reactor, and raising the temperature of the reactor to 90° C. while stirring at a rate of 100 RPM for 40 minutes. 8,000 g of vinylidene fluoride and 140 g of ethyl acetate were added to the reactor to maintain the reactor temperature at 90° C. and the reactor pressure at 45 atm. The initiator dispersion prepared in the initiator dispersion preparation step was supplied to the reactor at a rate of 10 kg/hour, vinylidene fluoride) at a rate of 15 kg/hour, and tetrafluoroethylene at a rate of 1.5 kg/hour, while the reactor pressure was 45 atm. After reacting for 5 hours, the supply of the initiator dispersion was stopped, the reaction was further continued for 30 minutes, and the reaction solution was cooled, filtered, and washed, and the obtained copolymer was dried in a heating oven maintained at 100 ° C for 12 hours. to prepare a fluororesin copolymer.

니더믹서에 불소수지 공중합체 10,000g, 탄소나노튜브 500g, 트리알릴 이소시아누레이트 75g, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트 45g 및 폴리프로필렌 왁스 30g을 투입하여 200℃의 온도에서 30분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 500Ω인 3 내지 5mm 크기의 정온도계수 조성물 펠렛을 제조하였다.10,000 g of fluororesin copolymer, 500 g of carbon nanotube, 75 g of triallyl isocyanurate, 45 g of bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and 30 g of polypropylene wax were added to a kneader mixer. A loaf of dough kneaded for 30 minutes at a temperature of 200 ° C. was transferred to a twin-screw extruder to prepare positive temperature coefficient composition pellets having a surface resistance of 500 Ω and a size of 3 to 5 mm through extrusion molding.

반응기에 에탄올 95,000g, 증류수 5,000g, 비닐테트리메톡시실란 15,000g, 아세틱 액시드 800g을 첨가하여 100RPM의 속도로 30분간 교반한 다음, 여기에 평균입경이 10㎛인 마그네슘 하이드로옥사이드 50,000g을 투여하고 200RPM의 속도로 60분간 교반한 다음 여과하여 80℃의 온도에서 건조시켜 실란 표면처리 된 난연제를 제조하였다.95,000 g of ethanol, 5,000 g of distilled water, 15,000 g of vinyltetrimethoxysilane, and 800 g of acetic acid were added to the reactor, stirred at 100 RPM for 30 minutes, and then 50,000 g of magnesium hydroxide having an average particle diameter of 10 μm was added thereto. Was administered and stirred for 60 minutes at a speed of 200 RPM, then filtered and dried at a temperature of 80 ° C. to prepare a silane surface-treated flame retardant.

니더믹서에 저밀도폴리에틸렌 100,000g, 실란 표면처리된 난연제 80,000g, 트리스(2,4-디-터트-부틸 페닐) 포스파이트 120g, 말레익안하이드리드 변성 폴리프로필렌 왁스 550g을 순차적으로 투여하고 120℃에서 30분간 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3 내지 5mm 크기의 절연피복조성물 펠렛을 제조한 후 별도의 헨셀 믹서에 상기 절연피복조성물 펠렛과 디부틸틴 디라우레이트 1,200g을 투여하고 80℃의 온도에서 30분간 혼합하여 가교형 절연피복조성물을 제조하였다.In a kneader mixer, 100,000 g of low-density polyethylene, 80,000 g of silane surface-treated flame retardant, 120 g of tris (2,4-di-tert-butyl phenyl) phosphite, and 550 g of maleic anhydride-modified polypropylene wax were sequentially added and heated at 120 ° C. After transferring the kneaded lump dough for 30 minutes to a twin-screw extruder to produce pellets of the insulation coating composition having a size of 3 to 5 mm through extrusion molding, the insulation coating composition pellets and dibutyltin dilaurate 1,200 g are administered to a separate Henschel mixer and mixed at a temperature of 80 ° C. for 30 minutes to prepare a cross-linked insulation coating composition.

압출성형용 다이가 부착되어 있는 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 정온도계수 조성물 펠렛을 투여하고, 800~1,000℃로 유지되는 가스오븐으로 불순물이 제게된 2가닥의 니켈도금동선을 연속적으로 통과시키면서 20㎏/시간의 속도로 압출한 다음, 150℃로 유지되는 가열조를 10 내지 50m/분 속도로 통과시킨 후 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 20m/분의 속도로 조사하여 정온도계수발열체를 제조하였다.A single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached. It is extruded at a rate of 20 kg/hour while continuously passing two strands of nickel-plated copper wire with impurities removed in a gas oven that is maintained, and then passed through a heating bath maintained at 150 °C at a rate of 10 to 50 m/min, followed by 2.5 An electron beam of 10 Mrad was irradiated at a speed of 20 m/min using a MeV standard electron beam accelerator to manufacture a positive temperature coefficient heating element.

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 170℃, 실린더3: 180℃, 다이:175℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 정온도계수발열체를 연속적으로 통과시키면서 30㎏/시간의 속도로 0.5mm 두께의 절연층을 압출하여 100℃로 유지되는 가열수조를 통과시는 30m/분의 속도로 통과시켜 절연층을 형성하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 170 ° C, cylinder 3: 180 ° C, die: 175 ° C) to which a die for extrusion molding is attached is injected into the hopper of the crosslinked insulation coating composition, and the positive temperature coefficient While continuously passing the heating element, an insulating layer having a thickness of 0.5 mm was extruded at a rate of 30 kg/hour, and passed through a heating water bath maintained at 100° C. at a rate of 30 m/min to form an insulating layer.

절연층이 형성된 케이블 외주연에 직경 0.1Φmm 주석도금선으로 편조하여 (편조율 95%) 보강층을 형성하였다. A reinforcing layer was formed on the outer periphery of the cable on which the insulation layer was formed by braiding with a tin-plated wire having a diameter of 0.1 Φ (95% braiding rate).

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 170℃, 실린더3: 180℃, 다이:175℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 보강층이 형성된 케이블을 연속적으로 통과시키면서 30㎏/시간의 속도로 0.7mm 두께의 피복층을 압출하여 100℃로 유지되는 가열수조에 30m/분의 속도로 통과시켜 가교된 피복층이 구비된 자율제어형 히팅케이블 제조를 완료하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 170 ° C, cylinder 3: 180 ° C, die: 175 ° C) to which a die for extrusion molding is attached is injected into the hopper of the crosslinked insulation coating composition, and a reinforcing layer is formed. The self-regulating heating cable equipped with a cross-linked coating layer was completed by extruding a 0.7 mm-thick coating layer at a rate of 30 kg/hour while passing the cable continuously and passing it through a heating water bath maintained at 100°C at a rate of 30 m/min. did

실시예4Example 4

상기 실시예3의 가교형 절연피복조성물을 제조에서 저밀도폴리에틸렌 대신에 에틸렌-비닐아세테이트 공중합체를 사용하는 것 외에는 실시예3과 동일한 방법으로 자율제어형 히팅케이블 제조를 완료하였다.Manufacturing of the self-regulating heating cable was completed in the same manner as in Example 3, except that ethylene-vinyl acetate copolymer was used instead of low-density polyethylene in manufacturing the cross-linked insulation coating composition of Example 3.

실시예5Example 5

상기 실시예2의 정온도계수 조성물 펠렛을 제조에서 전기전도성 카본블랙 대신에 흑연를 사용하는 것 외에는 실시예2와 동일한 방법으로 자율제어형 히팅케이블 제조를 완료하였다.The manufacturing of the self-regulating heating cable was completed in the same manner as in Example 2, except that graphite was used instead of the electrically conductive carbon black in manufacturing the positive temperature coefficient composition pellets of Example 2.

실시예6Example 6

상기 실시예1의 불소수지 공중합체를 제조에서 비닐 플루오라이드 대신에 비닐리덴 플루오라이드를 사용하는 것 외에는 실시예1과 동일한 방법으로 자율제어형 히팅케이블 제조를 완료하였다.The manufacture of a self-regulating heating cable was completed in the same manner as in Example 1, except that vinylidene fluoride was used instead of vinyl fluoride in the manufacture of the fluororesin copolymer of Example 1.

실시예7Example 7

상기 실시예2의 불소수지 공중합체를 제조에서 3,3,3-트리플루오로 프로필렌 대신에 퍼플루오로에틸(프로필 비닐 에테르)를 사용하는 것 외에는 실시예2와 동일한 방법으로 자율제어형 히팅케이블 제조를 완료하였다.Self-regulating heating cable was manufactured in the same manner as in Example 2, except that perfluoroethyl (propyl vinyl ether) was used instead of 3,3,3-trifluoropropylene in the manufacture of the fluororesin copolymer of Example 2. has been completed.

실시예8Example 8

상기 실시예2의 불소수지 공중합체를 제조에서 3,3,3-트리플루오로 프로필렌 대신에 헥사플루오로프로필렌을 사용하는 것 외에는 실시예2와 동일한 방법으로 자율제어형 히팅케이블 제조를 완료하였다.Manufacturing of the self-regulating heating cable was completed in the same manner as in Example 2, except that hexafluoropropylene was used instead of 3,3,3-trifluoropropylene in the manufacture of the fluororesin copolymer of Example 2.

비교예1(실시예1의 비교예)Comparative Example 1 (Comparative Example of Example 1)

니더믹서에 폴리비닐리덴플루오라이드(polyvinylidene fluoride) 10,000g, 전기전도성 카본블랙 1,500g 트리알릴 이소시아누레이트 75g, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트 45g 및 칼슘 스테아레이트(calcium Sstearate) 30g을 투입하여 200℃의 온도에서 30분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 500Ω인 3~5mm 크기의 정온도계수 조성물 펠렛을 제조하였다.In a kneader mixer, 10,000 g of polyvinylidene fluoride, 1,500 g of electrically conductive carbon black, 75 g of triallyl isocyanurate, 45 g of bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite and calcium 30 g of stearate (calcium stearate) was added and kneaded for 30 minutes at a temperature of 200 ° C. The dough was transferred to a twin-screw extruder and extruded to prepare positive temperature coefficient composition pellets having a surface resistance of 500 Ω and a size of 3 to 5 mm. .

니더믹서에 폴리비닐리덴플루오라이드 100,000g, 마그네슘 하이드로옥사이드 80,000g, 트리스(2,4-디-터트-부틸 페닐) 포스파이트 120g, 칼슘 스테아레이트 550g을 순차적으로 투여하고 220℃에서 30분간 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연피복조성물 펠렛을 제조한 후, 별도의 헨셀 믹서에 상기 절연피복조성물 펠렛과 트리알릴 이소시아누레이트 1,200g을 투여하고 80℃의 온도에서 30분간 혼합하여 가교형 절연피복조성물을 제조하였다.In a kneader mixer, 100,000 g of polyvinylidene fluoride, 80,000 g of magnesium hydroxide, 120 g of tris (2,4-di-tert-butyl phenyl) phosphite, and 550 g of calcium stearate were sequentially added and kneaded at 220 ° C. for 30 minutes. After transferring the lump dough to a twin screw extruder to produce pellets of the insulation coating composition having a size of 3 to 5 mm through extrusion molding, the insulation coating composition pellets and 1,200 g of triallyl isocyanurate were administered to a separate Henschel mixer and heated to 80 ° C. A cross-linked insulation coating composition was prepared by mixing at a temperature of 30 minutes.

압출성형용 다이가 부착되어 있는 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 정온도계수 조성물 펠렛을 투여하고, 800~1,000℃로 유지되는 가스오븐으로 불순물이 제게된 2가닥의 니켈도금동선을 연속적으로 통과시키면서 20㎏/시간의 속도로 압출한 다음, 150℃로 유지되는 가열조를 10 내지 50m/분 속도로 통과시킨 후 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 20m/분의 속도로 조사하여 정온도계수발열체를 제조하였다.A single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached. It is extruded at a rate of 20 kg/hour while continuously passing two strands of nickel-plated copper wire with impurities removed in a gas oven that is maintained, and then passed through a heating bath maintained at 150 °C at a rate of 10 to 50 m/min, followed by 2.5 An electron beam of 10 Mrad was irradiated at a speed of 20 m/min using a MeV standard electron beam accelerator to manufacture a positive temperature coefficient heating element.

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 정온도계수발열체를 연속적으로 통과시키면서 30㎏/시간의 속도로 0.5mm 두께의 절연층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 절연층을 형성하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition pellets, and the positive temperature coefficient A 0.5 mm thick insulating layer was extruded at a rate of 30 kg/hour while continuously passing through the heating element, and an electron beam of 10 Mrad was irradiated with a 2.5 MeV standard electron beam accelerator to form a cross-linked insulating layer at a rate of 30 m/min.

절연층이 형성된 케이블 외주연에 직경 0.1Φmm 주석도금선으로 편조하여 (편조율 95%) 보강층을 형성하였다. A reinforcing layer was formed on the outer periphery of the cable on which the insulation layer was formed by braiding with a tin-plated wire having a diameter of 0.1 Φ (95% braiding rate).

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 보강층이 형성된 케이블을 연속적으로 통과시키면서 30㎏/시간의 속도로 0.7mm 두께의 피복층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 피복층이 구비된 자율제어형 히팅케이블 제조를 완료하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition, and a reinforcing layer is formed. Self-regulating heating cable equipped with a cross-linked coating layer at a speed of 30 m/min by extruding a coating layer with a thickness of 0.7 mm at a speed of 30 kg/hour while continuously passing the cable and irradiating an electron beam of 10 Mrad with a 2.5 MeV standard electron beam accelerator. Manufacturing is complete.

비교예2(실시예2의 비교예)Comparative Example 2 (Comparative Example of Example 2)

니더믹서에 폴리비닐리덴 플루오라이드 10,000g, 전기전도성 카본블랙 1,500g 트리알릴 이소시아누레이트 75g, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트 45g 및 폴리프로필렌 왁스 30g을 투입하여 200℃의 온도에서 30분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 500Ω인 3~5mm 크기의 정온도계수 조성물 펠렛을 제조하였다.In a kneader mixer, 10,000 g of polyvinylidene fluoride, 1,500 g of electrically conductive carbon black, 75 g of triallyl isocyanurate, 45 g of bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and 30 g of polypropylene wax were mixed in a kneader mixer. After adding and kneading at a temperature of 200 ° C. for 30 minutes, the dough was transferred to a twin-screw extruder, and through extrusion molding, positive temperature coefficient composition pellets having a surface resistance of 500 Ω and a size of 3 to 5 mm were prepared.

니더믹서에 폴리비닐리덴 플루오라이드 100,000g, 마그네슘 하이드로옥사이드 80,000g, 트리스(2,4-디-터트-부틸 페닐) 포스파이트 120g, 말레익안하이드리드 변성 폴리프로필렌 왁스 550g을 순차적으로 투여하고 220℃에서 30분간 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연피복조성물 펠렛을 제조한 후 별도의 헨셀 믹서에 상기 절연피복조성물 펠렛과 트리알릴 이소시아누레이트 1,200g을 투여하고 80℃의 온도에서 30분간 혼합하여 가교형 절연피복조성물을 제조하였다.100,000 g of polyvinylidene fluoride, 80,000 g of magnesium hydroxide, 120 g of tris (2,4-di-tert-butyl phenyl) phosphite, and 550 g of maleic anhydride-modified polypropylene wax were sequentially added to a kneader mixer and heated to 220 ° C. After kneading for 30 minutes, the dough is transferred to a twin screw extruder to produce pellets of the insulation coating composition having a size of 3 to 5 mm through extrusion molding, and then the insulation coating composition pellets and 1,200 g of triallyl isocyanurate are mixed in a separate Henschel mixer. A cross-linked insulation coating composition was prepared by administering and mixing at a temperature of 80 ° C. for 30 minutes.

압출성형용 다이가 부착되어 있는 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 정온도계수 조성물 펠렛을 투여하고, 800~1,000℃로 유지되는 가스오븐으로 불순물이 제게된 2가닥의 니켈도금동선을 연속적으로 통과시키면서 20㎏/시간의 속도로 압출한 다음, 150℃로 유지되는 가열조를 10 내지 50m/분 속도로 통과시킨 후 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 20m/분의 속도로 조사하여 정온도계수발열체를 제조하였다.A single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached. It is extruded at a rate of 20 kg/hour while continuously passing two strands of nickel-plated copper wire with impurities removed in a gas oven that is maintained, and then passed through a heating bath maintained at 150 °C at a rate of 10 to 50 m/min, followed by 2.5 An electron beam of 10 Mrad was irradiated at a speed of 20 m/min using a MeV standard electron beam accelerator to manufacture a positive temperature coefficient heating element.

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 정온도계수발열체를 연속적으로 통과시키면서 30㎏/시간의 속도로 0.5mm 두께의 절연층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 절연층을 형성하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition pellets, and the positive temperature coefficient A 0.5 mm thick insulating layer was extruded at a rate of 30 kg/hour while continuously passing through the heating element, and an electron beam of 10 Mrad was irradiated with a 2.5 MeV standard electron beam accelerator to form a cross-linked insulating layer at a rate of 30 m/min.

절연층이 형성된 케이블 외주연에 직경 0.1Φmm 주석도금선으로 편조하여 (편조율 95%) 보강층을 형성하였다. A reinforcing layer was formed on the outer periphery of the cable on which the insulation layer was formed by braiding with a tin-plated wire having a diameter of 0.1 Φ (95% braiding rate).

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 보강층이 형성된 케이블을 연속적으로 통과시키면서 30㎏/시간의 속도로 0.7mm 두께의 피복층을 압출하여 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 조사하여 30m/분의 속도로 가교된 피복층이 구비된 자율제어형 히팅케이블 제조를 완료하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached is injected into the hopper of the cross-linked insulation coating composition, and a reinforcing layer is formed. Self-regulating heating cable equipped with a cross-linked coating layer at a speed of 30 m/min by extruding a coating layer with a thickness of 0.7 mm at a speed of 30 kg/hour while continuously passing the cable and irradiating an electron beam of 10 Mrad with a 2.5 MeV standard electron beam accelerator. Manufacturing is complete.

비교예3(실시예3의 비교예)Comparative Example 3 (Comparative Example of Example 3)

니더믹서에 폴리비닐리덴 플루오라이드 10,000g, 탄소나노튜브 500g, 트리알릴 이소시아누레이트 75g, 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트 45g 및 폴리프로필렌 왁스 30g을 투입하여 200℃의 온도에서 30분 동안 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 500Ω인 3~5mm 크기의 정온도계수 조성물 펠렛을 제조하였다.Put 10,000 g of polyvinylidene fluoride, 500 g of carbon nanotubes, 75 g of triallyl isocyanurate, 45 g of bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, and 30 g of polypropylene wax into a kneader mixer. The kneaded loaf dough was transferred to a twin-screw extruder at a temperature of 200 ° C. for 30 minutes to prepare positive temperature coefficient composition pellets having a surface resistance of 500 Ω and a size of 3 to 5 mm through extrusion molding.

니더믹서에 저밀도폴리에틸렌 100,000g, 마그네슘 하이드로옥사이드 80,000g, 트리스(2,4-디-터트-부틸 페닐) 포스파이트 120g, 말레익안하이드리드 변성 폴리프로필렌 왁스 550g을 순차적으로 투여하고 120℃에서 30분간 혼련 한 덩어리 반죽을 이축 압출기로 이송시켜 압출성형을 통해 3 내지 5mm 크기의 절연피복조성물 펠렛을 제조한 후 별도의 헨셀 믹서에 상기 절연피복조성물 펠렛과 디부틸틴 디라우레이트 1,200g을 투여하고 80℃의 온도에서 30분간 혼합하여 가교형 절연피복조성물을 제조하였다.In a kneader mixer, 100,000 g of low-density polyethylene, 80,000 g of magnesium hydroxide, 120 g of tris (2,4-di-tert-butyl phenyl) phosphite, and 550 g of maleic anhydride-modified polypropylene wax were sequentially added and heated at 120 ° C for 30 minutes. The kneaded dough is transferred to a twin-screw extruder to produce pellets of the insulation coating composition having a size of 3 to 5 mm through extrusion molding, and then the insulation coating composition pellets and 1,200 g of dibutyltin dilaurate are administered to a separate Henschel mixer and 80 A cross-linked insulation coating composition was prepared by mixing for 30 minutes at a temperature of °C.

압출성형용 다이가 부착되어 있는 일축압출기(실린더1: 160℃, 실린더2: 200℃, 실린더3: 230℃, 다이: 250℃) 호퍼에 정온도계수 조성물 펠렛을 투여하고, 800~1,000℃로 유지되는 가스오븐으로 불순물이 제게된 2가닥의 니켈도금동선을 연속적으로 통과시키면서 20㎏/시간의 속도로 압출한 다음, 150℃로 유지되는 가열조를 10 내지 50m/분 속도로 통과시킨 후 2.5MeV 규격의 전자선 가속기로 10Mrad의 전자선을 20m/분의 속도로 조사하여 정온도계수발열체를 제조하였다.A single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 200 ° C, cylinder 3: 230 ° C, die: 250 ° C) to which a die for extrusion molding is attached. It is extruded at a rate of 20 kg/hour while continuously passing two strands of nickel-plated copper wire with impurities removed in a gas oven that is maintained, and then passed through a heating bath maintained at 150 °C at a rate of 10 to 50 m/min, followed by 2.5 An electron beam of 10 Mrad was irradiated at a speed of 20 m/min using a MeV standard electron beam accelerator to manufacture a positive temperature coefficient heating element.

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 170℃, 실린더3: 180℃, 다이:175℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 정온도계수발열체를 연속적으로 통과시키면서 30㎏/시간의 속도로 0.5mm 두께의 절연층을 압출하여 100℃로 유지되는 가열수조를 통과시는 30m/분의 속도로 통과시켜 절연층을 형성하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 170 ° C, cylinder 3: 180 ° C, die: 175 ° C) to which a die for extrusion molding is attached is injected into the hopper of the crosslinked insulation coating composition, and the positive temperature coefficient While continuously passing the heating element, an insulating layer having a thickness of 0.5 mm was extruded at a rate of 30 kg/hour, and passed through a heating water bath maintained at 100° C. at a rate of 30 m/min to form an insulating layer.

절연층이 형성된 케이블 외주연에 직경 0.1Φmm 주석도금선으로 편조하여 (편조율 95%) 보강층을 형성하였다. A reinforcing layer was formed on the outer periphery of the cable on which the insulation layer was formed by braiding with a tin-plated wire having a diameter of 0.1 Φ (95% braiding rate).

압출성형용 다이가 부착되어 있는 별도의 일축압출기(실린더1: 160℃, 실린더2: 170℃, 실린더3: 180℃, 다이:175℃) 호퍼에 가교형 절연피복조성물 펠렛을 투여하고 보강층이 형성된 케이블을 연속적으로 통과시키면서 30㎏/시간의 속도로 0.7mm 두께의 피복층을 압출하여 100℃로 유지되는 가열수조에 30m/분의 속도로 통과시켜 가교된 피복층이 구비된 자율제어형 히팅케이블 제조를 완료하였다.A separate single-screw extruder (cylinder 1: 160 ° C, cylinder 2: 170 ° C, cylinder 3: 180 ° C, die: 175 ° C) to which a die for extrusion molding is attached is injected into the hopper of the crosslinked insulation coating composition, and a reinforcing layer is formed. The self-regulating heating cable equipped with a cross-linked coating layer was completed by extruding a 0.7 mm-thick coating layer at a rate of 30 kg/hour while passing the cable continuously and passing it through a heating water bath maintained at 100°C at a rate of 30 m/min. did

이렇게 제조된 자율제어형 히팅케이블의 콜드 벤드(cold bend), 난연성, 내전압, 사이클 시험(cycle test), 최대발열온도 시험을 시행하여 그 결과를 표1에 나타내었다. Cold bend, flame retardancy, withstand voltage, cycle test, and maximum heating temperature test were performed on the self-regulating heating cable thus manufactured, and the results are shown in Table 1.

시험항목Test Items 실시예1Example 1 실시예2Example 2 실시예3Example 3 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 콜드 벤드 (-30℃)Cold bend (-30℃) 합격pass 합격pass 합격pass 불합격fail 불합격fail 불합격fail 난연성(%)Flame retardancy (%) 합격pass 합격pass 합격pass 불합격fail 불합격fail 불합격fail 내전압(1,500V/분)Dielectric strength (1,500V/min) 합격pass 합격pass 합격pass 합격pass 합격pass 합격pass 사이클시험(1,000시간, 220V, 1시간당 전원 4회 공급/끔 반복)Cycle test (1,000 hours, 220V, 4 power on/off repetitions per hour) 합격pass 합격pass 합격pass 불합격fail 불합격fail 불합격fail 최대발열온도(℃)Maximum heating temperature (℃) 9595 9494 9393 8888 8585 8282

표1에서와 같이 본 발명에 따른 실시예의 콜드 벤드, 난연성, 사이클 시험, 최대발열온도 등이 비교예 보다 우수한 것을 확인 할 수 있다. As shown in Table 1, it can be confirmed that the cold bend, flame retardancy, cycle test, and maximum heating temperature of the examples according to the present invention are superior to those of the comparative examples.

본 발명의 고내열 유연성 정온도계수 조성물 및 자율제어형 히팅케이블의 제조방법은 불소계 단량체의 조합비를 조절하여 공중합 함으로써 전기전도성 충진제의 분산특성을 극대화하고 금속계 도체와의 계면접착성을 향상시켜 최종 제품의 수명을 향상 및 화재 위험을 최소화 시킬 수 있는 내열성은 물론 유연성, 전기적, 기계적, 화학적 특성 외에도 시공성 및 생산성을 향상시킬 수 있는 수 있는 효과를 가지고 있어 산업상 이용가치가 대단하다 할 것이다.The manufacturing method of the high heat resistance flexible constant temperature coefficient composition and the self-regulating heating cable of the present invention copolymerizes by adjusting the combination ratio of the fluorine-based monomers to maximize the dispersion characteristics of the electrically conductive filler and improve the interfacial adhesion with the metal conductor to obtain a final product. In addition to heat resistance that can improve lifespan and minimize fire risk, as well as flexibility, electrical, mechanical, and chemical properties, it has effects that can improve workability and productivity, so it will be said to have great industrial use value.

Claims (4)

배치혼합기에(batch mixer)에 이온교환수 10,000중량부와 수용성 개시제(initiator)나 유기과산물 개시제(organic peroxide), 카보네이트계 개시제에서 선택되어 단독 내지 2종이상 혼합되어 사용되는 개시제 160~220중량부, 완충제(buffering agent) 120~160중량부를 순차적으로 투여한 다음 50~1,000RPM의 속도로 30~120분 교반하여 개시제분산액을 제조하는 개시제분산액 제조단계와;
교반기, 온도조절기가 장착된 연속식 반응기(flow reactor)에 질소(nitrogen)나 네온(neon), 아르곤(argon), 수소(hydrogen) 등에서 선택되어지는 퍼지 가스를 1~10L/시간의 속도로 연속공급하여 배출하면서 증류수 100,000중량부와, 유화제(emulsifier) 70~110중량부를 투여하여 20~120분 동안 50~500RPM의 속도로 교반하면서 반응기 온도를 80~120℃로 상승시킨다음, 상기 반응기에 단량체 6,000~10,000중량부와, 체인 트랜스퍼제(chain-transfer agent) 100~200중량부를 투여하여 반응기 온도는 70~120℃, 반응기 압력은 30~60기압으로 유지시키고, 상기 반응기에 개시제분산액 제조단계에서 제조된 개시제분산액을 0.5~14kg/시간의 속도로, 단량체 10~20kg/시간의 속도로, 공단량체(comonomer) 0.1~5kg/시간의 속도로 공급하면서 반응기 압력은 30~60기압으로 유지시키고 2~10시간 동안 반응 시킨 후에 개시제분산액의 공급을 중단하고, 10~60분 동안 반응을 더 지속시킨 다음 반응액을 냉각, 여과, 세척하여 얻어진 공중합체를 80~120℃로 유지되는 가열오븐에서 12~24시간 건조시켜 불소수지 공중합체를 제조하는 공중합단계와;
니더나 헨셀, 밴버리 등의 혼합 믹서에 공중합단계에서 제조된 불소수지 공중합체 10,000중량부와 전기도전성 충진제 500~2,000중량부, 조사가교제(irradiation crosslinking agent) 50~100중량부, 포스파이트계 화합물에서 단독 내지는 2종이상 혼합사용되는 산화방지제(antioxidant) 40~80중량부 및 활제(lubricant) 25~40중량부를 순차적으로 투입하여 150~350℃의 온도에서 10~60분 동안 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 표면저항이 101~105 Ω인 3~5mm 크기의 고내열 유연성 정온도계수 펠렛을 제조하는 가교형 정온도계수 조성물 제조단계와;
교반기(stirrer)가 장착된 반응기에 알코올(alcohol) 95,000중량부와, 증류수 5,000중량부, 비닐 실란과, 불소실란에서 선택되는 실란 10,000~50,000중량부를 첨가하고, 산촉매(acid catalyst) 500~2,000중량부를 가하여 pH 3~5를 유지시키면서 50~300RPM 속도로 20~60분간 교반시킨 용액에, 평균입경이 0.01~20㎛를 갖는 금속수화물에서 단독 내지는 2종 이상 선택되어지는 난연제 35,000~55,000중량부를 가하여 50~300RPM 속도로 20~120분간 교반한 다음 여과한 후 60~120℃에서 건조하여 실란으로 표면처리된 난연제를 제조하는 난연제의 표면처리단계와;
혼합믹서에 고분자 수지 펠렛 100,000중량부와, 난연제의 표면처리단계에서 제조된 실란표면처리된 난연제 40,000~100,000중량부, 산화방지제 50~200중량부, 활제 100~1,000중량부를 순차적으로 투여하고 100~350℃의 온도에서 5~60분간 혼련 한 덩어리 반죽을 일축이나 이축 압출기로 이송시켜 압출성형을 통해 3~5mm 크기의 절연피복조성물 펠렛을 제조한다음, 별도의 혼합 믹서에 상기 절연피복조성물 펠렛과 조사가교제(irradiation crosslinking agent)나 가교제 1,000~20,000중량부를 투여하고 60~100℃의 온도에서 10~60분간 혼합하여 가교형 절연피복조성물 펠렛을 제조하는 가교형 절연피복조성물 제조단계와;
도체 2~4가닥을 가스토치나 가스오븐을 통과시켜 400~1000℃의 온도로 가열하여 도체 표면에 붙은 불순물을 제거하여 열처리된 도체를 제조하는 도체열처리단계와;
상기 가교형 정온도계수 조성물 제조단계에서 제조된 정온도계수 조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이(extrusion die)가 부착되어 있는 압출기의 헤드(head)에 도체열처리단계에서 제조된 열처리된 도체 2~4가닥을 통과시키면서 온도조건이 실린더(cylinder)1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드(extrusion head) 150~350℃, 압출다이(extrusion die)는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음, 80~200℃로 유지되는 가열조를 10~50m/분 속도로 통과시킨 후, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건으로 전자선 조사하여 가교된 정온도계수발열체를 제조하는 정온도계수발열체 제조단계와;
상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음, 압출 다이가 부착되어 있는 압출기의 헤드에 정온도계수발열체 제조단계에서 제조된 정온도계수발열체를 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택되어 20~50m/분의 속도로 가교된 절연층이 형성된 히팅케이블을 제조하는 절연층 형성단계와;
상기 절연층형성단계에서 제조된 절연층이 형성된 히팅케이블 외주연에 금속와이어로 편조하여 보강층을 형성하는 보강층 형성단계와;
상기 가교형 절연피복조성물 제조단계에서 제조된 가교형 절연피복조성물 펠렛을 호퍼(hopper)에 투여한 다음 압출 다이가 부착되어 있는 압출기의 헤드에 상기 보강층 형성단계에서 제조된 보강층이 형성된 히팅케이블을 통과시키면서 온도조건이 실린더1은 120~300℃, 실린더2는 120~300℃, 실린더3은 150~350℃, 압출헤드 150~350℃, 압출다이는 150~350℃의 온도조건으로 10~40㎏/시간의 속도로 압출한 다음 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택 되어 20~50m/분의 속도로 가교된 피복층을 성형하는 피복층 형성단계를 거쳐 제조되는 것을 특징으로하는 고내열 유연성 정온도계수 자율제어형 히팅케이블의 제조방법.
In a batch mixer, 10,000 parts by weight of ion-exchanged water and 160 to 220 parts by weight of an initiator selected from water-soluble initiators, organic peroxides, and carbonate-based initiators used alone or in a mixture of two or more , Initiator dispersion preparation step of preparing an initiator dispersion by sequentially administering 120 to 160 parts by weight of a buffering agent and then stirring at a speed of 50 to 1,000 RPM for 30 to 120 minutes;
A purge gas selected from nitrogen, neon, argon, and hydrogen is continuously supplied at a rate of 1 to 10 L/hour in a flow reactor equipped with an agitator and a temperature controller. While supplying and discharging, 100,000 parts by weight of distilled water and 70 to 110 parts by weight of an emulsifier are administered, and the reactor temperature is raised to 80 to 120 ° C. while stirring at a speed of 50 to 500 RPM for 20 to 120 minutes. 6,000 to 10,000 parts by weight and 100 to 200 parts by weight of a chain-transfer agent are administered to maintain the temperature of the reactor at 70 to 120 ° C and the pressure of the reactor at 30 to 60 atm, and in the step of preparing the initiator dispersion in the reactor While supplying the prepared initiator dispersion at a rate of 0.5 to 14 kg/hour, monomer at 10 to 20 kg/hour, and comonomer at a rate of 0.1 to 5 kg/hour, the reactor pressure was maintained at 30 to 60 atm and 2 After reacting for ~10 hours, the supply of the initiator dispersion was stopped, the reaction was further continued for 10 to 60 minutes, and the reaction solution was cooled, filtered, and washed. A copolymerization step of preparing a fluororesin copolymer by drying for ~24 hours;
In a mixing mixer such as Kneader, Henschel, or Banbury, 10,000 parts by weight of the fluororesin copolymer prepared in the copolymerization step, 500 to 2,000 parts by weight of an electrically conductive filler, 50 to 100 parts by weight of an irradiation crosslinking agent, and a phosphite-based compound 40 to 80 parts by weight of antioxidants and 25 to 40 parts by weight of lubricants used alone or in combination of two or more are sequentially added, and the dough is kneaded at a temperature of 150 to 350 ° C for 10 to 60 minutes. or a twin-screw extruder to prepare a cross-linked positive temperature coefficient composition for preparing heat-resistant flexible positive temperature coefficient pellets having a surface resistance of 10 1 to 10 5 Ω and a size of 3 to 5 mm through extrusion molding;
95,000 parts by weight of alcohol, 5,000 parts by weight of distilled water, 10,000 to 50,000 parts by weight of a silane selected from vinyl silane and fluorosilane are added to a reactor equipped with a stirrer, and 500 to 2,000 parts by weight of an acid catalyst 35,000 to 55,000 parts by weight of a flame retardant selected from metal hydrates having an average particle diameter of 0.01 to 20 μm, alone or in combination, to a solution stirred at a speed of 50 to 300 RPM for 20 to 60 minutes while maintaining pH 3 to 5. A flame retardant surface treatment step of preparing a flame retardant surface-treated with silane by stirring at a speed of 50 to 300 RPM for 20 to 120 minutes, filtering, and drying at 60 to 120 ° C;
In a mixing mixer, 100,000 parts by weight of polymer resin pellets, 40,000 to 100,000 parts by weight of a silane surface-treated flame retardant prepared in the surface treatment step of the flame retardant, 50 to 200 parts by weight of an antioxidant, and 100 to 1,000 parts by weight of a lubricant are sequentially injected, and A loaf of dough kneaded for 5 to 60 minutes at a temperature of 350 ° C is transferred to a single screw or twin screw extruder to produce 3 to 5 mm size insulation coating composition pellets through extrusion molding, and then in a separate mixing mixer, the insulation coating composition pellets and A crosslinking insulation coating composition preparation step of preparing a crosslinking insulation coating composition pellet by administering 1,000 to 20,000 parts by weight of an irradiation crosslinking agent or crosslinking agent and mixing at a temperature of 60 to 100 ° C for 10 to 60 minutes;
A conductor heat treatment step of manufacturing a heat-treated conductor by heating 2 to 4 conductors through a gas torch or gas oven to a temperature of 400 to 1000 ° C to remove impurities attached to the conductor surface;
The positive temperature coefficient composition pellets prepared in the crosslinking type positive temperature coefficient composition preparation step are administered to a hopper, and then the heat treatment produced in the conductor heat treatment step is applied to the head of an extruder to which an extrusion die is attached. While passing 2 to 4 conductors, the temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, The extrusion die is extruded at a temperature of 150 to 350 ° C at a rate of 10 to 40 kg / hour, and then passed through a heating bath maintained at 80 to 200 ° C at a rate of 10 to 50 m / min. A manufacturing step of producing a positive temperature coefficient heating element cross-linked by irradiating electron beams under conditions of 1 to 20 Mrad using an electron beam accelerator of ~2.5 MeV standard;
The cross-linked insulation coating composition pellets prepared in the cross-linked insulation coating composition manufacturing step are administered to a hopper, and then the positive temperature coefficient heating element manufactured in the positive temperature coefficient heating element manufacturing step is placed on the head of the extruder to which the extrusion die is attached. while passing through, the temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, and 150~350℃ for extrusion die. After extrusion at a speed of 40 kg/hour, it is selected from electron beam crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator of 1 to 2.5 MeV standard or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. an insulating layer forming step of manufacturing a heating cable having a cross-linked insulating layer at a speed of 50 m/min;
a reinforcing layer forming step of forming a reinforcing layer by braiding a metal wire around the outer periphery of the heating cable on which the insulating layer manufactured in the insulating layer forming step is formed;
The cross-linked insulation coating composition pellets prepared in the step of preparing the cross-linked insulation coating composition are injected into a hopper, and then passed through the heating cable formed with the reinforcing layer prepared in the step of forming the reinforcing layer through the head of the extruder to which the extrusion die is attached. temperature conditions are 120~300℃ for cylinder 1, 120~300℃ for cylinder 2, 150~350℃ for cylinder 3, 150~350℃ for extrusion head, and 150~350℃ for extrusion die. After extrusion at a speed of 1 to 2.5 MeV, it is selected from electron beam irradiation crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator or silane crosslinking when passing through a heating bath maintained at 60 to 100 ° C. A method for manufacturing a self-regulating heating cable with high heat resistance, flexibility and positive temperature coefficient, characterized in that it is manufactured through a coating layer forming step of forming a crosslinked coating layer at a speed of 20 minutes.
제1항에 있어서,
상기 개시제분산액 제조단계의 유기과산물 개시제(organic peroxide)는 퍼옥시모노설페이트(peroxymonosulfate), 소디움 퍼설페이트(sodium persulfate), 포타슘 퍼설페이트(potassium persulfate), 암모늄퍼설페이트(ammonium persulfate) 인 설페이트계 수용성 개시제(initiator)나 디(터트-부틸) 퍼옥사이드[di(tert-butyl) peroxide], 벤조일 퍼옥사이드(benzoyl peroxide), β-하이드록시에틸 터트-부틸 퍼옥사이드(β-hydroxyalkyl tert-butyl peroxide), 이소프로필 수퍼옥사이드(di-isopropyl superoxide), β-카르복시 에틸 터트-부틸 퍼옥사이드(β-carboxy ethyl tert-butyl peroxide) 중 하나이며, 카보네이트계 개시제는 디퍼옥시디카보네이트(diperoxydicarbonate), 디(엔-프로필) 퍼옥시디카보네이트[di(n-propyl) peroxydicarbonate], 디(섹-부틸) 퍼옥시디카보네이트[di(sec-butyl) peroxydicarbonate], 디(에틸헥실) 퍼옥시디카보네이트[di(ethylhexyl) peroxydicarbonate], 디이소프로필 퍼옥시디카보네이트[diisopropyl peroxydicarbonate] 중 하나이며, 완충제(buffering agent)는 암모늄 아세테이트(ammonium acetate)나, 소디움 아세테이트(sodium acetate), 포타슘 아세테이트(potassium acetate), 소디움 포스페이트(sodium phosphate), 디소디움 하이드로젠 아세테이트(disodium hydrogen phosphate), 소디움 바이카보네이트(sodium bicarbonate), 포타슘 바이카보네이트(potassium bicarbonate) 중 하나인 것과;
상기 공중합단계의 유화제(emulsifier)는 파라핀 왁스(paraffin wax)나 마이크로크리스탈린 왁스(microcrystalline wax), 하이드로카본 오일(hydrocarbon oil) 중 하나이며, 단량체는 비닐 플루오라이드(vinyl fluoride)나 비닐리덴 플루오라이드(vinylidene fluoride) 중 하나이며, 체인 트랜스퍼제(chain-transfer agent)는 에틸 아세테이트(ethyl acetate)나, 메틸 아세테이트(methyl acetate), 디에틸 카보네이트(diethyl carbonate), 메틸 카보네이트(methyl carbonate), 아세톤(acetone), 메틸에틸케톤(methylethylketone), 클로로포름(chloroform), 이소프로필카비놀(isopropylcarbinol) 중 하나이며, 공단량체(comonomer)는 3,3,3-트리플루오로 프로필렌(3,3,3-trifluoropropene)이나, 테트라플루오로에틸렌(tetrafluoroethylene), 헥사플루오로프로필렌(hexafluoropropylene), 퍼플루오로에틸(프로필 비닐 에테르)[perfluoro(propyl vinyl ether)] 중 하나인 것과;
상기 가교형 정온도계수 조성물 펠렛 제조단계의 전기도전성 충진제는 전기전도성(electro-conductive) 카본블랙(carbon black)이나, 탄소나노튜브(carbon nanotube), 흑연(graphite), 그라핀(graphene) 중 하나이며, 조사가교제(irradiation crosslinking agent)는 트리알릴 시아누레이트(triallyl cyanurate), 트리알릴 이소시아누레이트(triallyl isocyanurate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 트리메틸올 프로판 트리아크릴레이트(trimethylolpropane triacrylate) 중 하나이며, 포스파이트계 화합물은 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite]나, 트리스(2,4-디-터트-부틸 페닐) 포스파이트[tris(2,4-di-tert-butylphenyl) phosphite], 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite], 트리스 (노닐페닐) 포스파이트[tris(nonylphenyl) phosphite, 이소데실 디페닐포스파이트(isodecyl diphenyl phosphite), 비스(2,6-디-터트-부틸-4-메틸페닐)펜타에리트리톨 디포스파이트[bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite] 이며, 활제(lubricant)는 폴리에틸렌 왁스(polyethylene wax)나, 폴리프로필렌 왁스(polypropylene wax), 말레익안하이드리드 변성 폴리프로필렌 왁스(maleic anhydride modified polypropylene wax), 아마이드 변성 폴리에틸렌 왁스(amide modified polyethylene wax)인 저분자량 (변성)폴리올레핀(polyolefin) 중 하나인 것과;
상기 난연제의 표면처리단계의 알킬 실란(alkyl silane)은 디메틸디메톡시실란(dimethyldimethoxysilane), 메틸트리메톡시실란(methyltrimethoxysilane), 테트라메톡시실란(tetramethoxysilane), 테트라에톡시실란(tetraethoxysilane) 중 하나이며, 불소실란은 비닐테트리에톡시실란(vinyltriethoxysilane), 비닐테트리메톡시실란(vinyltrimethoxysilane)인 비닐 실란, 트리데카플루오로-1,1,2,2-테트라하이드로옥틸트리에톡시실란(tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane), 3,3,3-트리플루오로프로필트리메톡시실란(3,3,3-trifluoropropyltrimethoxysilane), 1H,1H,2H,2H-퍼플루오로데실트리메톡시실란(1H,1H,2H, 2H-perfluorodecyltrimethoxysilane) 중 하나이며, 산촉매(acid catalyst)는 염산이나 아세틱 액시드(acetic acid) 중에서 산(acid)에서 선택되며, 금속수화물은 평균입경이 0.01~20㎛를 갖는 마그네슘 하이드로옥사이드 포스페이트(magnesium hydroxide phosphate)나, 칼슘 하이드로옥사이드(calcium hydroxide), 알루미늄 하이드로옥사이드(aluminium hydroxide)나 마그네슘 하이드로옥사이드(magnesium hydroxide) 인 것과;
가교형 절연피복조성물 제조단계의 가교제는 조사가교제(irradiation crosslinking agent)나 디부틸틴 디라우레이트(dibutyltin dilaurate), 디에틸디티오카바메이트(diethyldithiocarbamate), 디부틸틴 디아세테이트(dibutyltin diacetate), 트리페닐틴 아세테이트(triphenyltin acetate), 트리에틸틴 시아니드 (triethyltin cyanide), 디페닐틴 클로라이드 (diphenyltin chloride), 트리토릴틴 프로피오네이트(tritolyltin propionate) 중의 실란가교촉매(silane-crosslinking catalyst)에서 선택되는 것으로 함을 특징으로하는 고내열 유연성 정온도계수 자율제어형 히팅케이블의 제조방법.
According to claim 1,
The organic peroxide in the initiator dispersion preparation step is a sulfate-based water-soluble initiator that is peroxymonosulfate, sodium persulfate, potassium persulfate, or ammonium persulfate. (initiator) or di(tert-butyl) peroxide, benzoyl peroxide, β-hydroxyethyl tert-butyl peroxide, It is one of isopropyl superoxide (di-isopropyl superoxide) and β-carboxy ethyl tert-butyl peroxide, and the carbonate-based initiator is diperoxydicarbonate (diperoxydicarbonate), di(N- Propyl) peroxydicarbonate [di (n-propyl) peroxydicarbonate], di (sec-butyl) peroxydicarbonate [di (sec-butyl) peroxydicarbonate], di (ethylhexyl) peroxydicarbonate [di (ethylhexyl) peroxydicarbonate], It is one of diisopropyl peroxydicarbonate, and the buffering agent is ammonium acetate, sodium acetate, potassium acetate, sodium phosphate, one of sodium hydrogen phosphate, sodium bicarbonate and potassium bicarbonate;
The emulsifier in the copolymerization step is one of paraffin wax, microcrystalline wax, and hydrocarbon oil, and the monomer is vinyl fluoride or vinylidene fluoride (vinylidene fluoride), and the chain-transfer agent is ethyl acetate, methyl acetate, diethyl carbonate, methyl carbonate, acetone ( acetone), methylethylketone, chloroform, and isopropylcarbinol, and the comonomer is 3,3,3-trifluoropropylene (3,3,3-trifluoropropene ), but one of tetrafluoroethylene, hexafluoropropylene, and perfluoroethyl (propyl vinyl ether) [perfluoro(propyl vinyl ether)];
The electrically conductive filler in the step of manufacturing the pellets of the cross-linked positive temperature coefficient composition is one of electro-conductive carbon black, carbon nanotube, graphite, and graphene And, the irradiation crosslinking agent is triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate ( trimethylolpropane triacrylate), and the phosphite-based compound is bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite [bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite] or tris( 2,4-di-tert-butylphenyl) phosphite [tris(2,4-di-tert-butylphenyl) phosphite], bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite [bis( 2,4-di-tert-butylphenyl) pentaerythritol diphosphite], tris (nonylphenyl) phosphite [tris(nonylphenyl) phosphite, isodecyl diphenyl phosphite, bis(2,6-di-tert- Butyl-4-methylphenyl) pentaerythritol diphosphite [bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite], and the lubricant is polyethylene wax or polypropylene wax (polypropylene wax), maleic anhydride modified polypropylene wax, amide modified polyethylene wax (amide modi one of low molecular weight (modified) polyolefins, which are fed polyethylene wax;
The alkyl silane in the surface treatment step of the flame retardant is one of dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, and tetraethoxysilane, Fluorosilane includes vinyltriethoxysilane, vinyl silane which is vinyltetrimethoxysilane, tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (tridecafluoro-1, 1,2,2-tetrahydrooctyltriethoxysilane), 3,3,3-trifluoropropyltrimethoxysilane (3,3,3-trifluoropropyltrimethoxysilane), 1H,1H,2H,2H-perfluorodecyltrimethoxysilane ( It is one of 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane, the acid catalyst is selected from acid among hydrochloric acid or acetic acid, and the metal hydrate has an average particle diameter of 0.01 to 20㎛ having magnesium hydroxide phosphate, calcium hydroxide, aluminum hydroxide or magnesium hydroxide;
The crosslinking agent in the manufacturing step of the crosslinking insulation coating composition is an irradiation crosslinking agent, dibutyltin dilaurate, diethyldithiocarbamate, dibutyltin diacetate, tri A silane-crosslinking catalyst selected from triphenyltin acetate, triethyltin cyanide, diphenyltin chloride, and tritolyltin propionate A method for manufacturing a self-regulating heating cable with a high heat-resistant flexibility and positive temperature coefficient, characterized in that.
400~1000℃의 온도로 가열하여 표면에 붙은 불순물을 제거한 도체 2~4가닥을 정온도계수 조성물로 코팅하고, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건으로 전자선 조사한 정온도계수발열체를 구성한 것과;
상기 정온도계수발열체에 가교형 절연피복조성물을 코팅하여 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 실란가교로 가교된 절연층을 갖는 히팅케이블을 구성한 것과;
상기 히팅케이블 외주연에 금속와이어로 편조하여 보강층을 형성한 것과;
상기 보강층이 형성된 히팅케이블에 가교형 절연피복조성물을 코팅하고, 1~2.5MeV 규격의 전자선 가속기를 이용한 1~20Mrad의 조건의 전자선 조사가교나 60~100℃로 유지되는 가열수조를 통과시는 실란가교 등에서 선택 되어 20~50m/분의 속도로 가교된 피 복층을구성한 것으로 이루어짐을 특징으로하는 고내열 유연성 정온도계수 자율제어형 히팅케이블.
2 to 4 conductors heated to a temperature of 400 ~ 1000 ℃ to remove impurities attached to the surface are coated with a positive temperature coefficient composition, and positive temperature coefficient irradiated with electron beams under conditions of 1 to 20 Mrad using an electron beam accelerator with a standard of 1 to 2.5 MeV What constitutes a heating element;
Constructing a heating cable having an insulating layer crosslinked by electron beam irradiation crosslinking or silane crosslinking under conditions of 1 to 20 Mrad using an electron beam accelerator of 1 to 2.5 MeV standard by coating the positive temperature coefficient heating element with a crosslinked insulation coating composition;
forming a reinforcing layer by braiding a metal wire around the outer periphery of the heating cable;
The heating cable having the reinforcing layer is coated with a cross-linked insulation coating composition, and silane when passing through a heating bath maintained at 60-100 ° C. A high heat-resistant flexible positive temperature coefficient self-regulating heating cable characterized in that it is composed of a coating layer selected from crosslinking and crosslinked at a speed of 20 to 50 m / min.
불소수지 공중합체 10,000중량부와; 전기전도성(electro-conductive) 카본블랙(carbon black)이나, 탄소나노튜브(carbon nanotube), 흑연(graphite), 그라핀(graphene) 중에서 선택되어지는 전기도전성 충진제 500~2,000중량부와; 트리알릴 시아누레이트(triallyl cyanurate), 트리알릴 이소시아누레이트(triallyl isocyanurate), 트리메틸올프로판 트리메타크릴레이트(trimethylolpropane trimethacrylate), 트리메틸올 프로판 트리아크릴레이트(trimethylolpropane triacrylate)인 조사가교제(irradiation crosslinking agent) 50~100중량부와; 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite]나, 트리스(2,4-디-터트-부틸 페닐) 포스파이트[tris(2,4-di-tert-butylphenyl) phosphite], 비스(2,4-디-터트-부틸페닐)펜타에리트리톨 디포스파이트[bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite], 트리스 (노닐페닐) 포스파이트[tris(nonylphenyl) phosphite, 이소데실 디페닐포스파이트(isodecyl diphenyl phosphite), 비스(2,6-디-터트-부틸-4-메틸페닐)펜타에리트리톨 디포스파이트[bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite] 인 포스파이트계 화합물에서 선택되어 단독 내지는 2종이상 혼합사용되는 산화방지제(antioxidant) 40~80중량부와; 폴리에틸렌 왁스(polyethylene wax)나, 폴리프로필렌 왁스(polypropylene wax), 말레익안하이드리드 변성 폴리프로필렌 왁스(maleic anhydride modified polypropylene wax), 아마이드 변성 폴리에틸렌 왁스(amide modified polyethylene wax)인 저분자량 (변성)폴리올레핀(polyolefin)에서 선택되어지는 활제(lubricant) 25~40중량부로 이루어짐을 특징으로하는 고내열 유연성 정온도계수 조성물.10,000 parts by weight of a fluororesin copolymer; 500 to 2,000 parts by weight of an electrically conductive filler selected from among electro-conductive carbon black, carbon nanotube, graphite, and graphene; Triallyl cyanurate, triallyl isocyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate as an irradiation crosslinking agent ) 50 to 100 parts by weight; Bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite [bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite] or tris(2,4-di-tert-butylphenyl) phosphite bis(2,4-di-tert-butylphenyl) phosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite ], tris (nonylphenyl) phosphite [tris (nonylphenyl) phosphite, isodecyl diphenyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite [ bis(2,6-di-ter-butyl-4-methylphenyl) pentaerythritol-diphosphite] and 40 to 80 parts by weight of an antioxidant selected from phosphite-based compounds and used alone or in combination of two or more; Low molecular weight (modified) polyolefin (polyethylene wax, polypropylene wax, maleic anhydride modified polypropylene wax, amide modified polyethylene wax) A high heat resistance flexible positive temperature coefficient composition characterized in that it consists of 25 to 40 parts by weight of a lubricant selected from polyolefin.
KR1020210086777A 2021-07-02 2021-07-02 Positive temperature coefficient self-regulating having high thermal resistance and flexibility heating cable manufacturing method KR102526902B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210086777A KR102526902B1 (en) 2021-07-02 2021-07-02 Positive temperature coefficient self-regulating having high thermal resistance and flexibility heating cable manufacturing method
KR1020220161082A KR102557081B1 (en) 2021-07-02 2022-11-28 Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility
KR1020220161088A KR102557079B1 (en) 2021-07-02 2022-11-28 High heat resistance flexible positive temperature coefficient composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210086777A KR102526902B1 (en) 2021-07-02 2021-07-02 Positive temperature coefficient self-regulating having high thermal resistance and flexibility heating cable manufacturing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020220161088A Division KR102557079B1 (en) 2021-07-02 2022-11-28 High heat resistance flexible positive temperature coefficient composition
KR1020220161082A Division KR102557081B1 (en) 2021-07-02 2022-11-28 Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility

Publications (2)

Publication Number Publication Date
KR20230006697A true KR20230006697A (en) 2023-01-11
KR102526902B1 KR102526902B1 (en) 2023-04-28

Family

ID=84892353

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020210086777A KR102526902B1 (en) 2021-07-02 2021-07-02 Positive temperature coefficient self-regulating having high thermal resistance and flexibility heating cable manufacturing method
KR1020220161082A KR102557081B1 (en) 2021-07-02 2022-11-28 Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility
KR1020220161088A KR102557079B1 (en) 2021-07-02 2022-11-28 High heat resistance flexible positive temperature coefficient composition

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020220161082A KR102557081B1 (en) 2021-07-02 2022-11-28 Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility
KR1020220161088A KR102557079B1 (en) 2021-07-02 2022-11-28 High heat resistance flexible positive temperature coefficient composition

Country Status (1)

Country Link
KR (3) KR102526902B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0137043Y1 (en) 1996-03-20 1999-05-15 권문구 Self-control type high molecular heater
KR100196298B1 (en) * 1995-12-29 1999-06-15 권문구 Self control type high molecule heating material
KR100902402B1 (en) 2007-11-29 2009-06-11 유봉환 Heating Cable For Preventing Frozen Rupture
KR101445264B1 (en) 2012-07-19 2014-09-26 주식회사 솔고파이로일렉 Three-phase ptc heating cable maintaining phase balance
KR20150006865A (en) 2012-04-26 2015-01-19 아르끄마 프랑스 Controlled free-radical copolymerization of trifluoroethylene
KR20150145099A (en) * 2014-06-18 2015-12-29 (주) 유니플라텍 Positive temperature coefficient using conductive liquid emulsion polymer composition, manufacturing method of thereoff, Face heater with it
KR20170125260A (en) * 2016-05-04 2017-11-14 영창실리콘 주식회사 Anti-oxidant semi-conductive polymer compound self-regulating heating cable therein and a manufacturing method
KR101845532B1 (en) * 2016-11-04 2018-04-04 주식회사 위스컴 Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing
KR20200103351A (en) * 2019-02-25 2020-09-02 이무형 Manufacturing method of insulation composite and high voltage cable
KR20210043896A (en) * 2019-10-14 2021-04-22 대륙테크놀로지 주식회사 High heat resistance cable for low speed electric vehicle battery wiring with eco-friendly insulation and the manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100196298B1 (en) * 1995-12-29 1999-06-15 권문구 Self control type high molecule heating material
KR0137043Y1 (en) 1996-03-20 1999-05-15 권문구 Self-control type high molecular heater
KR100902402B1 (en) 2007-11-29 2009-06-11 유봉환 Heating Cable For Preventing Frozen Rupture
KR20150006865A (en) 2012-04-26 2015-01-19 아르끄마 프랑스 Controlled free-radical copolymerization of trifluoroethylene
KR101445264B1 (en) 2012-07-19 2014-09-26 주식회사 솔고파이로일렉 Three-phase ptc heating cable maintaining phase balance
KR20150145099A (en) * 2014-06-18 2015-12-29 (주) 유니플라텍 Positive temperature coefficient using conductive liquid emulsion polymer composition, manufacturing method of thereoff, Face heater with it
KR20170125260A (en) * 2016-05-04 2017-11-14 영창실리콘 주식회사 Anti-oxidant semi-conductive polymer compound self-regulating heating cable therein and a manufacturing method
KR101845532B1 (en) * 2016-11-04 2018-04-04 주식회사 위스컴 Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing
KR20200103351A (en) * 2019-02-25 2020-09-02 이무형 Manufacturing method of insulation composite and high voltage cable
KR20210043896A (en) * 2019-10-14 2021-04-22 대륙테크놀로지 주식회사 High heat resistance cable for low speed electric vehicle battery wiring with eco-friendly insulation and the manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
특허 제10-0196298호는 정온도계수 특성을 갖는 고분자 복합재료를 이용한 고분자 발열체로서, 자율제어 고분자 발열체 폴리올레핀계 또는 불소계 결정성 수지에 5~40중량부의 카본볼랙(carbon black), 2~30중량부의 열안정제, 0.1~10중량부의 페놀계 산화방지제(phenol type antioxidant)로 구성되는 고분자 복합재료로 이루어진 내부발열체와 외부발열체의 이중구조인 것이다.
특허 제10-1548983호는 정온도계수(positive temperature coefficient) 히팅케이블 및 그 제조방법에 관한 것으로, 복수가닥으로 집속된 도체 주위로 전도성 조성물이 압출 성형된 제1전극 스트링과, 제1전극 스트링과 동일한 구성으로서 이 제1전극 스트링과 일정한 피치(pitch)를 가지며 길이방향을 따라 권선된 제2전극 스트링과, 제1전극 스트링 및 상기 제2전극 스트링을 감싸는 피복을 포함한다. 상기 발명에 따르면 도체 주위에만 전도성 조성물이 입혀져 있어서 유연성이 우수하고 굴곡이 용이하여 배열 비용과 수고로움이 절감되고, 각각의 도체마다 동심원 형태로 전도성 조성물을 압출성형하기 때문에 전극 주위 압력이 일정하여 출력 제어가 용이하며, 전극별로 따로 작업하기 때문에 전극을 둘러싼 전도성 조성물 두께 제어가 용이하여 출력 균일성이 향상된다는 장점이 있다.
특허 제10-1864413호는 내산화(anti-oxidant) 특성을 갖는 고분자 (polymer) 반도전성 조성물(semi-conductive compound) 및 이를 이용한 자율제어 히팅케이블(self-regulating heating cable)의 제조방법에 관한 것으로, 실란 그라프팅된 접착성 수지를 제조하는 실란 그라프팅된 접착성 수지 제조단계와; 고분자 반도전성 조성물을 제조하는용융혼련단계와; 반도전 조성물 펠렛(pellet)으로 만드는 펠렛화단계와; 도체 표면에 붙은 이물질과 신선유를 제거하여 열처리된 도체를 제조하는 도체열처리단계와; 도체 외주연에 0.1~10μm의 두께의 접착체층을 형성시키는 접착체층 형성단계와; 상기 펠렛화단계에서 제조된 반도전 조성물 펠렛을 압출 성형하는 반도전 발열체를 제조하는 반도전 발열체 제조단계와; 상기 반도전 발열체 제조단계에서 제조된 반도전 발열체를 안정화시키는 안정화단계와; 방사선 조사단계;를 실시하여 동선, 은선, 니켈선과 같은 금속선으로 이루어지거나 주석도금동선이나 니켈도금동선, 은도금동선으로 구성되는 금속도금동선 또는 합금선으로 구성되는 도체에 공중합수지 100~200중량부, 개시제 1~5.0중량부, 비닐실란 10~25중량부, 금속 코팅된 카본나노튜브 1~20중량부, 도전성 카본블랙 40~250중량부, 고분자수지 200~700중량부, 산화방지제 1~10중량부, 분산제 1~5중량부, 금속산화물 5~100중량부, 조사가교제가 담지된 다공성 실리카 1~10중량부로 구성되는 내산화 특성을 갖는 고분자 반도전성 조성물이 코팅되어 표면에 100~1200kGy의 방사성인 조사되어 이루어진 반도전 발열체로 구성된 것이다.

Also Published As

Publication number Publication date
KR102557081B1 (en) 2023-07-19
KR20230006414A (en) 2023-01-10
KR102557079B1 (en) 2023-07-18
KR20230006766A (en) 2023-01-11
KR102526902B1 (en) 2023-04-28

Similar Documents

Publication Publication Date Title
CA2641266C (en) Semiconductive compositions
EP1366498B1 (en) Semiconducting shield compositions
CN103030862B (en) Silane cross-linking polyethylene insulation material capable of bearing temperature of 125 DEG C and preparation method thereof
JP5768696B2 (en) Method for producing electric wire coated with silane-crosslinked polyethylene and method for producing cable coated with silane-crosslinked polyethylene
CA2303600C (en) A crosslinkable polyethylene composition
EP2508558B1 (en) Silane crosslinkable polymer composition
CN112053808A (en) Manufacturing process of ultraviolet crosslinked cable
KR100627528B1 (en) Electric cable and a method for the production thereof
KR101864413B1 (en) Anti-oxidant semi-conductive polymer compound self-regulating heating cable therein and a manufacturing method
JPS592693B2 (en) Conductive polymer composition having positive temperature coefficient characteristics and heater using the same
WO2023240892A1 (en) Fireproof cable
JP6810888B2 (en) Manufacturing method of fluorine-containing elastomer coated insulated wire
KR20170061153A (en) Electrical device comprising a cross-linked layer
JP5163597B2 (en) Non-halogen flame retardant resin composition, method for producing the same, and electric wire / cable using the same
KR102557081B1 (en) Positive temperature coefficient self-regulating heating cable having high thermal resistance and flexibility
JP2014518908A (en) Polymer compositions for electrical devices
CN117024948A (en) TPU (thermoplastic polyurethane) base material for high-temperature-resistant cable sheath and preparation method thereof
JP2012021146A (en) Silane-crosslinked polyethylene, electric wire, and cable
JPH0955125A (en) Fire resistant electric wire
EP0965999B1 (en) A crosslinkable polyolefin composition
KR102253407B1 (en) Flame retardant polyolefine based resin composition and high-voltage wire using the same
KR102354984B1 (en) Tracking resistant insulation composition and high voltage cable comprising the same
CN116102815B (en) Irradiation crosslinking high-electrical low-temperature-resistant low-smoke halogen-free insulating material, preparation method and application
CN107207809A (en) Electrical equipment including cross-linked layer
CN113930006A (en) Rapid-crosslinking two-step silane-crosslinked low-smoke halogen-free insulating material, and preparation method and application thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant